Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = non-cancerous mouse NIH3T3 fibroblasts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4510 KiB  
Article
Synthesis, Characterization and Cytotoxicity Studies of Aminated Microcrystalline Cellulose Derivatives against Melanoma and Breast Cancer Cell Lines
by Farzana Nazir and Mudassir Iqbal
Polymers 2020, 12(11), 2634; https://doi.org/10.3390/polym12112634 - 10 Nov 2020
Cited by 37 | Viewed by 4128
Abstract
Cellulose based materials are emerging in the commercial fields and high-end applications, especially in biomedicines. Aminated cellulose derivatives have been extensively used for various applications but limited data are available regarding its cytotoxicity studies for biomedical application. The aim of this study is [...] Read more.
Cellulose based materials are emerging in the commercial fields and high-end applications, especially in biomedicines. Aminated cellulose derivatives have been extensively used for various applications but limited data are available regarding its cytotoxicity studies for biomedical application. The aim of this study is to synthesize different 6-deoxy-amino-cellulose derivatives from Microcrystalline cellulose (MCC) via tosylation and explore their cytotoxic potential against normal fibroblasts, melanoma and breast cancer. 6-deoxy-6-hydrazide Cellulose (Cell Hyd) 6-deoxy-6-diethylamide Cellulose (Cell DEA) and 6-deoxy-6-diethyltriamine Cellulose (Cell DETA) were prepared and characterized by various technologies like Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), nuclear magnetic resonance spectroscopy (NMR), X-ray diffractogram (XRD), Scanning Electron microscopy (SEM), Elemental Analysis and Zeta potential measurements. Cytotoxicity was evaluated against normal fibroblasts (NIH3T3), mouse skin melanoma (B16F10), human epithelial adenocarcinoma (MDA-MB-231) and human breast adenocarcinoma (MCF-7) cell lines. IC50 values obtained from cytotoxicity assay and live/dead assay images analysis showed MCC was non cytotoxic while Cell Hyd, Cell DEA and Cell DETA exhibited noncytotoxic activity up to 200 μg/mL to normal fibroblast cells NIH3T3, suggesting its safe use in medical fields. The mouse skin melanoma (B16F10) are the most sensitive cells to the cytotoxic effects of Cell Hyd, Cell DEA and Cell DETA, followed by human breast adenocarcinoma (MCF-7). Based on our study, it is suggested that aminated cellulose derivatives could be promising candidates for tissue engineering applications and in cancer inhibiting studies in future. Full article
(This article belongs to the Special Issue Polymeric Materials for Biomedical Applications)
Show Figures

Graphical abstract

16 pages, 2823 KiB  
Article
Kenaf (Hibiscus cannabinus L.) Leaves and Seed as a Potential Source of the Bioactive Compounds: Effects of Various Extraction Solvents on Biological Properties
by Md. Adnan, Ki Kwang Oh, Md Obyedul Kalam Azad, Myung Hwan Shin, Myeong-Hyeon Wang and Dong Ha Cho
Life 2020, 10(10), 223; https://doi.org/10.3390/life10100223 - 28 Sep 2020
Cited by 44 | Viewed by 7226
Abstract
Hibiscus cannabinus (Kenaf) is a potential source of bioactive constituents and natural antioxidant. The current study determined the impact of various solvents on extraction yield, recovery of polyphenol and flavonoid, antioxidant, anticancer, and antibacterial properties of Kenaf leaves and seed. The powder of [...] Read more.
Hibiscus cannabinus (Kenaf) is a potential source of bioactive constituents and natural antioxidant. The current study determined the impact of various solvents on extraction yield, recovery of polyphenol and flavonoid, antioxidant, anticancer, and antibacterial properties of Kenaf leaves and seed. The powder of leaves and seed was separately extracted with n-hexane, ethyl acetate, ethanol, and water solvent. Among them, the ethanol extract of leaves and seed showed the highest extraction yield, and their GC-MS analysis revealed a total of 55 and 14 bioactive compounds, respectively. The total polyphenols (TP) and flavonoids (TF) content were quantified by a spectrophotometric technique where water extracts displayed a noteworthy amount of TP and TF content compared to other extracts. A similar demonstration was noticed in antioxidant activity, evaluated by DPPH (2,2-diphenyl-1-picrylhydrazyl) and hydrogen peroxide scavenging capacity. In addition, cytotoxicity and anti-lung cancer activity were identified against mouse embryonic fibroblast (NIH3T3) and human lung cancer (A549) cells. All extracts of leaves and seed were observed as non-toxic to the NIH3T3 cells, but slight toxicity was expressed by n-hexane extracts at the optimum dose (1000 µg/mL) of treatment. In parallel, n-hexane and ethanol extracts (leaves and seed) exposed promising anti-lung cancer activity at the same concentration. Furthermore, antibacterial activity was assessed using disc diffusion assay, and seed extracts exhibited a significant inhibition zone against Gram-positive and Gram-negative microorganisms. Overall, Kenaf seed extracted with polar solvents was found very potent in terms of important bioactive compounds and pharmacological aspects, which can be an excellent biological matrix of natural antioxidants. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

14 pages, 8955 KiB  
Article
Chlorambucil Conjugated Ugi Dendrimers with PAMAM-NH2 Core and Evaluation of Their Anticancer Activity
by Nalin Seixas, Bruno B. Ravanello, Ibrahim Morgan, Goran N. Kaluđerović and Ludger A. Wessjohann
Pharmaceutics 2019, 11(2), 59; https://doi.org/10.3390/pharmaceutics11020059 - 1 Feb 2019
Cited by 21 | Viewed by 5069
Abstract
Herein, a new Ugi multicomponent reaction strategy is described to enhance activity and solubility of the chemotherapeutic drug chlorambucil through its conjugation to poly(amidoamine) (PAMAM-NH2) dendrimers with the simultaneous introduction of lipidic (i-Pr) and cationic (–NH2) or [...] Read more.
Herein, a new Ugi multicomponent reaction strategy is described to enhance activity and solubility of the chemotherapeutic drug chlorambucil through its conjugation to poly(amidoamine) (PAMAM-NH2) dendrimers with the simultaneous introduction of lipidic (i-Pr) and cationic (–NH2) or anionic (–COOH) groups. Standard viability assays were used to evaluate the anticancer potential of the water-soluble dendrimers against PC-3 prostate and HT-29 colon cancer cell lines, as well as non-cancerous mouse NIH3T3 fibroblasts. It could be demonstrated that the anticancer activity against PC-3 cells was considerably improved when both chlorambucil and –NH2 (cationic) groups were present on the dendrimer surface (1b). Additionally, this dendrimer showed activity only against the prostate cancer cells (PC-3), while it did not affect colon cancer cells and fibroblasts significantly. The cationic chlorambucil-dendrimer 1b blocks PC-3 cells in the G2/M phase and induces caspase independent apoptosis. Full article
(This article belongs to the Special Issue Dendrimers in Nanomedical Applications: Update and Future Directions)
Show Figures

Graphical abstract

Back to TopTop