Many researchers focus on improving reproductive health in sows and ensuring successful breeding by accurately identifying the optimal time of ovulation through estrus detection. One promising non-contact technique involves using computer vision to analyze temperature variations in thermal images of the sow’s vulva. However, variations in camera distance during dataset collection can significantly affect the accuracy of this method, as different distances alter the resolution of the region of interest, causing pixel intensity values to represent varying areas and temperatures. This inconsistency hinders the detection of the subtle temperature differences required to distinguish between estrus and non-estrus states. Moreover, failure to maintain a consistent camera distance, along with external factors such as atmospheric conditions and improper calibration, can distort temperature readings, further compromising data accuracy and reliability. Furthermore, without addressing distance variations, the model’s generalizability diminishes, increasing the likelihood of false positives and negatives and ultimately reducing the effectiveness of estrus detection. In our previously proposed methodology for estrus detection in sows, we utilized YOLOv8 for segmentation and keypoint detection, while monocular depth estimation was used for camera calibration. This calibration helps establish a functional relationship between the measurements in the image (such as distances between labia, the clitoris-to-perineum distance, and vulva perimeter) and the depth distance to the camera, enabling accurate adjustments and calibration for our analysis. Estrus classification is performed by comparing new data points with reference datasets using a three-nearest-neighbor voting system. In this paper, we aim to enhance our previous method by incorporating the mean pixel intensity of the region of interest as an additional factor. We propose a detailed four-step methodology coupled with two stages of evaluation. First, we carefully annotate masks around the vulva to calculate its perimeter precisely. Leveraging the advantages of deep learning, we train a model on these annotated images, enabling segmentation using the cutting-edge YOLOv9 algorithm. This segmentation enables the detection of the sow’s vulva, allowing for analysis of its shape and facilitating the calculation of the mean pixel intensity in the region. Crucially, we use monocular depth estimation from the previous method, establishing a functional link between pixel intensity and the distance to the camera, ensuring accuracy in our analysis. We then introduce a classification approach that differentiates between estrus and non-estrus regions based on the mean pixel intensity of the vulva. This classification method involves calculating Euclidean distances between new data points and reference points from two datasets: one for “estrus” and the other for “non-estrus”. The classification process identifies the five closest neighbors from the datasets and applies a majority voting system to determine the label. A new point is classified as “estrus” if the majority of its nearest neighbors are labeled as estrus; otherwise, it is classified as “non-estrus”. This automated approach offers a robust solution for accurate estrus detection. To validate our method, we propose two evaluation stages: first, a quantitative analysis comparing the performance of our new YOLOv9 segmentation model with the older U-Net and YOLOv8 models. Secondly, we assess the classification process by defining a confusion matrix and comparing the results of our previous method, which used the three nearest points, with those of our new model that utilizes five nearest points. This comparison allows us to evaluate the improvements in accuracy and performance achieved with the updated model. The automation of this vital process holds the potential to revolutionize reproductive health management in agriculture, boosting breeding success rates. Through thorough evaluation and experimentation, our research highlights the transformative power of computer vision, pushing forward more advanced practices in the field.
Full article