Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = neuroregulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5686 KiB  
Article
Transcranial Magneto-Acoustic Stimulation Enhances Cognitive and Working Memory in AD Rats by Regulating Theta-Gamma Oscillation Coupling and Synergistic Activity in the Hippocampal CA3 Region
by Jinrui Mi, Shuai Zhang, Xiaochao Lu and Yihao Xu
Brain Sci. 2025, 15(7), 701; https://doi.org/10.3390/brainsci15070701 - 29 Jun 2025
Viewed by 418
Abstract
Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by cognitive dysfunction and working memory impairment, with early hippocampal damage being a prominent feature. Transcranial magneto-acoustic stimulation (TMAS) has been shown to target specific brain regions for neuroregulation. Methods: This study investigated [...] Read more.
Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by cognitive dysfunction and working memory impairment, with early hippocampal damage being a prominent feature. Transcranial magneto-acoustic stimulation (TMAS) has been shown to target specific brain regions for neuroregulation. Methods: This study investigated the effects of TMAS on cognitive function, working memory, and hippocampal CA3 neural rhythms in AD rats by specifically stimulating the hippocampal region. Results: The novel object recognition test and T-maze test were employed to assess behavioral performance, while time-frequency analyses were conducted to evaluate memory-related activity, neural synchronization, and cross-frequency phase-amplitude coupling. TMAS significantly improved cognitive and working memory deficits in AD rats, enhancing long-term memory performance. Additionally, the abnormal energy levels observed in the θ and γ rhythm power spectra of the CA3 region were markedly restored, suggesting the recovery of normal neural function. This improvement was accompanied by a partial resurgence of neural activity, indicating enhanced inter-neuronal communication. Furthermore, the previously damaged coupling between the θ-fast γ and θ-slow γ rhythms was successfully improved, resulting in a notable enhancement of synchronized activity. Conclusions: These findings suggest that TMAS effectively alleviates cognitive and working memory impairments in AD rats and may provide experimental support for developing new treatments for AD. Full article
(This article belongs to the Section Neurodegenerative Diseases)
Show Figures

Figure 1

25 pages, 427 KiB  
Review
Lithium Ions as Modulators of Complex Biological Processes: The Conundrum of Multiple Targets, Responsiveness and Non-Responsiveness, and the Potential to Prevent or Correct Dysregulation of Systems during Aging and in Disease
by David A. Hart
Biomolecules 2024, 14(8), 905; https://doi.org/10.3390/biom14080905 - 25 Jul 2024
Cited by 1 | Viewed by 2592
Abstract
Lithium is one of the lightest elements on Earth and it has been in the environment since the formation of the galaxy. While a common element, it has not been found to be an essential element in biological processes, ranging from single cell [...] Read more.
Lithium is one of the lightest elements on Earth and it has been in the environment since the formation of the galaxy. While a common element, it has not been found to be an essential element in biological processes, ranging from single cell organisms to Homo sapiens. Instead, at an early stage of evolution, organisms committed to a range of elements such as sodium, potassium, calcium, magnesium, zinc, and iron to serve essential functions. Such ions serve critical functions in ion channels, as co-factors in enzymes, as a cofactor in oxygen transport, in DNA replication, as a storage molecule in bone and liver, and in a variety of other roles in biological processes. While seemingly excluded from a major essential role in such processes, lithium ions appear to be able to modulate a variety of biological processes and “correct” deviation from normal activity, as a deficiency of lithium can have biological consequences. Lithium salts are found in low levels in many foods and water supplies, but the effectiveness of Li salts to affect biological systems came to recent prominence with the work of Cade, who reported that administrating Li salts calmed guinea pigs and was subsequently effective at relatively high doses to “normalize” a subset of patients with bipolar disorders. Because of its ability to modulate many biological pathways and processes (e.g., cyclic AMP, GSK-3beta, inositol metabolism, NaK ATPases, neuro processes and centers, immune-related events, respectively) both in vitro and in vivo and during development and adult life, Li salts have become both a useful tool to better understand the molecular regulation of such processes and to also provide insights into altered biological processes in vivo during aging and in disease states. While the range of targets for lithium action supports its possible role as a modulator of biological dysregulation, it presents a conundrum for researchers attempting to elucidate its specific primary target in different tissues in vivo. This review will discuss aspects of the state of knowledge regarding some of the systems that can be influenced, focusing on those involving neural and autoimmunity as examples, some of the mechanisms involved, examples of how Li salts can be used to study model systems, as well as suggesting areas where the use of Li salts could lead to additional insights into both disease mechanisms and natural processes at the molecular and cell levels. In addition, caveats regarding lithium doses used, the strengths and weaknesses of rodent models, the background genetics of the strain of mice or rats employed, and the sex of the animals or the cells used, are discussed. Low-dose lithium may have excellent potential, alone or in combination with other interventions to prevent or alleviate aging-associated conditions and disease progression. Full article
13 pages, 2411 KiB  
Article
Temporal–Posterior Alpha Power in Resting-State Electroencephalography as a Potential Marker of Complex Childhood Trauma in Institutionalized Adolescents
by Gabriela Mariana Marcu, Ciprian Ionuț Băcilă and Ana-Maria Zăgrean
Brain Sci. 2024, 14(6), 584; https://doi.org/10.3390/brainsci14060584 - 6 Jun 2024
Cited by 2 | Viewed by 2709
Abstract
The present study explored whether, given the association of temporal alpha with fear circuitry (learning and conditioning), exposure to complex childhood trauma (CCT) is reflected in the temporal–posterior alpha power in resting-state electroencephalography (EEG) in complex trauma-exposed adolescents in a sample of 25 [...] Read more.
The present study explored whether, given the association of temporal alpha with fear circuitry (learning and conditioning), exposure to complex childhood trauma (CCT) is reflected in the temporal–posterior alpha power in resting-state electroencephalography (EEG) in complex trauma-exposed adolescents in a sample of 25 adolescents and similar controls aged 12–17 years. Both trauma and psychopathology were screened or assessed, and resting-state EEG was recorded following a preregistered protocol for data collection. Temporal–posterior alpha power, corresponding to the T5 and T6 electrode locations (international 10–20 system), was extracted from resting-state EEG in both eyes-open and eyes-closed conditions. We found that in the eyes-open condition, temporal–posterior alpha was significantly lower in adolescents exposed to CCT relative to healthy controls, suggesting that childhood trauma exposure may have a measurable impact on alpha oscillatory patterns. Our study highlights the importance of considering potential neural markers, such as temporal–posterior alpha power, to understanding the long-term consequences of CCT exposure in developmental samples, with possible important clinical implications in guiding neuroregulation interventions. Full article
(This article belongs to the Special Issue EEG and Event-Related Potentials)
Show Figures

Figure 1

17 pages, 3774 KiB  
Article
Shared Genetic Architectures between Coronary Artery Disease and Type 2 Diabetes Mellitus in East Asian and European Populations
by Xiaoyi Li, Zechen Zhou, Yujia Ma, Kexin Ding, Han Xiao, Dafang Chen and Na Liu
Biomedicines 2024, 12(6), 1243; https://doi.org/10.3390/biomedicines12061243 - 3 Jun 2024
Viewed by 1993
Abstract
Coronary artery disease (CAD) is a common comorbidity of type 2 diabetes mellitus (T2DM). However, the pathophysiology connecting these two phenotypes remains to be further understood. Combined analysis in multi-ethnic populations can help contribute to deepening our understanding of biological mechanisms caused by [...] Read more.
Coronary artery disease (CAD) is a common comorbidity of type 2 diabetes mellitus (T2DM). However, the pathophysiology connecting these two phenotypes remains to be further understood. Combined analysis in multi-ethnic populations can help contribute to deepening our understanding of biological mechanisms caused by shared genetic loci. We applied genetic correlation analysis and then performed conditional and joint association analyses in Chinese, Japanese, and European populations to identify the genetic variants jointly associated with CAD and T2DM. Next, the associations between genes and the two traits were also explored. Finally, fine-mapping and functional enrichment analysis were employed to identify the potential causal variants and pathways. Genetic correlation results indicated significant genetic overlap between CAD and T2DM in the three populations. Over 10,000 shared signals were identified, and 587 were shared by East Asian and European populations. Fifty-six novel shared genes were found to have significant effects on both CAD and T2DM. Most loci were fine-mapped to plausible causal variant sets. Several similarities and differences of the involved genes in GO terms and KEGG pathways were revealed across East Asian and European populations. These findings highlight the importance of immunoregulation, neuroregulation, heart development, and the regulation of glucose metabolism in shared etiological mechanisms between CAD and T2DM. Full article
(This article belongs to the Special Issue Genetics of Chronic Disease)
Show Figures

Figure 1

18 pages, 835 KiB  
Article
Transcriptomic Profiling of Influenza A Virus-Infected Mouse Lung at Recovery Stage Using RNA Sequencing
by Huda A. M. Al-Shalan, Dailun Hu, Penghao Wang, Jasim Uddin, Abha Chopra, Wayne K. Greene and Bin Ma
Viruses 2023, 15(11), 2198; https://doi.org/10.3390/v15112198 - 31 Oct 2023
Cited by 1 | Viewed by 2721
Abstract
Influenza A virus (IAV) is known to cause mild to severe respiratory illness. Under some conditions, the infection can lead to pneumonia (viral or bacterial), acute respiratory distress syndrome, and other complications that can be fatal, especially in vulnerable populations such as the [...] Read more.
Influenza A virus (IAV) is known to cause mild to severe respiratory illness. Under some conditions, the infection can lead to pneumonia (viral or bacterial), acute respiratory distress syndrome, and other complications that can be fatal, especially in vulnerable populations such as the elderly, young children, and individuals with underlying health conditions. Despite previous studies, little is known about the host immune response and neuroimmune interactions in IAV infection. Using RNA sequencing, we performed transcriptomic analysis of murine lung tissue 21 days post infection (dpi) with IAV (H1N1) in order to find the differentially expression genes (DEGs) related to the host immune response and neuroimmune interactions inside the lung during recovery. Among 792 DEGs, 434 genes were up-regulated, whereas 358 genes were down-regulated. The most prominent molecular functions of the up-regulated genes were related to the immune response and tissue repair, whereas a large proportion of the down-regulated genes were associated with neural functions. Although further molecular/functional studies need to be performed for these DEGs, our results facilitate the understanding of the host response (from innate immunity to adaptive immunity) and neuroimmune interactions in infected lungs at the recovery stage of IAV infection. These genes might have potential uses as mechanistic/diagnostic biomarkers and represent possible targets for anti-IAV therapies. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

22 pages, 638 KiB  
Review
Regulation of Bone by Mechanical Loading, Sex Hormones, and Nerves: Integration of Such Regulatory Complexity and Implications for Bone Loss during Space Flight and Post-Menopausal Osteoporosis
by David A. Hart
Biomolecules 2023, 13(7), 1136; https://doi.org/10.3390/biom13071136 - 15 Jul 2023
Cited by 12 | Viewed by 4371
Abstract
During evolution, the development of bone was critical for many species to thrive and function in the boundary conditions of Earth. Furthermore, bone also became a storehouse for calcium that could be mobilized for reproductive purposes in mammals and other species. The critical [...] Read more.
During evolution, the development of bone was critical for many species to thrive and function in the boundary conditions of Earth. Furthermore, bone also became a storehouse for calcium that could be mobilized for reproductive purposes in mammals and other species. The critical nature of bone for both function and reproductive needs during evolution in the context of the boundary conditions of Earth has led to complex regulatory mechanisms that require integration for optimization of this tissue across the lifespan. Three important regulatory variables include mechanical loading, sex hormones, and innervation/neuroregulation. The importance of mechanical loading has been the target of much research as bone appears to subscribe to the “use it or lose it” paradigm. Furthermore, because of the importance of post-menopausal osteoporosis in the risk for fractures and loss of function, this aspect of bone regulation has also focused research on sex differences in bone regulation. The advent of space flight and exposure to microgravity has also led to renewed interest in this unique environment, which could not have been anticipated by evolution, to expose new insights into bone regulation. Finally, a body of evidence has also emerged indicating that the neuroregulation of bone is also central to maintaining function. However, there is still more that is needed to understand regarding how such variables are integrated across the lifespan to maintain function, particularly in a species that walks upright. This review will attempt to discuss these regulatory elements for bone integrity and propose how further study is needed to delineate the details to better understand how to improve treatments for those at risk for loss of bone integrity, such as in the post-menopausal state or during prolonged space flight. Full article
Show Figures

Figure 1

18 pages, 4320 KiB  
Article
Natriuretic Peptides—New Targets for Neurocontrol of Blood Pressure via Baroreflex Afferent Pathway
by Xinyu Li, Yali Cui, Qing Zhang, Qingyuan Li, Mengxing Cheng, Jie Sun, Changpeng Cui, Xiongxiong Fan and Baiyan Li
Int. J. Mol. Sci. 2022, 23(21), 13619; https://doi.org/10.3390/ijms232113619 - 7 Nov 2022
Viewed by 2716
Abstract
Natriuretic peptides (NPs) induce vasodilation, natriuresis, and diuresis, counteract the renin–angiotensin–aldosterone system and autonomic nervous system, and are key regulators of cardiovascular volume and pressure homeostasis. Baroreflex afferent pathway is an important reflex loop in the neuroregulation of blood pressure (BP), including nodose [...] Read more.
Natriuretic peptides (NPs) induce vasodilation, natriuresis, and diuresis, counteract the renin–angiotensin–aldosterone system and autonomic nervous system, and are key regulators of cardiovascular volume and pressure homeostasis. Baroreflex afferent pathway is an important reflex loop in the neuroregulation of blood pressure (BP), including nodose ganglion (NG) and nucleus tractus solitarius (NTS). Dysfunction of baroreflex would lead to various hypertensions. Here, we carried out functional experiments to explore the effects of NPs on baroreflex afferent function. Under physiological and hypertensive condition (high-fructose drinking-induced hypertension, HFD), BP was reduced by NPs through NG microinjection and baroreflex sensitivity (BRS) was enhanced via acute intravenous NPs injection. These anti-hypertensive effects were more obvious in female rats with the higher expression of NPs and its receptor A/B (NPRA/NPRB) and lower expression of its receptor C (NPRC). However, these effects were not as obvious as those in HFD rats compared with the same gender control group, which is likely to be explained by the abnormal expression of NPs and NPRs in the hypertensive condition. Our data provide additional evidence showing that NPs play a crucial role in neurocontrol of BP regulation via baroreflex afferent function and may be potential targets for clinical management of metabolic-related hypertension. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

14 pages, 2126 KiB  
Article
Genome-Wide Population Structure Analysis and Genetic Diversity Detection of Four Chinese Indigenous Duck Breeds from Fujian Province
by Ruiyi Lin, Jiaquan Li, Yue Yang, Yinhua Yang, Jimin Chen, Fanglu Zhao and Tianfang Xiao
Animals 2022, 12(17), 2302; https://doi.org/10.3390/ani12172302 - 5 Sep 2022
Cited by 9 | Viewed by 3079
Abstract
The assessment of population genetic structure is the basis for understanding the genetic information of indigenous breeds and is important for the protection and management of indigenous breeds. However, the population genetic differentiation of many local breeds still remains unclear. Here, we performed [...] Read more.
The assessment of population genetic structure is the basis for understanding the genetic information of indigenous breeds and is important for the protection and management of indigenous breeds. However, the population genetic differentiation of many local breeds still remains unclear. Here, we performed a genome-wide comparative analysis of Jinding, Liancheng white, Putian black, and Shanma ducks based on the genomic sequences using RAD sequencing to understand their population structure and genetic diversity. The population parameters showed that there were obvious genetic differences among the four indigenous breeds, which were separated groups. Among them, Liancheng white and Shanma ducks may come from the same ancestor because the phylogenetic tree forms three tree trunks. In addition, during the runs of homozygosity (ROH), we found that the average inbreeding coefficient of Liancheng white and Putian black ducks was the lowest and the highest, respectively. Five genomic regions were considered to be the hotspots of autozygosity among these indigenous duck breeds, and the candidate genes involved a variety of potential variations, such as muscle growth, pigmentation, and neuroregulation. These findings provide insights into the further improvement and conservation of Fujian duck breeds. Full article
(This article belongs to the Special Issue Conservation and Management of Genetic Resources in Animal Breeding)
Show Figures

Figure 1

12 pages, 1537 KiB  
Article
Dynamics of the Glycogen β-Particle Number in Rat Hepatocytes during Glucose Refeeding
by Natalia N. Bezborodkina, Andrei V. Stepanov, Mikhail L. Vorobev, Grigory I. Stein, Sergey V. Okovityi and Boris N. Kudryavtsev
Int. J. Mol. Sci. 2022, 23(16), 9263; https://doi.org/10.3390/ijms23169263 - 17 Aug 2022
Viewed by 1859
Abstract
Glycogen is an easily accessible source of energy for various processes. In hepatocytes, it can be found in the form of individual molecules (β-particles) and their agglomerates (α-particles). The glycogen content in hepatocytes depends on the physiological state and can vary due to [...] Read more.
Glycogen is an easily accessible source of energy for various processes. In hepatocytes, it can be found in the form of individual molecules (β-particles) and their agglomerates (α-particles). The glycogen content in hepatocytes depends on the physiological state and can vary due to the size and number of the particles. Using biochemical, cytofluorometric, interferometric and morphometric methods, the number of β-particles in rat hepatocytes was determined after 48 h of fasting at different time intervals after glucose refeeding. It has been shown that after starvation, hepatocytes contain ~1.6 × 108 β-particles. During refeeding, their number of hepatocytes gradually increases and reaches a maximum (~5.9 × 108) at 45 min after glucose administration, but then quickly decreases. The data obtained suggest that in cells there is a continuous synthesis and degradation of particles, and at different stages of life, one or another process predominates. It has been suggested that in the course of glycogenesis, pre-existing β-particles are replaced by those formed de novo. The main contribution to the deposition of glycogen is made by an increase in the glucose residue number in its molecules. The average diameter of β-particles of glycogen during glycogenesis increases from ~11 nm to 21 nm. Full article
(This article belongs to the Special Issue Glycogen and Liver)
Show Figures

Figure 1

10 pages, 283 KiB  
Article
Beta-Endorphin and Oxytocin in Patients with Alcohol Use Disorder and Comorbid Depression
by Olga V. Roschina, Lyudmila A. Levchuk, Anastasiia S. Boiko, Ekaterina V. Michalitskaya, Elena V. Epimakhova, Innokentiy S. Losenkov, German G. Simutkin, Anton J. M. Loonen, Nikolay A. Bokhan and Svetlana A. Ivanova
J. Clin. Med. 2021, 10(23), 5696; https://doi.org/10.3390/jcm10235696 - 3 Dec 2021
Cited by 10 | Viewed by 3253
Abstract
Background: The neuropeptides β-endorphin and oxytocin are released into the bloodstream as hormones from the pituitary gland but also have an important function as neuroregulators in the forebrain. The blood levels of both polypeptides have been shown to reflect depressive symptoms. β-Endorphin, in [...] Read more.
Background: The neuropeptides β-endorphin and oxytocin are released into the bloodstream as hormones from the pituitary gland but also have an important function as neuroregulators in the forebrain. The blood levels of both polypeptides have been shown to reflect depressive symptoms. β-Endorphin, in particular, is also involved in abstinence from alcohol. Methods: The serum levels of β-endorphin and oxytocin were measured during the early withdrawal phase in patients with alcohol use disorder (AUD) with (N = 35) or without (N = 45) depressive comorbidity and compared with those in healthy volunteers (N = 23). In addition to comparing the groups, the study examined whether serum levels correlated with various psychometric measures of dependence, depression and aggression, as well as with clinical characteristics of dependence. Results: Both serum levels of beta-endorphin and oxytocin were significantly lower in patients than those in healthy controls (p = 0.011 for β-endorphin and p = 0.005 for oxytocin, Kruskal–Wallis test). In patients with depressive comorbidity, the significance was greatest (p = 0.005 for β-endorphin and p = 0.004 for oxytocin, U-test). There was no correlation with clinical or psychometric parameters (p > 0.05, Spearman test), but beta-endorphin levels did correlate significantly with physical aggression (p = 0.026, Spearman test). Conclusions: Serum levels of β-endorphin and oxytocin are lower in patients with AUD, particularly in those with depressive comorbidity. β-Endorphin levels correlated with physical aggression according to the Buss–Durkee (BDHI) estimates. Full article
(This article belongs to the Special Issue Addictive Disorders and Clinical Psychiatry – Part I)
12 pages, 1516 KiB  
Communication
TAAR1 Expression in Human Macrophages and Brain Tissue: A Potential Novel Facet of MS Neuroinflammation
by David A. Barnes, Dylan A. Galloway, Marius C. Hoener, Mark D. Berry and Craig S. Moore
Int. J. Mol. Sci. 2021, 22(21), 11576; https://doi.org/10.3390/ijms222111576 - 27 Oct 2021
Cited by 19 | Viewed by 5374
Abstract
TAAR1 is a neuroregulator with emerging evidence suggesting a role in immunomodulation. Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system. Here, we investigate TAAR1 expression in human primary monocytes, peripherally-derived macrophages, and MS brain tissue. RT-qPCR was used [...] Read more.
TAAR1 is a neuroregulator with emerging evidence suggesting a role in immunomodulation. Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system. Here, we investigate TAAR1 expression in human primary monocytes, peripherally-derived macrophages, and MS brain tissue. RT-qPCR was used to assess TAAR1 levels in MS monocytes. Using a previously validated anti-human TAAR1 antibody and fluorescence microscopy, TAAR1 protein was visualized in lipopolysaccharide-stimulated or basal human macrophages, as well as macrophage/microglia populations surrounding, bordering, and within a mixed active/inactive MS lesion. In vivo, TAAR1 mRNA expression was significantly lower in MS monocytes compared to age- and sex-matched healthy controls. In vitro, TAAR1 protein showed a predominant nuclear localization in quiescent/control macrophages with a shift to a diffuse intracellular distribution following lipopolysaccharide-induced activation. In brain tissue, TAAR1 protein was predominantly expressed in macrophages/microglia within the border region of mixed active/inactive MS lesions. Considering that TAAR1-mediated anti-inflammatory effects have been previously reported, decreased mRNA in MS patients suggests possible pathophysiologic relevance. A shift in TAAR1 localization following pro-inflammatory activation suggests its function is altered in pro-inflammatory states, while TAAR1-expressing macrophages/microglia bordering an MS lesion supports TAAR1 as a novel pharmacological target in cells directly implicated in MS neuroinflammation. Full article
(This article belongs to the Special Issue Trace Amine-Associated Receptors in Neuropsychiatric Disorders)
Show Figures

Figure 1

11 pages, 431 KiB  
Article
Effect of Stroking on Serotonin, Noradrenaline, and Cortisol Levels in the Blood of Right- and Left-Pawed Dogs
by Mirosław Karpiński, Katarzyna Ognik, Aleksandra Garbiec, Piotr Czyżowski and Magdalena Krauze
Animals 2021, 11(2), 331; https://doi.org/10.3390/ani11020331 - 28 Jan 2021
Cited by 8 | Viewed by 4233
Abstract
It has been assumed that stroking relieves stress responses in dogs, and dogs with the activation of the left-brain hemisphere (right-pawed) may show better adaptation to stress conditions. The aim of the study was to determine whether the stroking stimulus induced changes in [...] Read more.
It has been assumed that stroking relieves stress responses in dogs, and dogs with the activation of the left-brain hemisphere (right-pawed) may show better adaptation to stress conditions. The aim of the study was to determine whether the stroking stimulus induced changes in the level of selected neuroregulators in dogs’ blood and whether these changes depended on the sex and the predominance of the activity of one of the brain hemispheres. The study involved 40 dogs of various breeds and both sexes. The experimental animals were subjected to a behavioral tests (Kong test), and the levels of noradrenaline, serotonin, and cortisol were determined in their blood plasma. The results of the behavioral test revealed that most dogs exhibited increased activity of the left hemisphere. Furthermore, irrespective of the sex and paw preference, stroking the animal was found to alleviate the stress response, which was reflected in reduced cortisol levels and increased serotonin levels. It was found that the plasma noradrenaline, cortisol, and serotonin levels were lower in the female dogs than in the males. Additionally, the plasma noradrenaline and serotonin levels were higher in the right-pawed dogs than in the left-pawed dogs. The present results confirm the assumption that right-pawed dogs adapt to stressful conditions more readily. Full article
(This article belongs to the Section Companion Animals)
Show Figures

Figure 1

16 pages, 2300 KiB  
Review
CD38, CD157, and RAGE as Molecular Determinants for Social Behavior
by Haruhiro Higashida, Minako Hashii, Yukie Tanaka, Shigeru Matsukawa, Yoshihiro Higuchi, Ryosuke Gabata, Makoto Tsubomoto, Noriko Seishima, Mitsuyo Teramachi, Taiki Kamijima, Tsuyoshi Hattori, Osamu Hori, Chiharu Tsuji, Stanislav M. Cherepanov, Anna A. Shabalova, Maria Gerasimenko, Kana Minami, Shigeru Yokoyama, Sei-ichi Munesue, Ai Harashima, Yasuhiko Yamamoto, Alla B. Salmina and Olga Lopatinaadd Show full author list remove Hide full author list
Cells 2020, 9(1), 62; https://doi.org/10.3390/cells9010062 - 25 Dec 2019
Cited by 46 | Viewed by 8878
Abstract
Recent studies provide evidence to support that cluster of differentiation 38 (CD38) and CD157 meaningfully act in the brain as neuroregulators. They primarily affect social behaviors. Social behaviors are impaired in Cd38 and Cd157 knockout mice. Single-nucleotide polymorphisms of the CD38 and CD157/BST1 [...] Read more.
Recent studies provide evidence to support that cluster of differentiation 38 (CD38) and CD157 meaningfully act in the brain as neuroregulators. They primarily affect social behaviors. Social behaviors are impaired in Cd38 and Cd157 knockout mice. Single-nucleotide polymorphisms of the CD38 and CD157/BST1 genes are associated with multiple neurological and psychiatric conditions, including autism spectrum disorder, Parkinson’s disease, and schizophrenia. In addition, both antigens are related to infectious and immunoregulational processes. The most important clues to demonstrate how these molecules play a role in the brain are oxytocin (OT) and the OT system. OT is axo-dendritically secreted into the brain from OT-containing neurons and causes activation of OT receptors mainly on hypothalamic neurons. Here, we overview the CD38/CD157-dependent OT release mechanism as the initiation step for social behavior. The receptor for advanced glycation end-products (RAGE) is a newly identified molecule as an OT binding protein and serves as a transporter of OT to the brain, crossing over the blood–brain barrier, resulting in the regulation of brain OT levels. We point out new roles of CD38 and CD157 during neuronal development and aging in relation to nicotinamide adenine dinucleotide+ levels in embryonic and adult nervous systems. Finally, we discuss how CD38, CD157, and RAGE are crucial for social recognition and behavior in daily life. Full article
Show Figures

Figure 1

15 pages, 2140 KiB  
Article
In Vitro and in Vivo Imaging of Nitroxyl with Copper Fluorescent Probe in Living Cells and Zebrafish
by Sathyadevi Palanisamy, Yu-Liang Wang, Yu-Jen Chen, Chiao-Yun Chen, Fu-Te Tsai, Wen-Feng Liaw and Yun-Ming Wang
Molecules 2018, 23(10), 2551; https://doi.org/10.3390/molecules23102551 - 6 Oct 2018
Cited by 15 | Viewed by 3986
Abstract
Nitroxyl (HNO) plays a critical role in many physiological processes which includes vasorelaxation in heart failure, neuroregulation, and myocardial contractility. Powerful imaging tools are required to obtain information for understanding the mechanisms involved in these in vivo processes. In order to develop a [...] Read more.
Nitroxyl (HNO) plays a critical role in many physiological processes which includes vasorelaxation in heart failure, neuroregulation, and myocardial contractility. Powerful imaging tools are required to obtain information for understanding the mechanisms involved in these in vivo processes. In order to develop a rapid and high sensitive probe for HNO detection in living cells and the zebrafish model organism, 2-((2-(benzothiazole-2yl)benzylidene) amino)benzoic acid (AbTCA) as a ligand, and its corresponding copper(II) complex Cu(II)-AbTCA were synthesized. The reaction results of Cu(II)-AbTCA with Angeli’s salt showed that Cu(II)-AbTCA could detect HNO quantitatively in a range of 40–360 µM with a detection limit of 9.05 µM. Furthermore, Cu(II)-AbTCA is more selective towards HNO over other biological species including thiols, reactive nitrogen, and reactive oxygen species. Importantly, Cu(II)-AbTCA was successfully applied to detect HNO in living cells and zebrafish. The collective data reveals that Cu(II)-AbTCA could be used as a potential probe for HNO detection in living systems. Full article
(This article belongs to the Special Issue Recent Advances in Fluorescent Probes)
Show Figures

Figure 1

20 pages, 1530 KiB  
Review
Modulation of Astrocyte Activity by Cannabidiol, a Nonpsychoactive Cannabinoid
by Ewa Kozela, Ana Juknat and Zvi Vogel
Int. J. Mol. Sci. 2017, 18(8), 1669; https://doi.org/10.3390/ijms18081669 - 31 Jul 2017
Cited by 58 | Viewed by 10527
Abstract
The astrocytes have gained in recent decades an enormous interest as a potential target for neurotherapies, due to their essential and pleiotropic roles in brain physiology and pathology. Their precise regulation is still far from understood, although several candidate molecules/systems arise as promising [...] Read more.
The astrocytes have gained in recent decades an enormous interest as a potential target for neurotherapies, due to their essential and pleiotropic roles in brain physiology and pathology. Their precise regulation is still far from understood, although several candidate molecules/systems arise as promising targets for astrocyte-mediated neuroregulation and/or neuroprotection. The cannabinoid system and its ligands have been shown to interact and affect activities of astrocytes. Cannabidiol (CBD) is the main non-psychotomimetic cannabinoid derived from Cannabis. CBD is devoid of direct CB1 and CB2 receptor activity, but exerts a number of important effects in the brain. Here, we attempt to sum up the current findings on the effects of CBD on astrocyte activity, and in this way on central nervous system (CNS) functions, across various tested models and neuropathologies. The collected data shows that increased astrocyte activity is suppressed in the presence of CBD in models of ischemia, Alzheimer-like and Multiple-Sclerosis-like neurodegenerations, sciatic nerve injury, epilepsy, and schizophrenia. Moreover, CBD has been shown to decrease proinflammatory functions and signaling in astrocytes. Full article
(This article belongs to the Special Issue Cannabinoid Signaling in Nervous System)
Show Figures

Figure 1

Back to TopTop