Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (287)

Search Parameters:
Keywords = new experimental facilities

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1778 KB  
Article
A New Approach for Phase Loss Detection and Protection in Ynd Transformers Primary Using Backup Interface Systems
by Moshe Sitbon, Chen Baraf, Yuval Paz, Nikolay Tal and Andrey Vulfovich
Processes 2025, 13(11), 3495; https://doi.org/10.3390/pr13113495 - 30 Oct 2025
Abstract
This paper presents a new method for detecting phase loss in Ynd transformers by integrating a Backup Interface Unit (BUI). Traditional detection techniques often struggle to reliably distinguish between genuine phase loss events and current imbalances caused by load variations, harmonics, or asymmetrical [...] Read more.
This paper presents a new method for detecting phase loss in Ynd transformers by integrating a Backup Interface Unit (BUI). Traditional detection techniques often struggle to reliably distinguish between genuine phase loss events and current imbalances caused by load variations, harmonics, or asymmetrical operating conditions, which can lead to delayed response or false triggering. The proposed method combines Clarke and Park transformations with controlled off-grid transition tests to enhance fault identification and validation. By applying these techniques, the system achieves higher sensitivity to true phase loss while maintaining robustness against normal operating disturbances. Simulation and laboratory experimental results confirm improved detection accuracy, reduced false positives, and faster protection response compared to conventional approaches. In addition, the method ensures continued operation and voltage stability during faults, which is critical for maintaining power quality and equipment safety. These advantages make the approach highly suitable for modern industrial facilities and smart grid applications where reliability and resilience are key requirements. Full article
36 pages, 5897 KB  
Article
Active and Healthy Case Della Comunità: Model Research for Spatial Requirements of Waiting Spaces
by Elena Bellini, Nicoletta Setola, Lorena Rossi and Vera Stara
Sustainability 2025, 17(21), 9467; https://doi.org/10.3390/su17219467 - 24 Oct 2025
Viewed by 239
Abstract
The built environment is one of the determinants of health as it acts as a promoter of healthy lifestyles. This research deals with design solutions to promote healthy and active ageing in socio–healthcare facilities for primary care in Italy. This three-year research study [...] Read more.
The built environment is one of the determinants of health as it acts as a promoter of healthy lifestyles. This research deals with design solutions to promote healthy and active ageing in socio–healthcare facilities for primary care in Italy. This three-year research study aims to develop Design Guidelines for waiting spaces in Casa della Comunità (CdC: House of the Community, a new model of primary care facility in Italy) to promote good health and well-being in sustainable cities and communities. In accordance with these goals, the study applied different research methods in three main phases: Background research, starting from three fundamental groups of theories derived from the scientific literature to define a Theoretical Framework; data collection and field research, dealing with technical analysis of international best practices, as well as perceptive analysis through interviews and questionnaires conducted with the staff, patients, and caregivers of the socio–healthcare facilities, in order to define spatial requirements for waiting spaces; and finally, the results phase, involving the development of tools and design solutions of health-promoting waiting spaces according to the Sustainable Development Goals (the Design Guidelines were applied in two experimental pilots: a VR-based pilot and a physical pilot conducted at an existing CdC in Florence, Italy). In this contribution, we focus on the background and field research phases, describing the process leading to the outcomes of the second phase: spatial requirements for CdC waiting spaces. Full article
Show Figures

Figure 1

28 pages, 2591 KB  
Review
Standard Sample Preparation for Serial Femtosecond Crystallography
by Christina Schmidt, Kristina Lorenzen, Joachim Schulz and Huijong Han
Biomolecules 2025, 15(11), 1488; https://doi.org/10.3390/biom15111488 - 22 Oct 2025
Viewed by 263
Abstract
The development of serial crystallography (SX), including serial synchrotron crystallography (SSX) at synchrotron sources and serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs), has facilitated the collection of high-resolution diffraction data from micron-sized crystals, providing unique insights into the structures and dynamics [...] Read more.
The development of serial crystallography (SX), including serial synchrotron crystallography (SSX) at synchrotron sources and serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs), has facilitated the collection of high-resolution diffraction data from micron-sized crystals, providing unique insights into the structures and dynamics of biomolecules at room temperature. Standard samples are essential for the commissioning of new XFEL instruments and the validation of experimental setups. In this review, we summarize currently used standard proteins and describe representative microcrystal preparation workflows for four widely adopted models, lysozyme, myoglobin, iq-mEmerald, and photoactive yellow protein (PYP), drawing on established methodologies and accumulated experience from their applications at the European XFEL. By consolidating existing knowledge and integrating protocols that have been systematically refined and optimized through our experimental efforts, this review aims to provide practical guidance for the serial crystallography community, thereby enhancing reproducibility and ensuring consistent experimental performance across facilities. Full article
(This article belongs to the Special Issue Innovative Biomolecular Structure Analysis Techniques)
Show Figures

Figure 1

14 pages, 1519 KB  
Article
Research on the Impact of Different Photovoltaic Fishery Models on Climate and Water Environment in Aquaculture
by Wei Luo, Qiang Li, Lingling Wang, Yurui Li, Yongyang Lv, Xiu Liu, Jian Zhou and Yuanliang Duan
Sustainability 2025, 17(20), 9076; https://doi.org/10.3390/su17209076 - 13 Oct 2025
Viewed by 377
Abstract
To study the impact of photovoltaic facilities on the climate of aquaculture areas within the new aquaculture model (photovoltaic fishery mode, PFM), meteorological monitoring instruments were used to measure light intensity, temperature, humidity, and water environment in the PFM aquaculture areas of Dongying [...] Read more.
To study the impact of photovoltaic facilities on the climate of aquaculture areas within the new aquaculture model (photovoltaic fishery mode, PFM), meteorological monitoring instruments were used to measure light intensity, temperature, humidity, and water environment in the PFM aquaculture areas of Dongying City and Taishan City. The experimental results showed that photovoltaic facilities (PFs) significantly affected lighting, causing a substantial decrease in light intensity above the ponds, with an annual average reduction ranging from 24.15% to 67.75%, compared to the traditional pond mode (TPM). The impact of flexible PF on lighting was less pronounced than that of fixed photovoltaic facilities, with decreases of only 24.15% and 65.06%, respectively, compared to TPM. PF influenced temperature within a small range, particularly in the Dongying City aquaculture area, where the temperature difference reached 1.48 °C. The effect of flexible PF on temperature, with a decrease of only 0.071%, was much smaller than that of fixed PF, which showed a decrease of 3.28% compared to TPM. In both Dongying City and Taishan City aquaculture areas, PF reduced environmental humidity by 4.71% to 9.62% compared to TPM. In Dongying City, the water temperature under the PFM-fixed system was 0.39 to 3.78 °C lower than that of TPM. The annual biomass variation patterns of zooplankton and phytoplankton in Dongying City and Taishan City were opposite. This study provides data to support further research on the relationship between PFM and aquaculture. Full article
(This article belongs to the Topic Carbon-Energy-Water Nexus in Global Energy Transition)
Show Figures

Figure 1

27 pages, 1596 KB  
Article
The Nuclear Astrophysics Program at the CERN n_TOF Facility: Results and Perspectives
by P. M. Milazzo, C. Lederer-Woods and A. Mengoni
Universe 2025, 11(10), 329; https://doi.org/10.3390/universe11100329 - 30 Sep 2025
Viewed by 238
Abstract
The CERN n_TOF facility is a research infrastructure specifically designed for studying neutron-induced nuclear reactions. Pulsed white neutron beams are delivered toward three experimental areas, two of them at different baselines to apply the time-of-flight technique, and another one very close to the [...] Read more.
The CERN n_TOF facility is a research infrastructure specifically designed for studying neutron-induced nuclear reactions. Pulsed white neutron beams are delivered toward three experimental areas, two of them at different baselines to apply the time-of-flight technique, and another one very close to the neutron source for activation studies. High intensity and high neutron energy resolution make n_TOF a unique facility. A major component of the physics program at n_TOF is dedicated to the measurement of key neutron induced reactions for nuclear astrophysics, relevant to nucleosynthesis in stars, the Big Bang primordial nucleosynthesis as well as Cosmochronology. A review of the relevant results obtained at the n_TOF facility is reported, together with details of challenging new measurements in preparation. Full article
(This article belongs to the Special Issue Advances in Nuclear Astrophysics)
Show Figures

Figure 1

21 pages, 1987 KB  
Article
Bayesian Optimization of LSTM-Driven Cold Chain Warehouse Demand Forecasting Application and Optimization
by Tailin Li, Shiyu Wang, Tenggao Nong, Bote Liu, Fangzheng Hu, Yunsheng Chen and Yiyong Han
Processes 2025, 13(10), 3085; https://doi.org/10.3390/pr13103085 - 26 Sep 2025
Viewed by 437
Abstract
With the gradual adoption of smart hardware such as the Internet of Things (IoT) in warehousing and logistics, the efficiency bottlenecks and resource wastage inherent in traditional storage management models are now poised for breakthrough through digital and intelligent transformation. This study focuses [...] Read more.
With the gradual adoption of smart hardware such as the Internet of Things (IoT) in warehousing and logistics, the efficiency bottlenecks and resource wastage inherent in traditional storage management models are now poised for breakthrough through digital and intelligent transformation. This study focuses on the cross-border cold chain storage scenario for Malaysia’s Musang King durians. Influenced by the fruit’s extremely short 3–5-day shelf life and the concentrated harvesting period in primary production areas, the issue of delayed dynamic demand response is particularly acute. Utilizing actual sales order data for Mao Shan Wang durians from Beigang Logistics in Guangxi, this study constructs a demand forecasting model integrating Bayesian optimization with bidirectional long short-term memory networks (BO-BiLSTM). This aims to achieve precise forecasting and optimization of cold chain storage inventory. Experimental results demonstrate that the BO-BiLSTM model achieved an R2 of 0.6937 on the test set, with the RMSE reduced to 19.1841. This represents significant improvement over the baseline LSTM model (R2 = 0.5630, RMSE = 22.9127). The bidirectional Bayesian optimization mechanism effectively enhances model stability. This study provides a solution for forecasting inventory demand of fresh durians in cold chain storage, offering technical support for optimizing the operation of backbone hub cold storage facilities along the New Western Land–Sea Trade Corridor. Full article
(This article belongs to the Special Issue AI-Supported Methods and Process Modeling in Smart Manufacturing)
Show Figures

Figure 1

22 pages, 1104 KB  
Article
Improving CO2 Capture Efficiency Through Novel CLOU-Based Fuel Reactor Configuration in Chemical Looping Combustion
by Anna Zylka, Jaroslaw Krzywanski, Tomasz Czakiert, Marcin Sosnowski, Karolina Grabowska, Dorian Skrobek and Lukasz Lasek
Energies 2025, 18(17), 4640; https://doi.org/10.3390/en18174640 - 1 Sep 2025
Viewed by 752
Abstract
Climate change and global decarbonization targets drive the search for more efficient and cost-effective combustion technologies. Chemical looping combustion (CLC) using solid oxygen carriers with chemical looping with oxygen uncoupling (CLOU) functionality has attracted growing interest due to its inherent potential for CO [...] Read more.
Climate change and global decarbonization targets drive the search for more efficient and cost-effective combustion technologies. Chemical looping combustion (CLC) using solid oxygen carriers with chemical looping with oxygen uncoupling (CLOU) functionality has attracted growing interest due to its inherent potential for CO2 capture without requiring additional separation processes. This study introduces a conceptual proof-of-concept design of a novel fuel reactor design for a dual-fluidized bed CLC system operating with solid fuels. The new configuration incorporates a perforated conveyor for circulating CLOU-type oxygen carriers, thereby avoiding direct contact between the carriers and the fuel–ash mixture. This approach prevents the slip of unburned fuel and ash into the air reactor, minimizes the loss of oxygen carriers, and improves combustion efficiency. The proposed reactor concept enables the generation of flue gas with a high CO2 concentration, which facilitates its subsequent capture and reduces the energy penalty associated with traditional CCS techniques. The improved phase separation and better control of oxygen carrier residence time contribute to enhanced system performance and reduced operating costs. Preliminary process simulations conducted in the CeSFaMB environment, using boundary and initial conditions from a CLC test rig, were included to illustrate the potential of the design. Experimental validation is outside the scope of this study and will be presented in future work once the dedicated test facility is operational. This contribution should therefore be regarded as a conceptual proof-of-concept study, and experimental validation together with techno-economic benchmarking will be reported in follow-up publications once the dedicated test facility is operational. Full article
Show Figures

Figure 1

23 pages, 10266 KB  
Article
Application of Passive Serration Technologies for Aero-Engine Noise Control in Turbulent Inflow Environments
by Andrei-George Totu, Daniel-Eugeniu Crunțeanu, Marius Deaconu, Grigore Cican, Laurențiu Cristea and Constantin Levențiu
Technologies 2025, 13(8), 363; https://doi.org/10.3390/technologies13080363 - 15 Aug 2025
Viewed by 581
Abstract
This study explores the aeroacoustic influence of leading-edge serrations applied to stator blades subjected to turbulent inflow, which is representative of rotor–stator interaction in turbomachinery. A set of serrated geometries—75 mm span, with up to 9 teeth corresponding to 10% chord amplitude—was fabricated [...] Read more.
This study explores the aeroacoustic influence of leading-edge serrations applied to stator blades subjected to turbulent inflow, which is representative of rotor–stator interaction in turbomachinery. A set of serrated geometries—75 mm span, with up to 9 teeth corresponding to 10% chord amplitude—was fabricated via 3D printing and tested experimentally in a dedicated aeroacoustic facility at COMOTI. The turbulent inflow was generated using a passive grid, and far-field acoustic data were acquired using a semicircular microphone array placed in multiple inclined planes covering 15°–90° elevation and 0–180° azimuthal angles. The analysis combined power spectral density and autocorrelation techniques to extract turbulence-related quantities, such as integral length scale and velocity fluctuations. Beamforming methods were applied to reconstruct spatial distributions of sound pressure level (SPL), complemented by polar directivity curves to assess angular effects. Compared to the reference case, configurations with serrations demonstrated broadband noise reductions between 2 and 6 dB in the mid- and high-frequency range (1–4 kHz), with spatial consistency observed across measurement planes. The results extend the existing literature by linking turbulence properties to spatially resolved acoustic maps, offering new insights into the directional effects of serrated stator blades. Full article
(This article belongs to the Special Issue Aviation Science and Technology Applications)
Show Figures

Figure 1

19 pages, 3707 KB  
Article
The Effect of a Polypeptide Based Vaccine on Fish Welfare and Infestation of Salmon Lice, Lepeophtheirus salmonis, in Sea Cages with Atlantic Salmon (Salmo salar L.)
by Ragnar Nortvedt, Erik Dahl-Paulsen, Laura Patricia Apablaza Bizama, Amritha Johny and Erik Slinde
Fishes 2025, 10(8), 405; https://doi.org/10.3390/fishes10080405 - 13 Aug 2025
Viewed by 654
Abstract
A new polypeptide vaccine towards salmon lice (Lepeophtheirus salmonis) was given to experimental groups of 2 × 8000 Atlantic salmon parr (Salmo salar L.), following the vaccination of a total of 4 × 8000 parr with a common set of [...] Read more.
A new polypeptide vaccine towards salmon lice (Lepeophtheirus salmonis) was given to experimental groups of 2 × 8000 Atlantic salmon parr (Salmo salar L.), following the vaccination of a total of 4 × 8000 parr with a common set of vaccines used in Norwegian aquaculture to prevent infestation in salmon growing at sea. The remaining 2 × 8000 salmon served as control. The trial was conducted at a sea farm research facility at Knappen-Solheim in Masfjorden, Norway. Natural infestation with sea lice were staged and counted once a week from January–December 2023. The infestation was never above two mature female lice per salmon, the maximum limit set specifically for the present trial by the Norwegian Food Safety Authorities, thus delousing with chemicals or other methods was avoided. Mortality, growth, feed consumption, sexual maturation, slaughter quality, and welfare quality parameters were not significantly different between vaccinated and control salmon. The effect size showed a moderate positive difference of 0.07 mature female salmon lice per salmon in favor of the vaccinated groups from a fish size above 600 g in May until November. All fish were slaughtered and marketed at a size of 5.8 kg (>83% superior quality). Full article
(This article belongs to the Special Issue Healthy Aquaculture and Disease Control)
Show Figures

Figure 1

18 pages, 3256 KB  
Article
YOLOv8-Seg with Dynamic Multi-Kernel Learning for Infrared Gas Leak Segmentation: A Weakly Supervised Approach
by Haoyang Shen, Lushuai Xu, Mingyue Wang, Shaohua Dong, Qingqing Xu, Feng Li and Haiyang Yu
Sensors 2025, 25(16), 4939; https://doi.org/10.3390/s25164939 - 10 Aug 2025
Cited by 1 | Viewed by 746
Abstract
Gas leak detection in oil and gas processing facilities is a critical component of the safety production monitoring system. Non-contact detection technology based on infrared imaging has emerged as a vital real-time monitoring method due to its rapid response and extensive coverage. However, [...] Read more.
Gas leak detection in oil and gas processing facilities is a critical component of the safety production monitoring system. Non-contact detection technology based on infrared imaging has emerged as a vital real-time monitoring method due to its rapid response and extensive coverage. However, existing pixel-level segmentation networks face challenges such as insufficient segmentation accuracy, rough gas edges, and jagged boundaries. To address these issues, this study proposes a novel pixel-level segmentation network training framework based on anchor box annotation and enhances the segmentation performance of the YOLOv8-seg network for gas detection applications. First, a dynamic threshold is introduced using the Visual Background Extractor (ViBe) method, which, in combination with the YOLOv8-det network, generates binary masks to serve as training masks. Next, a segmentation head architecture is designed, incorporating dynamic kernels and multi-branch collaboration. This architecture utilizes feature concatenation under deformable convolution and attention mechanisms to replace parts of the original segmentation head, thereby enhancing the extraction of detailed gas features and reducing dependency on anchor boxes during segmentation. Finally, a joint Dice-BCE (Binary Cross-Entropy) loss, weighted by ViBe-CRF (Conditional Random Fields) confidence, is employed to replace the original Seg_loss. This effectively reduces roughness and jaggedness at gas edges, significantly improving segmentation accuracy. Experimental results indicate that the improved network achieves a 6.4% increase in F1 score and a 7.6% improvement in the mIoU (mean Intersection over Union) metric. This advancement provides a new, real-time, and efficient detection algorithm for infrared imaging of gas leaks in oil and gas processing facilities. Furthermore, it introduces a low-cost weakly supervised learning approach for training pixel-level segmentation networks. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

17 pages, 752 KB  
Article
A Soft-Fault Diagnosis Method for Coastal Lightning Location Networks Based on Observer Pattern
by Yiming Zhang and Ping Guo
Sensors 2025, 25(15), 4593; https://doi.org/10.3390/s25154593 - 24 Jul 2025
Viewed by 426
Abstract
Coastal areas are prone to thunderstorms. Lightning strikes can damage power facilities and communication systems, thereby leading to serious consequences. The lightning location network achieves lightning location through data fusion from multiple lightning locator nodes and can detect the location and intensity of [...] Read more.
Coastal areas are prone to thunderstorms. Lightning strikes can damage power facilities and communication systems, thereby leading to serious consequences. The lightning location network achieves lightning location through data fusion from multiple lightning locator nodes and can detect the location and intensity of lightning in real time. It is an important facility for thunderstorm warning and protection in coastal areas. However, when a sensor node in a lightning location network experiences a soft fault, it causes distortion in the lightning location. To achieve fault diagnosis of lightning locator nodes in a multi-node data fusion mode, this study proposes a new lightning location mode: the observer pattern. This paper first analyzes the main factors contributing to the error of the lightning location algorithm under this mode, proposes an observer pattern estimation algorithm (OPE) for lightning location, and defines the proportion of improvement in lightning positioning accuracy (PI) caused by the OPE algorithm. By analyzing the changes in PI in the process of lightning location, this study further proposes a diagnostic algorithm (OPSFD) for soft-fault nodes in a lightning location network. The simulation experiments in the paper demonstrate that the OPE algorithm can effectively improve the positioning accuracy of existing lightning location networks. Therefore, the OPE algorithm is also a low-cost and efficient method for improving the accuracy of existing lightning location networks, and it is suitable for the actual deployment and upgrading of current lightning locators. Meanwhile, the experimental results show that when a soft fault causes the observation error of the node to exceed the normal range, the OPSFD algorithm proposed in this study can effectively diagnose the faulty node. Full article
(This article belongs to the Special Issue Internet of Things (IoT) Sensing Systems for Engineering Applications)
Show Figures

Figure 1

17 pages, 3770 KB  
Article
A YOLOv8n-T and ByteTrack-Based Dual-Area Tracking and Counting Method for Cucumber Flowers
by Liyang Su, Shujuan Zhang, Hongtu Zhang, Xiangsen Meng and Xiongkui He
Agronomy 2025, 15(7), 1744; https://doi.org/10.3390/agronomy15071744 - 19 Jul 2025
Viewed by 744
Abstract
Accurate counting of cucumber flowers using intelligent algorithms to monitor their sex ratio is essential for intelligent facility agriculture management. However, complex greenhouse environments impose higher demands on the precision and efficiency of counting algorithms. This study proposes a dual-area counting algorithm based [...] Read more.
Accurate counting of cucumber flowers using intelligent algorithms to monitor their sex ratio is essential for intelligent facility agriculture management. However, complex greenhouse environments impose higher demands on the precision and efficiency of counting algorithms. This study proposes a dual-area counting algorithm based on an improved YOLOv8n-Track (YOLOv8n-T) and ByteTrack cascaded framework. This method accomplishes the cucumber flower counting task by detecting flower targets, tracking them frame-by-frame, and validating the count through dual-area counting. The YOLOv8n-T incorporates a Coordinate Attention (CA) mechanism and lightweight modules while optimizing the loss function, thereby improving floral feature extraction capabilities and reducing computational complexity. By integrating the ByteTrack tracking algorithm with a dual-area counting strategy, the robustness of flower counting in dynamic environments is strengthened. Experimental results show that the improved YOLOv8n-T achieves mAP and F1 scores of 86.9% and 82.1%, surpassing YOLOv8n by 3% and 2.6%, respectively, with a 0.3 G reduction in model parameters. The integrated framework achieves a detection accuracy of 82.4% for cucumber flower counting. This research provides a new method for monitoring cucumber flower sex ratios in facility agriculture, promoting the development of intelligent agricultural management. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

18 pages, 4312 KB  
Article
Influence of Rare Earth Elements on the Radiation-Shielding Behavior of Serpentinite-Based Materials
by Ayşe Didem Kılıç and Demet Yılmaz
Appl. Sci. 2025, 15(14), 7837; https://doi.org/10.3390/app15147837 - 13 Jul 2025
Viewed by 781
Abstract
In this study, the neutron and gamma radiation-shielding properties of serpentinites from the Guleman ophiolite complex were investigated, and results were evaluated in comparison with rare earth element (REE) content. The linear and mass attenuation coefficients (LAC and MAC), half-value layer (HVL), mean [...] Read more.
In this study, the neutron and gamma radiation-shielding properties of serpentinites from the Guleman ophiolite complex were investigated, and results were evaluated in comparison with rare earth element (REE) content. The linear and mass attenuation coefficients (LAC and MAC), half-value layer (HVL), mean free path (MFP), and effective atomic numbers (Zeff) of serpentinite samples were experimentally measured in the energy range of 80.99–383.85 keV. Theoretical MAC values were calculated. Additionally, fast neutron removal cross-sections, as well as thermal and fast neutron macroscopic cross-sections, were theoretically determined. The absorbed equivalent dose rates of serpentinite samples were also measured. The radiation protection efficiency (RPE) for gamma rays and neutrons were determined. It was observed that the presence of rare earth elements within serpentinite structure has a significant impact on thermal neutron cross-sections, while crystalline water content (LOI) plays an influential role in fast neutron cross-sections. Moreover, it has been observed that the concentration of gadolinium exerts a more substantial influence on the macroscopic cross-sections of thermal neutrons than on those of fast neutrons. The research results reveal the mineralogical, geochemical, morphological and radiation-shielding properties of serpentinite rocks contribute significantly to new visions for the use of this naturally occurring rock as a geological repository for nuclear waste or as a wall-covering material in radiotherapy centers and nuclear facilities instead of concrete. Full article
(This article belongs to the Special Issue Advanced Functional Materials and Their Applications)
Show Figures

Figure 1

18 pages, 1925 KB  
Article
Experimental Analysis for Tritium Recovery in Lithium–Lead Alloy Using a Membrane Gas–Liquid Contactor Concept
by Luca Farina, Antonio Ricca, Alfonso Pozio, Priscilla Reale and Silvano Tosti
Processes 2025, 13(7), 2066; https://doi.org/10.3390/pr13072066 - 30 Jun 2025
Viewed by 698
Abstract
The eutectic PbLi (15.7 at.% Li) alloy appears promising for producing tritium from fertile materials. Currently, in nuclear fusion design, the technologies being explored for tritium extraction in molten phases primarily focus on (i) established processes based on Gas–Liquid Contactor (GLC), such as [...] Read more.
The eutectic PbLi (15.7 at.% Li) alloy appears promising for producing tritium from fertile materials. Currently, in nuclear fusion design, the technologies being explored for tritium extraction in molten phases primarily focus on (i) established processes based on Gas–Liquid Contactor (GLC), such as bubble, packed, or spray columns, or on (ii) exploiting hydrogen permeation phenomena using dense metallic membranes, i.e., Permeation Against Vacuum (PAV). This work introduces a new concept, a Membrane Gas–Liquid Contactor, to address several open issues related to mass transport phenomena within the previously mentioned technologies. The MGLC concept merges the advantages of Permeation Against Vacuum (PAV) and Gas–Liquid Contactor (GLC), which have been extensively applied to extract hydrogen and its isotopes from liquid metals. A comprehensive description of the MGLC’s operation is then provided, suggesting a mass transfer model suitable for the practical application of this new concept. Finally, the results of the experimental campaign conducted on a lab-scale test facility are presented and critically analyzed. Full article
Show Figures

Figure 1

15 pages, 1516 KB  
Article
B-Cell Epitope Mapping of the Treponema pallidum Tp0435 Immunodominant Lipoprotein for Peptide-Based Syphilis Diagnostics
by Jessica L. Keane, Mahashweta Bose, Barbara J. Molini, Kelika A. Konda, Silver K. Vargas, Michael Reyes Diaz, Carlos F. Caceres, Jeffrey D. Klausner, Rebecca S. Treger and Lorenzo Giacani
Diagnostics 2025, 15(11), 1443; https://doi.org/10.3390/diagnostics15111443 - 5 Jun 2025
Cited by 1 | Viewed by 1342
Abstract
Background/Objectives: Syphilis, a chronic sexually transmitted disease caused by the spirochete Treponema pallidum subspecies pallidum (T. pallidum), is still endemic in low- and middle-income countries and has been resurgent for decades in many high-income nations despite being treatable. Improving our understanding of [...] Read more.
Background/Objectives: Syphilis, a chronic sexually transmitted disease caused by the spirochete Treponema pallidum subspecies pallidum (T. pallidum), is still endemic in low- and middle-income countries and has been resurgent for decades in many high-income nations despite being treatable. Improving our understanding of syphilis pathogenesis, immunology, and T. pallidum biology could result in novel measures to curtail syphilis spread, including new therapeutics, a preventive vaccine, and, most importantly, improved diagnostics. Methods: Using overlapping synthetic peptides spanning the length of the T. pallidum Tp0435 mature lipoprotein, an abundant antigen known to induce an immunodominant humoral response during both natural and experimental infection, we evaluated which Tp0435 linear epitopes are most significantly recognized by antibodies from an infected host. Specifically, we used sera from 63 patients with syphilis at different stages, sera from non-syphilis patients (n = 40), and sera longitudinally collected from 10 rabbits infected with either the Nichols or SS14 isolates of T. pallidum, which represent the model strains for the two known circulating clades of this pathogen, to further evaluate the use of this animal model for syphilis studies. Recognized amino acid sequences were then mapped to the experimentally determined Tp0435 structure. Results: Reactive epitopes in both serum groups mapped predominantly to the α-helix preceding Tp0435 soluble β-barrel and the loops of the barrel. Conclusions: In the current effort to improve current syphilis diagnostics, the peptides corresponding to these immunodominant epitopes could help develop epitope-based assays such as peptide-based ELISAs and lateral flow point-of-care tests to improve the performance of treponemal tests and expedite diagnosis in low-income settings, where the infection is still a significant concern for public health and access to facilities with laboratories equipped to perform complex procedures might be challenging. Full article
(This article belongs to the Special Issue Dermatology and Venereology: Diagnosis and Management)
Show Figures

Figure 1

Back to TopTop