Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,161)

Search Parameters:
Keywords = new building

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 702 KB  
Article
Personalization, Trust, and Identity in AI-Based Marketing: An Empirical Study of Consumer Acceptance in Greece
by Vasiliki Markou, Panagiotis Serdaris, Ioannis Antoniadis and Konstantinos Spinthiropoulos
Adm. Sci. 2025, 15(11), 440; https://doi.org/10.3390/admsci15110440 - 12 Nov 2025
Abstract
Artificial intelligence (AI) is increasingly used in marketing to deliver personalized messages and services. Although such tools create new opportunities, their acceptance by consumers depends on several factors that go beyond technology itself. This study examines how trust and ethical perceptions, familiarity and [...] Read more.
Artificial intelligence (AI) is increasingly used in marketing to deliver personalized messages and services. Although such tools create new opportunities, their acceptance by consumers depends on several factors that go beyond technology itself. This study examines how trust and ethical perceptions, familiarity and exposure to AI, digital consumer behavior, and identity concerns shape acceptance of AI-based personalized advertising. The analysis draws on data from 650 Greek consumers, collected through a mixed-mode survey (online and paper), and tested using logistic regression models with demographic characteristics included as controls. The results show trust and ethical perceptions of acceptance as factors, while familiarity with AI tools also supports positive attitudes once trust is established. In contrast, digital consumer behavior played a smaller role, and identity-related consumption was negatively associated with acceptance, reflecting concerns about autonomy and self-expression. Demographic factors, such as age and income, also influenced responses. Overall, the findings suggest that acceptance of AI in marketing is not only a technical matter but also a psychological and social process. This study highlights the importance for firms to build trust, act responsibly, and design personalization strategies that respect consumer identity and ethical expectations. Full article
Show Figures

Figure 1

23 pages, 6936 KB  
Article
Innovative Calcium L-Lactate/PDMS-Based Composite Foams as Core for Sandwich Materials for the Thermopassive Regulation of Buildings
by Mario Ávila-Gutiérrez, Emanuele Previti, María Orfila, Ilenia Acquaro, Luigi Calabrese, Candida Milone and Emanuela Mastronardo
Energies 2025, 18(22), 5940; https://doi.org/10.3390/en18225940 - 12 Nov 2025
Abstract
The substantial impact of the heating and cooling of the construction sector on global warming necessitates a focus on effective thermal insulation solutions to mitigate high CO2 emissions. Thus, the development of efficient low-temperature thermochemical energy storage (TCES) materials offers a promising [...] Read more.
The substantial impact of the heating and cooling of the construction sector on global warming necessitates a focus on effective thermal insulation solutions to mitigate high CO2 emissions. Thus, the development of efficient low-temperature thermochemical energy storage (TCES) materials offers a promising approach to improve thermal regulation. This study explores the morphological, physicochemical, and thermal properties of a silicon composite (PDMS foam) filled with calcium L-lactate (CaL) (0–70 wt.%) for the core sandwich thermopassive regulation of buildings. Furthermore, CaL was incorporated into a composite form to improve the handling and processability of the final sandwich material, as CaL is available in powder form. The results demonstrated that the filler is entirely confined within the polymer matrix (FTIR and ESEM). Additionally, the CaL-PDMS composites showed fully reversible dehydration/hydration abilities over a water vapor hydration–dehydration cycle within a temperature range suitable for low-temperature TCES, with no performance loss due to salt confinement. Regarding the energy density, the 70 wt.% CaL-PDMS composites achieved a value up to 955 MJ/m3, making it an excellent candidate for low-temperature energy storage in the construction sector as compared to other similar composites. These findings contribute to the development of new thermopassive regulation techniques for building materials. Full article
Show Figures

Figure 1

30 pages, 5722 KB  
Review
Beyond Innovation Niches: A Social Sciences Review of System Building Perspectives in Sustainability Transitions
by Philippe Hamman, Patricia Schneider and Céline Monicolle
Societies 2025, 15(11), 312; https://doi.org/10.3390/soc15110312 - 11 Nov 2025
Abstract
Amid mounting calls for socio-ecological transition, many social sciences studies have been exploring the processes of societal change. The well-known Science Technology Society studies (STS) approach focuses on the diffusion of innovation niches as an open-ended process ultimately leading to the stabilization of [...] Read more.
Amid mounting calls for socio-ecological transition, many social sciences studies have been exploring the processes of societal change. The well-known Science Technology Society studies (STS) approach focuses on the diffusion of innovation niches as an open-ended process ultimately leading to the stabilization of a new regime. Other works have suggested reversing the perspective, i.e., ‘thinking about transitions from the end’. This is a defining characteristic of system building perspectives, which are inherently goal- and sustainability-oriented. This paper presents the state of the art in the social sciences based on a review of international academic journals in English. We use both quantitative and qualitative approaches. Using Web of Science data collected for a period of ten years and the free software IRaMuTeQ (version 2), we have conducted statistical, similarity, and textual analyses of a corpus of 151 texts, following the PRISMA methodology. We discuss the findings of the lexicometric analysis by looking at the content of the article abstracts. While system building is not always mentioned as such, this new perspective is reflected in the literature, especially in research on the energy and food transition, in two main ways: (i) the procedural and substantive dimensions of sustainability transition are both taken into account; (ii) the issue of governance occupies a central place—involving the definition of appropriate instrument mixes and policy mixes—given the need to deal with stakeholders with diverging interests and values rather than only focusing on technological innovations. Full article
Show Figures

Figure 1

23 pages, 4388 KB  
Article
Solid-State Nanopore Single-Molecule Analysis of SARS-CoV-2 N Protein: From Interaction Exploration to Small-Molecule Antagonism
by Xiaoqing Zeng, Shinian Leng, Wenhao Ma, Zhenxin Wang, Huaming Zhang, Xiaowei Feng, Jianchao Li, Junsen Wang, Ting Weng, Rong Tian, Shixuan He, Shaoxi Fang, Bohua Yin, Liyuan Liang, Yajie Yin and Deqiang Wang
Sensors 2025, 25(22), 6870; https://doi.org/10.3390/s25226870 - 10 Nov 2025
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 virus has exposed the urgency of research on rapid and efficient virus detection and strategies to inhibit its replication. Previous studies have mostly focused on traditional immunoassay or optical methods, but they have limitations in terms [...] Read more.
The COVID-19 pandemic caused by the SARS-CoV-2 virus has exposed the urgency of research on rapid and efficient virus detection and strategies to inhibit its replication. Previous studies have mostly focused on traditional immunoassay or optical methods, but they have limitations in terms of sensitivity, timeliness, and in-depth analysis of molecular interaction mechanisms. Solid-state nanopore single-molecule detection methods, which can monitor molecular conditions in real time at the single-molecule level, bring new opportunities to solve this problem. The nucleocapsid protein (N protein) of SARS-CoV-2 was systematically investigated under different conditions, such as external drive voltage, pH, nanopore size, and N protein concentration. The translocation of the N protein through the nanopore was then analyzed. Subsequently, we analyzed the translocation characteristics of the N protein, RNA, and N protein–RNA complexes. With the aid of EMSA experiments, we conclusively confirmed that RNA binds to the N protein. Building on this finding, we further explored small molecules that could affect the nanopore translocation of N protein–RNA complexes, such as gallocatechin gallate (GCG), epigallocatechin gallate (EGCG), and the influenza A viral inhibitor Nucleozin. The results show that GCG can disrupt the liquid-phase condensation of the N protein–RNA complex and inhibit the replication of the N protein. Meanwhile, the structural isomer EGCG of GCG and the small molecule Nucleozin can also block RNA-triggered N protein liquid–liquid phase separation (LLPS). Our results confirmed that GCG, EGCG, and Nucleozin exhibit antagonistic effects on the N protein, with differences in their effective concentrations and the potency of their antagonism. Herein, using solid-state nanopore single-molecule detection technology, we developed an experimental method that can effectively detect RNA-induced changes in N protein properties and the regulatory effects of small molecules on the LLPS of N protein–RNA complexes. These findings not only provide highly valuable insights for in-depth research on the molecular interactions involved in viral replication, but also open up promising new avenues for future responses to similar viral outbreaks, the development of a rapid and effective detection method based on solid-state nanopores and single-molecule detection, and antiviral therapies targeting N protein–RNA interactions. Full article
Show Figures

Graphical abstract

11 pages, 1530 KB  
Article
Photophysical, Electrochemical, Density Functional Theory, and Spectroscopic Study of Some Oligothiophenes
by Mamoun M. Bader, Phuong-Truc T. Pham, Juri A. Busaili, Samar M. Alrifai, Sarah H. Younas and El Hadj Elandaloussi
Optics 2025, 6(4), 56; https://doi.org/10.3390/opt6040056 - 10 Nov 2025
Abstract
Dicyanovinyl (DCV) oligothiophenes are interesting materials due to their unique optical and electronic properties. They are relatively easy to prepare using Knoevenagel condensation reactions from the corresponding aldehydes. Understanding their optical and electrochemical characteristics is important for both building structure/property relationships and for [...] Read more.
Dicyanovinyl (DCV) oligothiophenes are interesting materials due to their unique optical and electronic properties. They are relatively easy to prepare using Knoevenagel condensation reactions from the corresponding aldehydes. Understanding their optical and electrochemical characteristics is important for both building structure/property relationships and for optimizing their performance in various applications. We report on the electrochemical and photophysical properties of three oligothiophenes end-capped with dicyanovinyl -CH=C(CN)2 or DCV groups. The compounds included in this study are DCV-T-DCV (1), DCV-2T-DCV (2), and DCV-3T-DCV (3), where T represents one thiophene unit. Introduction of the DCV groups into oligothiophenes results in unique evolution of their electrochemical and optical behavior. First, new reversible two-electron reduction processes in the series DCV-nT-DCV start to appear with a gradual increase in the reduction potential with an increasing number of thiophene units. This was consistent with the electronic spectroscopic results. These results demonstrate that the DCV groups can be used in molecular design and fine-tuning of the optical and redox properties of oligothiophene and presumably this strategy can be extended to other conjugated organic molecules. We also report on the photophysical and vibrational spectroscopic properties of these compounds. The C=C stretching bands in Raman and IR spectra reveal more quinoidal nature in shorter molecules and more dominant benzoidal character in longer molecules. The DCV-induced modulation of electrochemical, optical, and vibrational properties highlights their potential in diverse optoelectronic applications. Full article
Show Figures

Figure 1

24 pages, 1425 KB  
Article
Blockchain-Enabled Digital Supply Chain Regulation: Mitigating Greenwashing to Advance Sustainable Development
by Hua Pan, Pengcheng Wang and Shutong Zhang
Sustainability 2025, 17(22), 10019; https://doi.org/10.3390/su172210019 - 10 Nov 2025
Abstract
Environmental information fraud, such as greenwashing, severely impedes the achievement of global Sustainable Development Goals (SDGs). Blockchain technology, as an innovation tool with a sustainability orientation, offers new possibilities for improving the reliability of supply chain information oversight. However, its practical application mechanisms [...] Read more.
Environmental information fraud, such as greenwashing, severely impedes the achievement of global Sustainable Development Goals (SDGs). Blockchain technology, as an innovation tool with a sustainability orientation, offers new possibilities for improving the reliability of supply chain information oversight. However, its practical application mechanisms and policy value in green supply chain governance remain unclear. This study focuses on the greenwashing behavior of core enterprises and constructs an incomplete information game model to compare and analyze the inherent mechanisms of traditional regulation (TR) and blockchain-based digital supply chain regulation (DSCR). By simulating the strategic choices of enterprises between “genuine production” and “greenwashing” within a supply chain network, this research finds that when the quality of on-chain information reaches a certain threshold, the blockchain consensus mechanism can more accurately reveal corporate moral hazards, such as information manipulation, significantly reducing the incidence of greenwashing. As the number of enterprises participating in the blockchain network increases, the reliance on high-quality information in the DSCR model decreases, and regulatory efficiency is further enhanced through network effects. The findings provide theoretical support for designing regulatory strategies against greenwashing: Blockchain technology can build a trustworthy supply chain ecosystem through cross-enterprise data verification, directly supporting the SDG 12 goal of “Responsible Production.” Its decentralized nature helps optimize industrial infrastructure (SDG 9) and indirectly promotes climate action (SDG 13). This study suggests that regulatory agencies use policy tools such as “establishing on-chain information quality standards” and “incentivizing enterprises to join the blockchain network” to strengthen the practical application of the model, while also addressing implementation challenges such as data authenticity and digital infrastructure compatibility. Full article
Show Figures

Figure 1

22 pages, 441 KB  
Article
New-Quality Productive Forces, Green Technological Innovation and Modernization of the Industrial Chain
by Jiayue Liu and Fangyi Jiao
Sustainability 2025, 17(22), 10013; https://doi.org/10.3390/su172210013 - 9 Nov 2025
Viewed by 156
Abstract
In recent years, as a new driving force for building a modern industrial system, new-quality productive forces have emerged as a key factor in advancing the high-end, intelligent, and green development of industrial chains. This study selects panel data from 31 provincial-level administrative [...] Read more.
In recent years, as a new driving force for building a modern industrial system, new-quality productive forces have emerged as a key factor in advancing the high-end, intelligent, and green development of industrial chains. This study selects panel data from 31 provincial-level administrative regions in China (excluding Hong Kong, Macau, Taiwan, and the Tibet Autonomous Region) for the period 2011–2021 as the research sample. A regression analysis model is constructed from three dimensions—overall effect, moderating effect, and spatial spillover effect—to empirically examine the impact of new-quality productive forces on industrial chain modernization. The results indicate that new-quality productive forces exert a stable and significant promotional effect on industrial chain modernization and generate an indirect positive impact by driving green technological innovation. Full article
Show Figures

Figure 1

18 pages, 2194 KB  
Article
Sustainable Fire-Resistant Materials: Thermal, Physical, Mechanical, and Environmental Behavior of Walls with Waste from the Aquaculture Industry
by Begoña Peceño, Bernabé Alonso-Fariñas, Giovanna Vega, Daniel Carrizo and Carlos Leiva
Materials 2025, 18(22), 5086; https://doi.org/10.3390/ma18225086 - 9 Nov 2025
Viewed by 205
Abstract
The aquaculture industry generates large amounts of shell waste, with limited recycling options at the industrial scale. This study explores the feasibility of substituting 20% of gypsum with seashell waste to produce sustainable, fire-resistant panels for non-load-bearing walls on a semi-industrial scale (2.4 [...] Read more.
The aquaculture industry generates large amounts of shell waste, with limited recycling options at the industrial scale. This study explores the feasibility of substituting 20% of gypsum with seashell waste to produce sustainable, fire-resistant panels for non-load-bearing walls on a semi-industrial scale (2.4 × 2.2 × 0.1 m). The new composite exhibits high density (≈1500 kg/m3) and mechanical performance comparable to commercial gypsum. Thermal and fire tests confirmed its excellent insulation and stability: after 4 h of standard fire exposure, the non-exposed surface temperature remained below 80 °C, meeting European fire-resistance criteria. The incorporation of shell waste slightly reduced density and thermal conductivity (0.23 W/mK at 500 °C) without affecting strength or surface hardness. Environmental characterization revealed leaching and radionuclide levels well below regulatory limits, confirming its safety for building use. Overall, this work demonstrates, for the first time at a semi-industrial scale, the technical and environmental feasibility of reusing seashell waste as a gypsum substitute for fireproof materials. The proposed approach advances circular-economy strategies for aquaculture residues, providing an innovative pathway toward sustainable and low-impact construction products. Full article
(This article belongs to the Section Green Materials)
Show Figures

Figure 1

30 pages, 20336 KB  
Article
Post-Industrial Adaptive Reuse in Poland as an Educational Template for Circular Economy in Architecture
by Wojciech Jabłoński, Edyta Banachowska and Krystian Patyna
Sustainability 2025, 17(22), 9961; https://doi.org/10.3390/su17229961 - 7 Nov 2025
Viewed by 193
Abstract
Given the increasing global emphasis on implementing the circular economy (CE) across political, social, and economic domains, the application of its principles in architecture and construction is gaining strategic importance. This article explores the use of the 4R concept—reduce, reuse, recycle, recover—in the [...] Read more.
Given the increasing global emphasis on implementing the circular economy (CE) across political, social, and economic domains, the application of its principles in architecture and construction is gaining strategic importance. This article explores the use of the 4R concept—reduce, reuse, recycle, recover—in the revitalization of post-industrial sites as a tool supporting the sustainable transformation of the built environment. In the theoretical section, a literature review is conducted to highlight the growing interest among researchers in CE-related issues and to outline the main directions of studies, including the integration of circular strategies with the challenges of adapting and sustainably transforming industrial heritage. The empirical section presents a qualitative comparative analysis of ten completed between 2014 and 2024 revitalization projects in Poland. It demonstrates how strategies of resource reduction, reuse, recycling, and recovery are implemented in design and construction practice. Particular attention is paid to the relationship between 4R principles and architectural quality, historical context, and investment goals. The findings indicate that the concept of 4R principles supports the reduction in environmental impact while creating new cultural value. This concept offers a viable tool for sustainable redevelopment of post-industrial buildings while preserving their industrial identity and heritage value. Full article
(This article belongs to the Special Issue Sustainability and Innovation in Engineering Education and Management)
Show Figures

Figure 1

15 pages, 969 KB  
Article
Techno-Economic and Environmental Viability of Second-Life EV Batteries in Commercial Buildings: An Analysis Using Real-World Data
by Zhi Cao, Naser Vosoughi Kurdkandi and Chris Mi
Batteries 2025, 11(11), 412; https://doi.org/10.3390/batteries11110412 - 7 Nov 2025
Viewed by 242
Abstract
The rapid growth of electric vehicle markets is producing large volumes of retired lithium-ion batteries retaining 70–80% of their original capacity, suitable for stationary energy storage. This study assesses the techno-economic and environmental viability of second-life battery energy storage systems (SLBESS) in a [...] Read more.
The rapid growth of electric vehicle markets is producing large volumes of retired lithium-ion batteries retaining 70–80% of their original capacity, suitable for stationary energy storage. This study assesses the techno-economic and environmental viability of second-life battery energy storage systems (SLBESS) in a California commercial building, using one year of operational data. SLBESS performance is compared with equivalent new battery systems under identical dispatch strategies, building load profiles, and time-of-use tariff structures. A dispatch-aware framework integrates multi-year battery simulations, degradation modeling, electricity cost analysis, and life cycle assessment based on marginal grid emissions. The economic analysis quantifies the net present value (NPV), internal rate of return (IRR), and operational levelized cost of storage (LCOSop). Results show that SLBESS achieve 49.2% higher NPV, 41.9% higher IRR, and 13.8% lower LCOSop than new batteries, despite their lower round-trip efficiency. SLBESS reduce embodied emissions by 41% and achieve 8% lower carbon intensity than new batteries. Sensitivity analysis identifies that economic outcomes are driven primarily by financial parameters (incentives, acquisition cost) rather than technical factors (degradation, initial health), providing a clear rationale for policies that reduce upfront costs. Environmentally, grid emission factors are the dominant driver. Battery degradation rate and initial state of health have minimal impact, suggesting that technical concerns may be overstated. These findings provide actionable insights for deploying cost-effective, low-carbon storage in commercial buildings. Full article
(This article belongs to the Special Issue Towards a Smarter Battery Management System: 3rd Edition)
Show Figures

Figure 1

15 pages, 337 KB  
Article
Fractional Error Bounds for Lobatto Quadrature: A Convexity Approach via Riemann–Liouville Integrals
by Li Liao, Abdelghani Lakhdari, Muhammad Uzair Awan, Hongyan Xu and Badreddine Meftah
Axioms 2025, 14(11), 823; https://doi.org/10.3390/axioms14110823 - 7 Nov 2025
Viewed by 137
Abstract
In this paper, we establish a new fractional integral identity linked to the 4-point Lobatto quadrature rule within the Riemann–Liouville fractional calculus framework. Building on this identity, we derive several Lobatto-type inequalities under convexity assumptions, yielding error bounds that involve only first-order derivatives, [...] Read more.
In this paper, we establish a new fractional integral identity linked to the 4-point Lobatto quadrature rule within the Riemann–Liouville fractional calculus framework. Building on this identity, we derive several Lobatto-type inequalities under convexity assumptions, yielding error bounds that involve only first-order derivatives, thereby improving practical applicability. A numerical example with graphical illustration confirms the theoretical findings and demonstrates their accuracy. We also present applications to special means, highlighting the utility of the obtained inequalities. The integration of fractional analysis, quadrature theory, and numerical validation provides a robust methodology for refining and analyzing high-order integration rules. Full article
(This article belongs to the Special Issue Theory and Application of Integral Inequalities, 2nd Edition)
Show Figures

Figure 1

19 pages, 513 KB  
Review
Assessing Human Exposure to Fire Smoke in Underground Spaces: Challenges and Prospects for Protective Technologies
by Jialin Wu, Meijie Liu, Yongqi Tang, Yehui Xu, Feifan He, Jinghong Wang, Yunting Tsai, Yi Yang and Zeng Long
Sustainability 2025, 17(22), 9922; https://doi.org/10.3390/su17229922 - 7 Nov 2025
Viewed by 257
Abstract
Urban underground spaces, including tunnels, subways, and underground commercial buildings, have grown quickly as urbanization has progressed. Fires frequently break out following industrial accidents and multi-hazard natural disasters, and they can severely damage human health. Fire smoke is a major contributor and a [...] Read more.
Urban underground spaces, including tunnels, subways, and underground commercial buildings, have grown quickly as urbanization has progressed. Fires frequently break out following industrial accidents and multi-hazard natural disasters, and they can severely damage human health. Fire smoke is a major contributor and a major hazard to public safety. The flow patterns of fire smoke in underground spaces, the risks to human casualties, and engineering and personal protective technologies are all thoroughly reviewed in this work. First, it analyzes the diffusion characteristics of fire smoke in underground spaces and summarizes the coupling effects between human behavior and smoke spread. Then, it examines the risks of casualties caused by toxic gases, particulate matter, and thermal effects in fire smoke from both macroscopic case studies and microscopic toxicological viewpoints. It summarizes engineering protection strategies, such as optimizing ventilation systems, intelligent monitoring and early warning systems, and advances in the application of new materials in personal respiratory protective equipment. Future studies should concentrate on interdisciplinary collaboration, creating more precise models of the interactions between people and fire smoke and putting life-cycle management of underground fires into practice. This review aims to provide theoretical and technical support for improving human safety in urban underground space fires, thereby promoting sustainable urban development. Full article
Show Figures

Figure 1

26 pages, 599 KB  
Article
Identifying and Modeling Barriers to Compliance with the NIS2 Directive: A DEMATEL Approach
by Konstantina Mentzelou, Panos T. Chountalas, Fotis C. Kitsios, Anastasios I. Magoutas and Thomas K. Dasaklis
J. Cybersecur. Priv. 2025, 5(4), 97; https://doi.org/10.3390/jcp5040097 - 7 Nov 2025
Viewed by 445
Abstract
The implementation of the NIS2 Directive expands the scope of cybersecurity regulation across the European Union, placing new demands on both essential and important entities. Despite its importance, organizations face multiple barriers that undermine compliance, including lack of awareness, technical complexity, financial constraints, [...] Read more.
The implementation of the NIS2 Directive expands the scope of cybersecurity regulation across the European Union, placing new demands on both essential and important entities. Despite its importance, organizations face multiple barriers that undermine compliance, including lack of awareness, technical complexity, financial constraints, and regulatory uncertainty. This study identifies and models these barriers to provide a clearer view of the systemic challenges of NIS2 implementation. Building on a structured literature review, fourteen barriers were defined and validated through expert input. The Decision-Making Trial and Evaluation Laboratory (DEMATEL) method was then applied to examine their interdependencies and to map causal relationships. The analysis highlights lack of awareness and the evolving threat landscape as key drivers (i.e., causal factors) that reinforce each other. Technical complexity and financial constraints act as mediators transmitting the influence of these causal factors toward operational and governance failures. Operational disruptions, high reporting costs, and inadequate risk assessment emerge as the most dependent outcomes (i.e., effect factors), absorbing the impact of the driving and mediating factors. The findings suggest that interventions targeted at awareness-building, resource allocation, and risk management capacity have the greatest leverage for improving compliance and resilience. By clarifying the cause-and-effect dynamics among barriers, this study supports policymakers and managers in designing more effective strategies for NIS2 implementation and contributes to current debates on cybersecurity governance in critical infrastructures. Full article
(This article belongs to the Section Security Engineering & Applications)
Show Figures

Figure 1

18 pages, 1801 KB  
Article
Ecological Outcomes and Societal Transformation: Multiple Visions for Adaptation in the Great Barrier Reef
by Gillian Paxton, Stewart Lockie, Rana Dadpour, Henry A. Bartelet and Bruce Taylor
Sustainability 2025, 17(21), 9906; https://doi.org/10.3390/su17219906 - 6 Nov 2025
Viewed by 278
Abstract
Fears regarding the future of coral reefs are reflected in a growing scientific effort, worldwide, to help corals survive and adapt to the impacts of climate change through new management strategies. To be viable, these strategies must not only be ecologically beneficial and [...] Read more.
Fears regarding the future of coral reefs are reflected in a growing scientific effort, worldwide, to help corals survive and adapt to the impacts of climate change through new management strategies. To be viable, these strategies must not only be ecologically beneficial and technically feasible; they must be developed in partnership with Indigenous peoples and sensitive to the needs and aspirations of local communities, stakeholders and broader publics. This paper synthesizes insights from a comprehensive program of qualitative and quantitative social research, conducted through Australia’s Reef Restoration and Adaptation Program, exploring local community and public perspectives on the Great Barrier Reef (GBR) and the prospect of assisted adaptation. While the results of this research indicate strong support for prospective interventions to help the GBR, they also demonstrate that local communities and the broader Australian public hold multiple visions for the GBR’s future and engage in careful processes to imagine and evaluate assisted adaptation. We discuss the implications of this complexity for the development of technically robust and socially responsible adaptation intervention in the GBR, emphasizing the opportunities it presents for robust and inclusive dialogue, knowledge building, and governance around these strategies. Community and public support, we conclude, is contingent on moving beyond the seemingly straightforward question of whether or not people support intervention and towards forms of engagement that allow space for social and cultural diversity and the co-creation of ethically grounded adaptation pathways. Full article
Show Figures

Figure 1

23 pages, 6717 KB  
Article
Crystalline Nanoparticles and Their Impact on Electromagnetic Radiation Absorption in Advanced Clay Building Materials
by Jelena Brdarić Kosanović, Berislav Marković, Ivana Miličević, Anamarija Stanković and Dalibor Tatar
Crystals 2025, 15(11), 959; https://doi.org/10.3390/cryst15110959 - 6 Nov 2025
Viewed by 230
Abstract
Given the increasing human exposure to electromagnetic radiation of various frequen-cies, mostly in the microwave range, awareness of potential health problems caused by this radiation has begun to grow. New building materials are being developed and tested to prevent or limit the penetration [...] Read more.
Given the increasing human exposure to electromagnetic radiation of various frequen-cies, mostly in the microwave range, awareness of potential health problems caused by this radiation has begun to grow. New building materials are being developed and tested to prevent or limit the penetration of microwave radiation, especially those frequencies that are used in mobile telephony. In contrast with the majority of the available literature on the investigation of concrete (cement) materials, in this paper, clay composite materials with the addition of nanoparticles of antimony(III)–tin(IV) oxide, zinc ferrite, iron(III) oxide, and two crystal modifications of titanium dioxide (rutile and anatase) were prepared in order to examine their effect on the absorption of electro-magnetic radiation. Nanomaterials are characterized by different physical and chemical methods. Specific surface area (B.E.T.), thermal properties (TGA/DSC), phase composition (PXRD), morphology (SEM), and chemical and mineralogical composition (EDX, and ED–XRF,) were determined. Thermal conductivity of clay composites was tested, and these materials showed a positive effect on the thermal conductivity (λ) of the composite: a reduction of 10–33%. The reflection and transmission coefficients of microwave radiation in the frequency range used in mobile telephony (1.5–4.0 GHz) were determined. From these data, the absolute value of radiation absorption in the materials was calculated. The results showed that the addition of the tested nanomaterials in a mass fraction of 3 to 5 wt.% significantly increases the absorption (reduces the penetration) of microwave radiation. Two nanomaterials, Sb2O3·SnO2 and TiO2 (rutile), have proven to be particularly effective: the reduction in transmission is 30–50%. The results of the test were correlated with the crystal structures of the examined nanomaterials. The inclusion of titanium dioxide and antimony-doped tin oxide into the clay led to a significant enhancement in microwave electromagnetic radiation absorption, which can be attributed to their interaction with the dielectric and conductive phases present in clay-based building materials. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

Back to TopTop