Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (246)

Search Parameters:
Keywords = non-invasive imaging agents

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
48 pages, 2994 KB  
Review
From Innovation to Application: Can Emerging Imaging Techniques Transform Breast Cancer Diagnosis?
by Honda Hsu, Kun-Hua Lee, Riya Karmakar, Arvind Mukundan, Rehan Samirkhan Attar, Ping-Hung Liu and Hsiang-Chen Wang
Diagnostics 2025, 15(21), 2718; https://doi.org/10.3390/diagnostics15212718 - 27 Oct 2025
Viewed by 435
Abstract
Background/Objectives: Breast cancer (BC) has emerged as a significant threat among female malignancies, resulting in approximately 670,000 fatalities. The capacity to identify BC has advanced over the past two decades because of deep learning (DL), machine learning (ML), and artificial intelligence. The [...] Read more.
Background/Objectives: Breast cancer (BC) has emerged as a significant threat among female malignancies, resulting in approximately 670,000 fatalities. The capacity to identify BC has advanced over the past two decades because of deep learning (DL), machine learning (ML), and artificial intelligence. The early detection of BC is crucial; yet, conventional diagnostic techniques, including MRI, mammography, and biopsy, are costly, time-intensive, less sensitive, incorrect, and necessitate skilled physicians. This narrative review will examine six novel imaging approaches for BC diagnosis. Methods: Optical coherence tomography (OCT) surpasses existing approaches by providing non-invasive, high-resolution imaging. Raman Spectroscopy (RS) offers detailed chemical and structural insights into cancer tissue that traditional approaches cannot provide. Photoacoustic Imaging (PAI) provides superior optical contrast, exceptional ultrasonic resolution, and profound penetration and visualization capabilities. Hyperspectral Imaging (HSI) acquires spatial and spectral data, facilitating non-invasive tissue classification with superior accuracy compared to grayscale imaging. Contrast-Enhanced Spectral Mammography (CESM) utilizes contrast agents and dual energy to improve the visualization of blood vessels, enhance patient comfort, and surpass standard mammography in sensitivity. Multispectral Imaging (MSI) enhances tissue classification by employing many wavelength bands, resulting in high-dimensional images that surpass the ultrasound approach. The imaging techniques studied in this study are very useful for diagnosing tumors, staging them, and guiding surgery. They are not detrimental to morphological or immunohistochemical analysis, which is the gold standard for diagnosing breast cancer and determining molecular characteristics. Results: These imaging modalities provide enhanced sensitivity, specificity, and diagnostic accuracy. Notwithstanding their considerable potential, the majority of these procedures are not employed in standard clinical practices. Conclusions: Validations, standardization, and large-scale clinical trials are essential for the real-time application of these approaches. The analyzed studies demonstrated that the novel modalities displayed enhanced diagnostic efficacy, with reported sensitivities and specificities often exceeding those of traditional imaging methods. The results indicate that they may assist in early detection and surgical decision-making; however, for widespread adoption, they must be standardized, cost-reduced, and subjected to extensive clinical trials. This study offers a concise summary of each methodology, encompassing the methods and findings, while also addressing the many limits encountered in the imaging techniques and proposing solutions to mitigate these issues for future applications. Full article
Show Figures

Figure 1

18 pages, 4992 KB  
Article
Magnetic Resonance Imaging Using a Chimeric Anti-Glypican-3 Antibody Conjugated with Gadolinium Selectively Detects Glypican-3-Positive Hepatocellular Carcinoma In Vitro and In Vivo
by Yi Liu, Mingdian Tan, Mei-Sze Chua and Samuel So
Cancers 2025, 17(20), 3357; https://doi.org/10.3390/cancers17203357 - 17 Oct 2025
Viewed by 243
Abstract
Background/Objectives: Glypican-3 (GPC3) is a cell surface oncofetal protein that is highly expressed in hepatocellular carcinoma (HCC) but absent in normal liver tissue, making it an attractive target for molecularly targeted diagnosis and therapy. To support GPC3-targeted treatment strategies, there is a [...] Read more.
Background/Objectives: Glypican-3 (GPC3) is a cell surface oncofetal protein that is highly expressed in hepatocellular carcinoma (HCC) but absent in normal liver tissue, making it an attractive target for molecularly targeted diagnosis and therapy. To support GPC3-targeted treatment strategies, there is a need for a non-invasive imaging tool capable of detecting GPC3-positive tumors. Methods: We conjugated a commercially available murine anti-GPC3 antibody (1G12), or a proprietary chimeric anti-GPC3 antibody (ET58) to the standard magnetic resonance imaging (MRI) contrast agent, gadolinium, via a DOTA chelator. The resulting probes, 1G12-DOTA-Gd or ET58-DOTA-Gd, respectively, were assessed for in vitro relaxivity and binding specificity to GPC3-positive HCC cells, as well as for in vivo imaging performance in mouse xenograft models bearing GPC3-positive or GPC3-negative HCC tumors. Conclusions: ET58-DOTA-Gd shows high specificity, imaging efficacy, and a favorable immunogenicity profile, thereby making it a promising candidate for clinical translation as a GPC3-targeted MRI probe. It holds potential as a non-invasive companion diagnostic for identifying GPC3-positive HCC patients who may benefit from GPC3-targeted therapies. Full article
(This article belongs to the Section Cancer Causes, Screening and Diagnosis)
Show Figures

Figure 1

14 pages, 6532 KB  
Article
The Evaluation of Skin Infiltration in Mycosis Fungoides/Sézary Syndrome Using the High-Frequency Ultrasonography
by Hanna Cisoń, Alina Jankowska-Konsur and Rafał Białynicki-Birula
J. Clin. Med. 2025, 14(20), 7143; https://doi.org/10.3390/jcm14207143 - 10 Oct 2025
Viewed by 404
Abstract
Background/Objectives: High-frequency ultrasonography (HFUS) has gained increasing attention in dermatology as a non-invasive imaging technique capable of visualizing cutaneous structures with high resolution. In cutaneous T-cell lymphomas (CTCL), including mycosis fungoides (MF)/Sézary syndrome (SS), HFUS may provide an objective method for assessing disease [...] Read more.
Background/Objectives: High-frequency ultrasonography (HFUS) has gained increasing attention in dermatology as a non-invasive imaging technique capable of visualizing cutaneous structures with high resolution. In cutaneous T-cell lymphomas (CTCL), including mycosis fungoides (MF)/Sézary syndrome (SS), HFUS may provide an objective method for assessing disease activity and monitoring treatment response. This study aimed to evaluate the clinical utility of HFUS in detecting therapy-induced changes in subepidermal low-echogenic band (SLEB) thickness. Methods: We conducted a prospective, single-center study between May 2021 and May 2025. Thirty-three patients with histologically confirmed MF (n = 31) or SS (n = 2) underwent HFUS at baseline and after 4–8 weeks of treatment. SLEB thickness was measured before (E1) and after early treatment (E2). Patients received systemic agents, phototherapy, or topical regimens. Statistical analysis included mixed-model ANOVA with repeated measures to assess SLEB changes, and post hoc tests were applied to explore the influence of therapy type, age, and gender. Results: Among 31 evaluable patients with MF, HFUS revealed a significant reduction in SLEB thickness after treatment (0.90 ± 1.10 mm vs. 0.69 ± 0.89 mm; F(1,29) = 8.88, p = 0.006, η2 = 0.23). The type of early therapy (systemic vs. topical) did not significantly affect outcomes (p = 0.452). Age emerged as a relevant factor: patients ≥ 66 years exhibited higher baseline SLEB values and a significant reduction post-treatment (p < 0.001), whereas no comparable effect was observed in younger patients. Gender did not significantly influence SLEB changes. Conclusions: HFUS is a sensitive and clinically applicable imaging tool for monitoring treatment response in MF/SS. Reductions in SLEB thickness were observed across therapeutic modalities and aligned with early clinical improvement. HFUS may serve as a valuable adjunct to standard clinical and histopathological evaluation in the routine management of MF/SS. Full article
(This article belongs to the Section Dermatology)
Show Figures

Figure 1

16 pages, 3480 KB  
Article
Reinforcement Learning for Robot Assisted Live Ultrasound Examination
by Chenyang Li, Tao Zhang, Ziqi Zhou, Baoliang Zhao, Peng Zhang and Xiaozhi Qi
Electronics 2025, 14(18), 3709; https://doi.org/10.3390/electronics14183709 - 19 Sep 2025
Viewed by 765
Abstract
Due to its portability, non-invasiveness, and real-time capabilities, ultrasound imaging has been widely adopted for liver disease detection. However, conventional ultrasound examinations heavily rely on operator expertise, leading to high workload and inconsistent imaging quality. To address these challenges, we propose a Robotic [...] Read more.
Due to its portability, non-invasiveness, and real-time capabilities, ultrasound imaging has been widely adopted for liver disease detection. However, conventional ultrasound examinations heavily rely on operator expertise, leading to high workload and inconsistent imaging quality. To address these challenges, we propose a Robotic Ultrasound Scanning System (RUSS) based on reinforcement learning to automate the localization of standard liver planes. It can help reduce physician burden while improving scanning efficiency and accuracy. The reinforcement learning agent employs a Deep Q-Network (DQN) integrated with LSTM to control probe movements within a discrete action space, utilizing the cross-sectional area of the abdominal aorta region as the criterion for standard plane determination. System performance was comprehensively evaluated against a target standard plane, achieving an average Peak Signal-to-Noise Ratio (PSNR) of 24.51 dB and a Structural Similarity Index (SSIM) of 0.70, indicating high fidelity in the acquired images. Furthermore, a mean Dice coefficient of 0.80 for the abdominal aorta segmentation confirmed high anatomical localization accuracy. These preliminary results demonstrate the potential of our method for achieving consistent and autonomous ultrasound scanning. Full article
(This article belongs to the Topic Robot Manipulation Learning and Interaction Control)
Show Figures

Figure 1

27 pages, 5458 KB  
Article
Therapeutic Potential of Astrocyte-Derived Extracellular Vesicles in Post-Stroke Recovery: Behavioral and MRI-Based Insights from a Rat Model
by Yessica Heras-Romero, Axayácatl Morales-Guadarrama, Luis B. Tovar-y-Romo, Diana Osorio Londoño, Roberto Olayo-González and Ernesto Roldan-Valadez
Life 2025, 15(9), 1418; https://doi.org/10.3390/life15091418 - 9 Sep 2025
Viewed by 776
Abstract
Astrocyte-derived extracellular vesicles (ADEVs) have emerged as promising neuroprotective agents for ischemic stroke. In this study, we evaluated the therapeutic potential of hypoxia-conditioned ADEVs (HxEVs) administered intracerebroventricularly in a rat model of transient middle cerebral artery occlusion (tMCAO). Serial magnetic resonance imaging (MRI) [...] Read more.
Astrocyte-derived extracellular vesicles (ADEVs) have emerged as promising neuroprotective agents for ischemic stroke. In this study, we evaluated the therapeutic potential of hypoxia-conditioned ADEVs (HxEVs) administered intracerebroventricularly in a rat model of transient middle cerebral artery occlusion (tMCAO). Serial magnetic resonance imaging (MRI) with diffusion tensor imaging (DTI) was performed at 1, 7, 14, and 21 days post-stroke. HxEV treatment produced a significant reduction in infarct volume from day 1, sustained through day 21, and was accompanied by improvements in motor and sensory recovery. DTI analyses showed progressive normalization of fractional anisotropy (FA) and radial diffusivity (RD), particularly in the corpus callosum and striatum, reflecting microstructural repair. In contrast, mean diffusivity (MD) was less sensitive to these treatment effects. Regional differences in therapeutic response were evident, with earlier and more sustained recovery in the corpus callosum than in other brain regions. Histological findings confirmed greater preservation of dendrites and axons in HxEV-treated animals, supporting the role of these vesicles in accelerating post-stroke neurorepair. Together, these results demonstrate that hypoxia-conditioned ADEVs promote both structural and functional recovery after ischemic stroke. They also highlight the value of DTI-derived biomarkers as non-invasive tools to monitor neurorepair. The identification of region-specific therapeutic effects and the validation of reliable imaging markers provide a strong foundation for future research and development. Full article
Show Figures

Figure 1

22 pages, 3504 KB  
Article
New Application for the Early Detection of Wound Infections Using a Near-Infrared Fluorescence Device and Forward-Looking Thermal Camera
by Ha Jong Nam, Se Young Kim and Hwan Jun Choi
Diagnostics 2025, 15(17), 2221; https://doi.org/10.3390/diagnostics15172221 - 1 Sep 2025
Viewed by 854
Abstract
Background: Timely and accurate identification of wound infections is essential for effective management, yet remains clinically challenging. This study evaluated the utility of a near-infrared autofluorescence imaging system (Fluobeam®, Fluoptics, Grenoble, France) and a thermal imaging system (FLIR®, Teledyne [...] Read more.
Background: Timely and accurate identification of wound infections is essential for effective management, yet remains clinically challenging. This study evaluated the utility of a near-infrared autofluorescence imaging system (Fluobeam®, Fluoptics, Grenoble, France) and a thermal imaging system (FLIR®, Teledyne LLC, Thousand Oaks, CA, USA) for detecting bacterial and fungal infections in chronic wounds. Fluobeam® enables real-time visualization of microbial autofluorescence without exogenous contrast agents, whereas FLIR® detects localized thermal changes associated with infection-related inflammation. Methods: This retrospective clinical study included 33 patients with suspected wound infections. All patients underwent autofluorescence imaging using Fluobeam® and concurrent thermal imaging with FLIR®. Imaging findings were compared with microbiological culture results, clinical signs of infection, and semi-quantitative microbial burdens. Results: Fluobeam® achieved a sensitivity of 78.3% and specificity of 80.0% in detecting culture-positive infections. Fluorescence signal intensity correlated strongly with microbial burden (r = 0.76, p < 0.01) and clinical indicators, such as exudate, swelling, and malodor. Pathogens with high metabolic fluorescence, including Pseudomonas aeruginosa and Candida spp., were consistently identified. Representative cases demonstrate the utility of fluorescence imaging in guiding targeted debridement and enhancing intraoperative decision-making. Conclusions: Near-infrared autofluorescence imaging with Fluobeam® and thermal imaging with FLIR® offer complementary, noninvasive diagnostic insights into microbial burden and host inflammatory response. The combined use of these modalities may improve infection detection, support clinical decision-making, and enhance wound care outcomes. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

12 pages, 409 KB  
Review
Disease Diagnosis Using Retinal Vasculature: Insights from Flammer Syndrome and AI
by George Ayoub
Brain Sci. 2025, 15(9), 919; https://doi.org/10.3390/brainsci15090919 - 26 Aug 2025
Viewed by 771
Abstract
The retinal vasculature provides a unique and non-invasive window into the health of the circulatory system. Josef Flammer, a pioneer in ocular vascular research, was the first to systematically describe how the state of retinal blood vessels reflects broader cardiovascular health. Because the [...] Read more.
The retinal vasculature provides a unique and non-invasive window into the health of the circulatory system. Josef Flammer, a pioneer in ocular vascular research, was the first to systematically describe how the state of retinal blood vessels reflects broader cardiovascular health. Because the retina is the only part of the human body where blood vessels can be visualized non-invasively, it serves as a valuable proxy for understanding microvascular conditions elsewhere, including the heart, brain, and lymphatics. Recent work has shown that retinal vasculature can be used as a proxy for microcirculatory dysfunction in other body systems, and that treatment using medical doses of vitamins can restore microcirculation, easing symptoms in disorders as diverse as glaucoma, AMD, and lymphedema without the need of pharmacological agents. The advent of machine learning tools to read retinal images promises both early detection of conditions and simplified monitoring of treatment progression. Full article
(This article belongs to the Special Issue Retinal Neurochemistry and Development)
Show Figures

Figure 1

17 pages, 1414 KB  
Review
Precision Medicine in Orthobiologics: A Paradigm Shift in Regenerative Therapies
by Annu Navani, Madhan Jeyaraman, Naveen Jeyaraman, Swaminathan Ramasubramanian, Arulkumar Nallakumarasamy, Gabriel Azzini and José Fábio Lana
Bioengineering 2025, 12(9), 908; https://doi.org/10.3390/bioengineering12090908 - 24 Aug 2025
Viewed by 2634
Abstract
The evolving paradigm of precision medicine is redefining the landscape of orthobiologic therapies by moving beyond traditional diagnosis-driven approaches toward biologically tailored interventions. This review synthesizes current evidence supporting precision orthobiologics, emphasizing the significance of individualized treatment strategies in musculoskeletal regenerative medicine. This [...] Read more.
The evolving paradigm of precision medicine is redefining the landscape of orthobiologic therapies by moving beyond traditional diagnosis-driven approaches toward biologically tailored interventions. This review synthesizes current evidence supporting precision orthobiologics, emphasizing the significance of individualized treatment strategies in musculoskeletal regenerative medicine. This narrative review synthesized literature from PubMed, Embase, and Web of Science databases (January 2015–December 2024) using search terms, including ‘precision medicine,’ ‘orthobiologics,’ ‘regenerative medicine,’ ‘biomarkers,’ and ‘artificial intelligence’. Biological heterogeneity among patients with ostensibly similar clinical diagnoses—reflected in diverse inflammatory states, genetic backgrounds, and tissue degeneration patterns—necessitates patient stratification informed by molecular, genetic, and multi-omics biomarkers. These biomarkers not only enhance diagnostic accuracy but also improve prognostication and monitoring of therapeutic responses. Advanced imaging modalities such as T2 mapping, DTI, DCE-MRI, and molecular PET offer non-invasive quantification of tissue health and regenerative dynamics, further refining patient selection and treatment evaluation. Simultaneously, bioengineered delivery systems, including hydrogels, nanoparticles, and scaffolds, enable precise and sustained release of orthobiologic agents, optimizing therapeutic efficacy. Artificial intelligence and machine learning approaches are increasingly employed to integrate high-dimensional clinical, imaging, and omics datasets, facilitating predictive modeling and personalized treatment planning. Despite these advances, significant challenges persist—ranging from assay variability and lack of standardization to regulatory and economic barriers. Future progress requires large-scale multicenter validation studies, harmonization of protocols, and cross-disciplinary collaboration. By addressing these limitations, precision orthobiologics has the potential to deliver safer, more effective, and individualized care. This shift from generalized to patient-specific interventions holds promise for improving outcomes in degenerative and traumatic musculoskeletal disorders through a truly integrative, data-informed therapeutic framework. Full article
Show Figures

Graphical abstract

18 pages, 3441 KB  
Review
Epidermal Growth Factor Receptor (EGFR)-Targeting Peptides and Their Applications in Tumor Imaging Probe Construction: Current Advances and Future Perspectives
by Lu Huang, Ying Dong, Jinhang Li, Xinyu Yang, Xiaoqiong Li, Jia Wu, Jinhua Huang, Qiaoxuan Zhang, Zemin Wan, Shuzhi Hu, Ruibing Feng, Guodong Li, Xianzhang Huang and Pengwei Zhang
Biology 2025, 14(8), 1011; https://doi.org/10.3390/biology14081011 - 7 Aug 2025
Viewed by 1724
Abstract
The epidermal growth factor receptor (EGFR) is a key target for both cancer diagnosis and therapeutic interventions. Assessing EGFR expression before therapy has become routine in clinical practice, yet current methods like biopsy and immunohistochemistry (IHC) have significant limitations, including invasiveness, limited repeatability, [...] Read more.
The epidermal growth factor receptor (EGFR) is a key target for both cancer diagnosis and therapeutic interventions. Assessing EGFR expression before therapy has become routine in clinical practice, yet current methods like biopsy and immunohistochemistry (IHC) have significant limitations, including invasiveness, limited repeatability, and lack of real-time, whole-body data. EGFR-targeted imaging has emerged as a promising alternative. EGFR-targeting peptides, owing to their favorable physicochemical properties and versatility, are increasingly being explored for a variety of applications, including molecular imaging, drug delivery, and targeted therapy. Recent advances have demonstrated the potential of EGFR-targeting peptides conjugated to imaging probes for non-invasive, real-time in vivo tumor detection, precision therapy, and surgical guidance. Here, we provide a comprehensive overview of the latest progress in EGFR-targeting peptides development, with a particular focus on their application in the development of molecular imaging agents, including fluorescence imaging, PET/CT, magnetic resonance imaging, and multimodal imaging. Furthermore, we examine the challenges and future directions concerning the development and clinical application of EGFR-targeting peptide-based imaging probes. Finally, we highlight emerging technologies such as artificial intelligence, mutation-specific peptides, and multimodal imaging platforms, which offer significant potential for advancing the diagnosis and treatment of EGFR-targeted cancers. Full article
Show Figures

Figure 1

29 pages, 3455 KB  
Review
Recent Advances in Nanoparticle and Nanocomposite-Based Photodynamic Therapy for Cervical Cancer: A Review
by Dorota Bartusik-Aebisher, Mohammad A. Saad, Agnieszka Przygórzewska and David Aebisher
Cancers 2025, 17(15), 2572; https://doi.org/10.3390/cancers17152572 - 4 Aug 2025
Viewed by 968
Abstract
Cervical cancer represents a significant global health challenge. Photodynamic therapy (PDT) appears to be a promising, minimally invasive alternative to standard treatments. However, the clinical efficacy of PDT is sometimes limited by the low solubility and aggregation of photosensitizers, their non-selective distribution in [...] Read more.
Cervical cancer represents a significant global health challenge. Photodynamic therapy (PDT) appears to be a promising, minimally invasive alternative to standard treatments. However, the clinical efficacy of PDT is sometimes limited by the low solubility and aggregation of photosensitizers, their non-selective distribution in the body, hypoxia in the tumor microenvironment, and limited light penetration. Recent advances in nanoparticle and nanocomposite platforms have addressed these challenges by integrating multiple functional components into a single delivery system. By encapsulating or conjugating photosensitizers in biodegradable matrices, such as mesoporous silica, organometallic structures and core–shell construct nanocarriers increase stability in water and extend circulation time, enabling both passive and active targeting through ligand decoration. Up-conversion and dual-wavelength responsive cores facilitate deep light conversion in tissues, while simultaneous delivery of hypoxia-modulating agents alleviates oxygen deprivation to sustain reactive oxygen species generation. Controllable “motor-cargo” constructs and surface modifications improve intratumoral diffusion, while aggregation-induced emission dyes and plasmonic elements support real-time imaging and quantitative monitoring of therapeutic response. Together, these multifunctional nanosystems have demonstrated potent cytotoxicity in vitro and significant tumor suppression in vivo in mouse models of cervical cancer. Combining targeted delivery, controlled release, hypoxia mitigation, and image guidance, engineered nanoparticles provide a versatile and powerful platform to overcome the current limitations of PDT and pave the way toward more effective, patient-specific treatments for cervical malignancies. Our review of the literature summarizes studies on nanoparticles and nanocomposites used in PDT monotherapy for cervical cancer, published between 2023 and July 2025. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

12 pages, 677 KB  
Review
Prognostic Utility of Arterial Spin Labeling in Traumatic Brain Injury: From Pathophysiology to Precision Imaging
by Silvia De Rosa, Flavia Carton, Alessandro Grecucci and Paola Feraco
NeuroSci 2025, 6(3), 73; https://doi.org/10.3390/neurosci6030073 - 4 Aug 2025
Viewed by 1595
Abstract
Background: Traumatic brain injury (TBI) remains a significant contributor to global mortality and long-term neurological disability. Accurate prognostic biomarkers are crucial for enhancing prognostic accuracy and guiding personalized clinical management. Objective: This review assesses the prognostic value of arterial spin labeling (ASL), a [...] Read more.
Background: Traumatic brain injury (TBI) remains a significant contributor to global mortality and long-term neurological disability. Accurate prognostic biomarkers are crucial for enhancing prognostic accuracy and guiding personalized clinical management. Objective: This review assesses the prognostic value of arterial spin labeling (ASL), a non-invasive MRI technique, in adult and pediatric TBI, with a focus on quantitative cerebral blood flow (CBF) and arterial transit time (ATT) measures. A comprehensive literature search was conducted across PubMed, Embase, Scopus, and IEEE databases, including observational studies and clinical trials that applied ASL techniques (pCASL, PASL, VSASL, multi-PLD) in TBI patients with functional or cognitive outcomes, with outcome assessments conducted at least 3 months post-injury. Results: ASL-derived CBF and ATT parameters demonstrate potential as prognostic indicators across both acute and chronic stages of TBI. Hypoperfusion patterns correlate with worse neurocognitive outcomes, while region-specific perfusion alterations are associated with affective symptoms. Multi-delay and velocity-selective ASL sequences enhance diagnostic sensitivity in TBI with heterogeneous perfusion dynamics. Compared to conventional perfusion imaging, ASL provides absolute quantification without contrast agents, making it suitable for repeated monitoring in vulnerable populations. ASL emerges as a promising prognostic biomarker for clinical use in TBI. Conclusion: Integrating ASL into multiparametric models may improve risk stratification and guide individualized therapeutic strategies. Full article
(This article belongs to the Topic Neurological Updates in Neurocritical Care)
Show Figures

Figure 1

16 pages, 2734 KB  
Article
Quantitative Evaluation of Optical Clearing Agent Performance Based on Multilayer Monte Carlo and Diffusion Modeling
by Lu Fu, Changlun Hou, Dongbiao Zhang, Zhen Shi, Jufeng Zhao and Guangmang Cui
Photonics 2025, 12(8), 751; https://doi.org/10.3390/photonics12080751 - 25 Jul 2025
Viewed by 1401
Abstract
Optical clearing agents (OCAs) offer a promising approach to enhance skin transparency by reducing scattering and improving photon transmission, which is critical for non-invasive optical diagnostics such as glucose sensing and vascular imaging. However, the complex multilayered structure of skin and anatomical variability [...] Read more.
Optical clearing agents (OCAs) offer a promising approach to enhance skin transparency by reducing scattering and improving photon transmission, which is critical for non-invasive optical diagnostics such as glucose sensing and vascular imaging. However, the complex multilayered structure of skin and anatomical variability across different regions pose challenges for accurately evaluating OCA performance. In this study, we developed a multilayer Monte Carlo (MC) simulation model integrated with a depth- and time-resolved diffusion model based on Fick’s law to quantitatively assess the combined effects of OCA penetration depth and refractive index change on optical clearing. The model incorporates realistic skin parameters, including variable stratum corneum thicknesses, and was validated through in vivo experiments using glycerol and glucose at different concentrations. Both the simulation and experimental results demonstrate that increased stratum corneum thickness significantly reduces blood absorption of light and lowers the clearing efficiency of OCAs. The primary influence of stratum corneum thickness lies in requiring a greater degree of refractive index matching rather than necessitating a deeper OCA penetration depth to achieve effective optical clearing. These findings underscore the importance of considering regional skin differences when selecting OCAs and designing treatment protocols. This work provides quantitative insights into the interaction between tissue structure and optical response, supporting improved application strategies in clinical diagnostics. Full article
(This article belongs to the Section Biophotonics and Biomedical Optics)
Show Figures

Figure 1

12 pages, 619 KB  
Review
Manganese-Based Contrast Agents as Alternatives to Gadolinium: A Comprehensive Review
by Linda Poggiarelli, Caterina Bernetti, Luca Pugliese, Federico Greco, Bruno Beomonte Zobel and Carlo A. Mallio
Clin. Pract. 2025, 15(8), 137; https://doi.org/10.3390/clinpract15080137 - 25 Jul 2025
Viewed by 2005
Abstract
Background/Objectives: Magnetic resonance imaging (MRI) is a powerful, non-invasive diagnostic tool capable of capturing detailed anatomical and physiological information. MRI contrast agents enhance image contrast but, especially linear gadolinium-based compounds, have been associated with safety concerns. This has prompted interest in alternative contrast [...] Read more.
Background/Objectives: Magnetic resonance imaging (MRI) is a powerful, non-invasive diagnostic tool capable of capturing detailed anatomical and physiological information. MRI contrast agents enhance image contrast but, especially linear gadolinium-based compounds, have been associated with safety concerns. This has prompted interest in alternative contrast agents. Manganese-based contrast agents offer a promising substitute, owing to manganese’s favorable magnetic properties, natural biological role, and strong T1 relaxivity. This review aims to critically assess the structure, mechanisms, applications, and challenges of manganese-based contrast agents in MRI. Methods: This review synthesizes findings from preclinical and clinical studies involving various types of manganese-based contrast agents, including small-molecule chelates, nanoparticles, theranostic platforms, responsive agents, and controlled-release systems. Special attention is given to pharmacokinetics, biodistribution, and safety evaluations. Results: Mn-based agents demonstrate promising imaging capabilities, with some achieving relaxivity values comparable to gadolinium compounds. Targeted uptake mechanisms, such as hepatocyte-specific transport via organic anion-transporting polypeptides, allow for enhanced tissue contrast. However, concerns remain regarding the in vivo release of free Mn2+ ions, which could lead to toxicity. Preliminary toxicity assessments report low cytotoxicity, but further comprehensive long-term safety studies should be carried out. Conclusions: Manganese-based contrast agents present a potential alternative to gadolinium-based MRI agents pending further validation. Despite promising imaging performance and biocompatibility, further investigation into stability and safety is essential. Additional research is needed to facilitate the clinical translation of these agents. Full article
Show Figures

Figure 1

19 pages, 5895 KB  
Article
Receptor-Mediated SPION Labeling of CD4+ T Cells for Longitudinal MRI Tracking of Distribution Following Systemic Injection in Mouse
by Yu Ping, Songyue Han, Brock Howerton, Francesc Marti, Jake Weeks, Roberto Gedaly, Reuben Adatorwovor and Fanny Chapelin
Nanomaterials 2025, 15(14), 1068; https://doi.org/10.3390/nano15141068 - 10 Jul 2025
Viewed by 1080
Abstract
Tracking T cells in vivo using MRI is a major challenge due to the difficulty of labeling these non-phagocytic cells with a sufficient contrast agent to generate a detectable signal change. In this study, we explored CD4-Superparamagnetic iron oxide nanoparticles (SPION), which is [...] Read more.
Tracking T cells in vivo using MRI is a major challenge due to the difficulty of labeling these non-phagocytic cells with a sufficient contrast agent to generate a detectable signal change. In this study, we explored CD4-Superparamagnetic iron oxide nanoparticles (SPION), which is commonly used in magnetic cell sorting, as a potential receptor-mediated, specific CD4+ T cell MRI labeling agent. We optimized the labeling protocol for maximal CD4+ cell labeling and viability. Cell health was confirmed with trypan blue assay, and labeling efficacy was confirmed with Prussian blue staining, transmission electron microscopy, and MRI of labeled cell pellets. Key cell functionality was assessed by flow cytometry. Next, CD4-SPION-labeled T cells or unlabeled T cells were delivered via intravenous injection in naïve mice. Liver MRIs pre-, 24 h, and 72 h post-T cell injection were performed to determine in vivo tracking ability. Our results show that CD4-SPION induces significant attenuation of T2 signals in a concentration-dependent manner, confirming their potential as an effective MRI contrast agent. In vitro, analyses showed that CD4+ T cells were able to uptake CD4-SPION without affecting cellular activity and key functions, as evidenced by Prussian blue staining and flow cytometric analysis of IL-2 receptor and the IL-7 receptor α-chains, CD69 upregulation, and IFN-γ secretion. In vivo, systemically distributed CD4-SPION-labeled T cells could be tracked in the liver at 24 and 72 h after injection, contrary to controls. Histological staining of tissue sections validated the findings. Our results showed that SPION CD4+ T cell sorting coupled with longitudinal MR imaging is a valid method to track CD4+ T cells in vivo. This safe, specific, and sensitive approach will facilitate the use of SPION as an MRI contrast agent in clinical practice, allowing for non-invasive tracking of adoptive cell therapies in multiple disease conditions. Full article
Show Figures

Figure 1

28 pages, 1727 KB  
Review
Computational and Imaging Approaches for Precision Characterization of Bone, Cartilage, and Synovial Biomolecules
by Rahul Kumar, Kyle Sporn, Vibhav Prabhakar, Ahab Alnemri, Akshay Khanna, Phani Paladugu, Chirag Gowda, Louis Clarkson, Nasif Zaman and Alireza Tavakkoli
J. Pers. Med. 2025, 15(7), 298; https://doi.org/10.3390/jpm15070298 - 9 Jul 2025
Viewed by 1516
Abstract
Background/Objectives: Degenerative joint diseases (DJDs) involve intricate molecular disruptions within bone, cartilage, and synovial tissues, often preceding overt radiographic changes. These tissues exhibit complex biomolecular architectures and their degeneration leads to microstructural disorganization and inflammation that are challenging to detect with conventional imaging [...] Read more.
Background/Objectives: Degenerative joint diseases (DJDs) involve intricate molecular disruptions within bone, cartilage, and synovial tissues, often preceding overt radiographic changes. These tissues exhibit complex biomolecular architectures and their degeneration leads to microstructural disorganization and inflammation that are challenging to detect with conventional imaging techniques. This review aims to synthesize recent advances in imaging, computational modeling, and sequencing technologies that enable high-resolution, non-invasive characterization of joint tissue health. Methods: We examined advanced modalities including high-resolution MRI (e.g., T1ρ, sodium MRI), quantitative and dual-energy CT (qCT, DECT), and ultrasound elastography, integrating them with radiomics, deep learning, and multi-scale modeling approaches. We also evaluated RNA-seq, spatial transcriptomics, and mass spectrometry-based proteomics for omics-guided imaging biomarker discovery. Results: Emerging technologies now permit detailed visualization of proteoglycan content, collagen integrity, mineralization patterns, and inflammatory microenvironments. Computational frameworks ranging from convolutional neural networks to finite element and agent-based models enhance diagnostic granularity. Multi-omics integration links imaging phenotypes to gene and protein expression, enabling predictive modeling of tissue remodeling, risk stratification, and personalized therapy planning. Conclusions: The convergence of imaging, AI, and molecular profiling is transforming musculoskeletal diagnostics. These synergistic platforms enable early detection, multi-parametric tissue assessment, and targeted intervention. Widespread clinical integration requires robust data infrastructure, regulatory compliance, and physician education, but offers a pathway toward precision musculoskeletal care. Full article
(This article belongs to the Special Issue Cutting-Edge Diagnostics: The Impact of Imaging on Precision Medicine)
Show Figures

Figure 1

Back to TopTop