Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = natural white birch forest

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1783 KiB  
Article
Nature-Based Solutions in Sustainable Cities: Trace Metal Accumulation in Urban Forests of Vienna (Austria) and Krakow (Poland)
by Mateusz Jakubiak, Ewa Panek, Krzysztof Urbański, Sónia Silva Victória, Stanisław Lach, Kamil Maciuk and Marek Kopacz
Sustainability 2025, 17(15), 7042; https://doi.org/10.3390/su17157042 - 3 Aug 2025
Viewed by 204
Abstract
Forests are considered one of the most valuable natural areas in metropolitan region landscapes. Considering the sensitivity and ecosystem services provided by trees, the definition of urban forest ecosystems is nowadays based on a comprehensive understanding of the entire urban ecosystem. The effective [...] Read more.
Forests are considered one of the most valuable natural areas in metropolitan region landscapes. Considering the sensitivity and ecosystem services provided by trees, the definition of urban forest ecosystems is nowadays based on a comprehensive understanding of the entire urban ecosystem. The effective capturing of particulate matter is one of the ecosystem services provided by urban forests. These ecosystems function as efficient biological filters. Plants accumulate pollutants passively via their leaves. Therefore, another ecosystem service provided by city forests could be the use of tree organs as bioindicators of pollution. This paper aims to estimate differences in trace metal pollution between the wooded urban areas of Vienna and Krakow using leaves of evergreen and deciduous trees as biomonitors. An additional objective of the research was to assess the ability of the applied tree species to act as biomonitors. Plant samples of five species—Norway spruce, Scots pine, European larch, common white birch, and common beech—were collected within both areas, in seven locations: four in the “Wienerwald” Vienna forest (Austria) and three in the “Las Wolski” forest in Krakow (Poland). Concentrations of Cr, Cu, Cd, Pb, and Zn in plant material were determined. Biomonitoring studies with deciduous and coniferous tree leaves showed statistically higher heavy metal contamination in the “Las Wolski” forest compared to the “Wienerwald” forest. Based on the conducted analyses and the literature study, it can be concluded that among the analyzed tree species, only two: European beech and common white birch can be considered potential indicators in environmental studies. These species appear to be suitable bioindicators, as both are widespread in urban woodlands of Central Europe and have shown the highest accumulation levels of trace metals. Full article
Show Figures

Figure 1

25 pages, 2517 KiB  
Article
Modelling Diameter at Breast Height Distribution for Eight Commercial Species in Natural-Origin Mixed Forests of Ontario, Canada
by Baburam Rijal and Mahadev Sharma
Forests 2024, 15(6), 977; https://doi.org/10.3390/f15060977 - 2 Jun 2024
Cited by 3 | Viewed by 1650
Abstract
Diameter at breast height (DBH) is a unique attribute used to characterize forest growth and development for forest management planning and to understand forest ecology. Forest managers require an array of DBHs of forest stands, which can be reconstructed using selected probability distribution [...] Read more.
Diameter at breast height (DBH) is a unique attribute used to characterize forest growth and development for forest management planning and to understand forest ecology. Forest managers require an array of DBHs of forest stands, which can be reconstructed using selected probability distribution functions (PDFs). However, there is a lack of practices that fit PDFs of sub-dominating species grown in natural mixed forests. This study aimed to fit PDFs and develop predictive models for PDF parameters, so that the predicted distribution would represent dynamic forest structures and compositions in mixed forest stands. We fitted three of the simplest forms of PDFs, log-normal, gamma, and Weibull, for the DBH of eight tree species, namely balsam fir (Abies balsamea [L.] Mill.), eastern white pine (Pinus strobus L.), paper birch (Betula papyrifera Marshall), red maple (Acer rubrum L.), red pine (Pinus resinosa Aiton), sugar maple (Acer saccharum Marshall), trembling aspen (Populus tremuloides Michx), and white spruce (Picea glauca [Moench] Voss), all grown in natural-origin mixed forests in Ontario province, Canada. We estimated the parameters of the PDFs as a function of DBH mean and standard deviation for these species. Our results showed that log-normal fit the best among the three PDFs. We demonstrated that the predictive model could estimate the recovered parameters unbiasedly for all species, which can be used to reconstruct the DBH distributions of these tree species. In addition to prediction, the cross-validated R2 for the DBH mean ranged between 0.76 for red maple and 0.92 for red pine. However, the R2 for the regression of the standard deviation ranged between 0.00 for red pine and 0.69 for sugar maple, although it produced unbiased predictions and a small mean absolute bias. As these mean and standard deviations are regressed with dynamic covariates (such as stem density and stand basal area), in addition to climate and static geographic variables, the predicted DBH distribution can reflect change over time in response to management or any type of disturbance in the regime of the given geography. The predictive model-based DBH distributions can be applied to the design of appropriate silviculture systems for forest management planning. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

19 pages, 4286 KiB  
Article
Effect of In Situ Large Soil Column Translocation on CO2 and CH4 Fluxes under Two Temperate Forests of Northeastern China
by Xingkai Xu, Tingting Xu and Jin Yue
Forests 2023, 14(8), 1531; https://doi.org/10.3390/f14081531 - 27 Jul 2023
Cited by 2 | Viewed by 1625
Abstract
Global warming has a significant impact on soil carbon dioxide (CO2) and methane (CH4) fluxes in temperate forests. However, due to a lack of field observations, limited information is available about the responses of soil CO2 and CH [...] Read more.
Global warming has a significant impact on soil carbon dioxide (CO2) and methane (CH4) fluxes in temperate forests. However, due to a lack of field observations, limited information is available about the responses of soil CO2 and CH4 fluxes to changes in temperature during the non-growing season and throughout the year in temperate forests. The broadleaf and Korean pine mixed mature forest (MF) and adjacent secondary white birch forest (BF) at different succession stages in the Changbai mountain region in northeastern China were selected, to study the effect of in situ soil column translocation on CO2 and CH4 fluxes in temperate forests. On average, the air temperature and soil temperature at 5 cm depth under BF stands from October 2018 to October 2022 increased by 0.64 and 0.42 °C during the non-growing season and by 0.49 and 0.43 °C throughout the year, respectively, compared with those under MF stands. Based on multi-year measurements in field experiments, it was shown that during the non-growing season, fluxes of CO2 and CH4 from soil columns under MF and BF stands ranged from 0.004 to 1.175 and from 0.015 to 1.401 (averages of 0.321 and 0.387) μmol CO2 m−2 s−1, and from −1.003 to 0.048 and from −1.037 to −0.013 (averages of −0.179 and −0.250) nmol CH4 m−2 s−1, respectively, accounting for approximately 20.8% and 25.3%, and 48.8% and 69.1% of the corresponding average fluxes during the growing season. When undisturbed soil columns of MF were transferred to a BF stand, to simulate warming, the cumulative soil CO2 emissions and CH4 uptake increased by 23.5% and 15.3% during the non-growing season, and by 9.5% and 16.3% across the year, respectively. However, when soil columns of BF were transferred to a MF stand, to simulate cooling, the cumulative soil CO2 emissions decreased by 16.9% and 0.1% during the non-growing season and across the year, respectively. Upon cooling, the cumulative soil CH4 uptake decreased by 21.8% during the non-growing season but increased by 15.4% across the year. The soil temperature and moisture at 5 cm depth in soil columns could explain 84–86% of the variability in CO2 fluxes and 16–51% of the variability in CH4 fluxes under the two forest stands throughout the field measurement period. The results of the in situ soil column translocation experiments highlight that a small climate warming in nature can increase soil CO2 emissions and CH4 uptake in the temperate forests of northeastern China, particularly during the non-growing season, which should be considered when predicting soil C fluxes in the temperate forests of northeastern China under global warming scenarios. Full article
Show Figures

Figure 1

17 pages, 2836 KiB  
Article
Effects of Biotic and Abiotic Factors on Biomass Conversion and Expansion Factors of Natural White Birch Forest (Betula platyphylla Suk.) in Northeast China
by Yanrong Wang, Zheng Miao, Yuanshuo Hao, Lihu Dong and Fengri Li
Forests 2023, 14(2), 362; https://doi.org/10.3390/f14020362 - 11 Feb 2023
Cited by 3 | Viewed by 2338
Abstract
Biomass conversion and expansion factors (BCEFs) are widely utilized in national and regional biomass estimates and greenhouse gas reporting, as they can be used to directly transform the stocking volume into biomass. In this study, the power function was used [...] Read more.
Biomass conversion and expansion factors (BCEFs) are widely utilized in national and regional biomass estimates and greenhouse gas reporting, as they can be used to directly transform the stocking volume into biomass. In this study, the power function was used as the basic model form with biotic variables, and abiotic variables were considered to improve the fitting results. Then, the random effects parameters were also introduced into the models to describe the variation of BCEFs among different forest management units. Random sampling strategies were applied to calibrate the random effects. The results showed that the stocking volume exhibited a negative proportional relationship in the stem BCEF (BCEFst), the root BCEF (BCEFro) and the total tree BCEF (BCEFto) models, and the quadratic mean diameter exhibited a positive proportional relationship in the branch BCEF (BCEFbr) and the foliage BCEF (BCEFfol) models. In addition, the fitting effect of generalized models with abiotic predictors was superior to that of the basic models. Considering the effects of abiotic variables on the BCEFs of each component, the results showed that BCEFst and BCEFto decreased as the mean annual precipitation increased; BCEFbr increased as the annual temperature increased; BCEFfol gradually decreased as the elevation increased; and BCEFro first increased with increasing mean annual temperature and then declined. In conclusion, abiotic factors explained the variation in BCEFs for the biomass components of the natural white birch forest. Although the fitting effect of generalized models with abiotic predictors was superior to that of the basic models, the mixed-effects model was preferable for modeling the BCEFs of each component. In addition, the prediction precision of the mixed-effects models enhanced gradually with increasing sample size, and the selection of eight plots for calibration and prediction based on the mixed-effects model was the best sampling strategy in this study of a natural white birch forest. Full article
(This article belongs to the Special Issue Forest Dynamics Models for Conservation, Restoration, and Management)
Show Figures

Figure 1

12 pages, 1973 KiB  
Article
Eco-Physiological Adaptations of the Xylotrophic Basidiomycetes Fungi to CO2 and O2 Mode in the Woody Habitat
by Victor A. Mukhin and Daria K. Diyarova
J. Fungi 2022, 8(12), 1296; https://doi.org/10.3390/jof8121296 - 13 Dec 2022
Cited by 3 | Viewed by 2254
Abstract
The aim of this research is to study of eco-physiological adaptations of xylotrophic fungi (Basidiomycota, Agaricomycetes) to hypoxia, anoxia and hypercapnia as the main environmental factors that determine the activity of fungi in woody habitat. The study was carried out on seven species [...] Read more.
The aim of this research is to study of eco-physiological adaptations of xylotrophic fungi (Basidiomycota, Agaricomycetes) to hypoxia, anoxia and hypercapnia as the main environmental factors that determine the activity of fungi in woody habitat. The study was carried out on seven species of polypore fungi widespread in the preforest-steppe pine-birch forests of the Central Urals, including both white (D. tricolor, D. septentrionalis, F. fomentarius, H. rutilans, T. biforme) and brown (F. betulina, F. pinicola) rot. Their CO2 and O2 gas exchange were analyzed in natural samples of woody substrates (Betula pendula, Pinus sylvestris) and basidiocarps by the chamber method using a CO2/O2 gas analyzer. It was shown that the intensity of O2 gas exchange is positively related to the oxygen concentration but is not very sensitive to a decrease in its content in the woody habitat. Xylotrophic fungi are able to completely exhaust the O2 in the habitat, and this process is linear, indicating that they do not have threshold values for oxygen content. Oxygen consumption is accompanied by an adequate linear increase in CO2 concentration up to 18–19%. At a concentration of 5–10%, carbon dioxide does not affect the gas exchange of xylotrophic fungi and can even enhance it, but at 20% it significantly reduces its intensity. Xylotrophic fungi are resistant to high CO2 concentrations and remain viable at 100% CO2 concentration and are capable of growth under these conditions. In an oxygen-free habitat, anaerobic CO2 emissions are recorded; when O2 appears, its consumption is restored to the level preceding anoxia. Xylotrophic fungi are the specialized group of saprotrophic microaerophilic and capnophilic facultative anaerobes adapted to develop at low oxygen and high carbon dioxide concentration, anoxia. Full article
(This article belongs to the Special Issue Eco-Physiology of Wood Decay Fungi: Basics and Applications)
Show Figures

Figure 1

18 pages, 3859 KiB  
Article
Environmental Factors Driving the Transpiration of a Betula platyphylla Sukaczev Forest in a Semi-arid Region in North China during Different Hydrological Years
by Yiheng Wu, Pengwu Zhao, Mei Zhou, Zebin Liu, Huaxia Yao, Jiangsheng Wei, Yang Shu, Jiamei Li, Changlin Xiang and Liwen Zhou
Forests 2022, 13(10), 1729; https://doi.org/10.3390/f13101729 - 20 Oct 2022
Cited by 10 | Viewed by 2304
Abstract
More and more droughts happened during the last decades, threatening natural forests in the semi-arid regions of North China. The increase in drought pressure may have an impact on stand transpiration (T) in semi-arid regions due to rising temperature and changes in precipitation. [...] Read more.
More and more droughts happened during the last decades, threatening natural forests in the semi-arid regions of North China. The increase in drought pressure may have an impact on stand transpiration (T) in semi-arid regions due to rising temperature and changes in precipitation. It is unclear how the transpiration of natural forest in semi-arid regions respond to drought, which is regulated by environmental factors. In this study, a relatively simple but mechanism-based forest stand T model that couples the effects of the reference T, solar radiation (Rn), vapor pressure deficit (VPD), and relative extractable water (REW) in the 0–80 cm soil layer was developed to quantify the independent impacts of Rn, VPD, and REW on T. The model was established based on the observed sap flow of four sample trees, and environmental factors were observed from May to September in different hydrological years (2015, 2017, 2018, and 2021) in a pure white birch (Betula platyphylla Sukaczev) forest stand in the southern section of the Greater Khingan Mountains, northeastern China. The sap flow data were used to calculate tree transpiration (Tt) and T to calibrate the T model. The results indicated that (1) The Tt sharply declined in the ‘dry’ year compared with that in the ‘wetter’ year. The daily Tt for small trees in the ‘dry’ year was only one-fifth of that in the ‘wetter’ year, and the daily Tt of large trees was 48% lower than that in the ‘normal’ year; (2) Large trees transpired more water than small trees, e.g., the daily Tt of small trees was 89% lower than that of the large trees in the ‘normal’ year; (3) Daily T increased with the increase in Rn, and the response conformed to a binomial function. Daily T responded to the rise of VPD and REW in an exponential function, first increasing rapidly, gradually reaching the threshold or peak value, and then stabilizing; (4) The driving factors for the T shift in different hydrological years were the REW in the ‘dry’ year, but the Rn and REW in the ‘wet’, ‘normal’, and ‘wetter’ years. The REW in the ‘wet’ and ‘wetter’ years exerted positive effects on T, but in the ‘normal’ and ‘dry’ year, exerted negative effects on T. Thus, the environmental factors affecting T were not the same in different hydrological years. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

23 pages, 3050 KiB  
Article
Modeling Optimal Forest Rotation Age for Carbon Sequestration in the Great Khingan Mountains of Northeast China
by Yuzhe Li, Tao Luo, Shuzhen Li and Bin Liu
Forests 2022, 13(6), 838; https://doi.org/10.3390/f13060838 - 27 May 2022
Cited by 6 | Viewed by 2840
Abstract
The growing concern about climate change has led to the rise of carbon cycle research. Forest cutting planning affects the carbon cycle due to the carbon sequestration function of forests. In this work, we propose a planning model for determining the regeneration cutting [...] Read more.
The growing concern about climate change has led to the rise of carbon cycle research. Forest cutting planning affects the carbon cycle due to the carbon sequestration function of forests. In this work, we propose a planning model for determining the regeneration cutting age of forests to optimize carbon sequestration and improving the associated economic and ecological benefits. We first built a model based on the carbon sequestration consumption of forest products and forest carbon sequestration to predict the change in forest carbon sequestration over time. The accuracy of the model was verified with forest data from the Great Khingan mountains. Furthermore, we added in economic and ecological factors to build an improved model, which was also applied to the Great Khingan forest. The improved regeneration cutting ages were calculated as 65, 134, 123, 111 and 73 years for white birch, larch, Scots pine, oak, and poplar trees for natural forests, whereas the ages were 34, 65, 64, 77 and 37 years for planted forests, respectively. It can be predicted that the total carbon sequestration in the Great Khingan forests will accumulate to 974.80 million tons after 100 years. The results of this study can provide useful guidance for local governments to develop a sustainable timeline for forest harvesting to optimize carbon sequestration and improve the associated economic and ecological benefits. Full article
(This article belongs to the Special Issue Modelling Forest Ecosystems)
Show Figures

Figure 1

20 pages, 1500 KiB  
Article
A First Insight into North American Plant Pathogenic Fungi Armillaria sinapina Transcriptome
by Narimene Fradj, Nicolas de Montigny, Natacha Mérindol, Fatima Awwad, Yacine Boumghar, Hugo Germain and Isabel Desgagné-Penix
Biology 2020, 9(7), 153; https://doi.org/10.3390/biology9070153 - 4 Jul 2020
Cited by 8 | Viewed by 4004
Abstract
Armillaria sinapina, a fungal pathogen of primary timber species of North American forests, causes white root rot disease that ultimately kills the trees. A more detailed understanding of the molecular mechanisms underlying this illness will support future developments on disease resistance and [...] Read more.
Armillaria sinapina, a fungal pathogen of primary timber species of North American forests, causes white root rot disease that ultimately kills the trees. A more detailed understanding of the molecular mechanisms underlying this illness will support future developments on disease resistance and management, as well as in the decomposition of cellulosic material for further use. In this study, RNA-Seq technology was used to compare the transcriptome profiles of A. sinapina fungal culture grown in yeast malt broth medium supplemented or not with betulin, a natural compound of the terpenoid group found in abundance in white birch bark. This was done to identify enzyme transcripts involved in the metabolism (redox reaction) of betulin into betulinic acid, a potent anticancer drug. De novo assembly and characterization of A. sinapina transcriptome was performed using Illumina technology. A total of 170,592,464 reads were generated, then 273,561 transcripts were characterized. Approximately, 53% of transcripts could be identified using public databases with several metabolic pathways represented. A total of 11 transcripts involved in terpenoid biosynthesis were identified. In addition, 25 gene transcripts that could play a significant role in lignin degradation were uncovered, as well as several redox enzymes of the cytochromes P450 family. To our knowledge, this research is the first transcriptomic study carried out on A. sinapina. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

22 pages, 3494 KiB  
Article
Perspectives on Sustainable Forest Management in Interior Alaska Boreal Forest: Recent History and Challenges
by Miho Morimoto and Glenn Juday
Forests 2019, 10(6), 484; https://doi.org/10.3390/f10060484 - 4 Jun 2019
Cited by 3 | Viewed by 3284
Abstract
Research Highlights: Interior Alaska boreal forest is still largely intact and forest harvest management, if applied appropriately across the forest landscape, can potentially mitigate the effects of climate warming, such as increasing wildfire and decreasing mature tree growth. Background and Objectives: This study [...] Read more.
Research Highlights: Interior Alaska boreal forest is still largely intact and forest harvest management, if applied appropriately across the forest landscape, can potentially mitigate the effects of climate warming, such as increasing wildfire and decreasing mature tree growth. Background and Objectives: This study examines historical relationships between forest growth and harvest in central boreal Alaska over the last 40 years in order to contribute to the development of sustainable forest harvesting practices. Materials and Methods: We compiled data from forest inventory and forest harvest and reforestation databases and analyzed harvesting intensity relative to growth. Results: Forest harvest management has relied heavily on natural regeneration due to a small profit margin. We found that volume harvested in the last 40 years was lower than volume growth; however, harvest activity was concentrated on the small road-accessible area and in the mature white spruce type. As a result, harvest activities need to be distributed geographically and by species in a way that prevents reduction of forest productivity or loss of ecosystem services. An expansion of the road network, or a shift in harvesting and utilization from white spruce to broadleaf would allow a significant increase in sustainable wood yield. Conclusions: There are two potential areas that could provide increased harvest, which contain a large amount of white spruce, birch, and aspen. Under rapid climate change, sustainable forest harvest management must consider the effects of fires, such as needs of salvage logging and a potential reduction of harvestable timber volumes due to damages. Forest harvest management could emulate natural fire disturbance and help reduce fuel amounts to prevent intensive and large-scale fires in the future in areas where fires are most aggressively suppressed. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

18 pages, 3977 KiB  
Article
Comparison of Different Height–Diameter Modelling Techniques for Prediction of Site Productivity in Natural Uneven-Aged Pure Stands
by Guangshuang Duan, Zhigang Gao, Qiuyan Wang and Liyong Fu
Forests 2018, 9(2), 63; https://doi.org/10.3390/f9020063 - 26 Jan 2018
Cited by 23 | Viewed by 4760
Abstract
Reliable estimates of forest site productivity are a central element of forest management. The model of height-diameter relationship of dominant trees using algebraic difference approach (ADA) is a commonly used method to measure site productivity of natural uneven-aged stands. However, the existing models [...] Read more.
Reliable estimates of forest site productivity are a central element of forest management. The model of height-diameter relationship of dominant trees using algebraic difference approach (ADA) is a commonly used method to measure site productivity of natural uneven-aged stands. However, the existing models of this method do not recognize site type or sample plot specific variability in height curves; thus, it cannot be effectively used to estimate site type or sample plot-related site productivity for natural uneven-aged stands. Two primary subject-specific approaches, ADA with dummy variable (DV) (ADA + DV) and ADA with combination of dummy variable and nonlinear mixed-effects modelling (CM) (ADA + CM), were proposed for height–diameter modelling. Height–diameter models developed with ADA, ADA + DV and ADA + CM were compared using data from 4161 observations on 349 permanent sample plots of four major natural uneven-aged pure stands (Spruce, Korean Larch, Mongolian Oak, and White Birch) in northeastern China. It was found that models developed with ADA + CM provided the best performance, followed by the models with ADA + DV, and the models developed with ADA performed the worst. Random effects at the plot level were substantial, and their inclusion greatly improved the model’s accuracy. More importantly, the models developed with ADA + CM provide an effective method for quantifying site type- and sample plot-specific forest site productivity for uneven-aged pure stands. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

17 pages, 1608 KiB  
Article
Effects of Boreal Well Site Reclamation Practices on Long-Term Planted Spruce and Deciduous Tree Regeneration
by Laurie A. Frerichs, Edward W. Bork, Terrance J. Osko and M. Anne Naeth
Forests 2017, 8(6), 201; https://doi.org/10.3390/f8060201 - 8 Jun 2017
Cited by 10 | Viewed by 5929
Abstract
Well site development associated with oil sands exploration is common in boreal mixedwood forests of northern Alberta, Canada, and necessitates reforestation to accommodate other land uses. Little is known about the impact of soil and debris handling strategies during well site construction on [...] Read more.
Well site development associated with oil sands exploration is common in boreal mixedwood forests of northern Alberta, Canada, and necessitates reforestation to accommodate other land uses. Little is known about the impact of soil and debris handling strategies during well site construction on long-term forest regeneration. This study addresses the impact of soil disturbance intensity, debris treatment, soil storage, and planting on the reforestation of 33 well sites reclaimed prior to 2006. Data on the survival and growth of planted white spruce (Picea glauca (Moench) Voss) and the regeneration density of deciduous trees, including trembling aspen (Populus tremuloides Michx), are presented from 2014 to 2015. The survival of planted spruce increased from 81% to 88% at well sites with a high relative to low soil disturbance. The total tree densities were lower in most treatments (≤2.69 stems m−2) than those in clear cuts (5.17 stems m−2), with the exception of root salvage areas where clear cuts had greater balsam poplar (Populus balsamifera L.) densities (2.05 stems m−2 vs. <0.71 stems m−2 on all other treatments). Aspen densities were up to five times greater at well sites with low disturbance when compared to those with high disturbance, and this was further aided by shallow mulch at low disturbance sites. Spruce growth did not respond to well site treatments. Aspen growth (diameter and height) remained similar between well site disturbance regimes; aspen exposed to high disturbance underperformed relative to low disturbance well sites and clear cut controls. With high disturbance, progressive soil piling led to increases in the density of aspen and birch (Betula papyrifera Marshall). Few long-term changes in soil were found due to well site development, with a greater soil pH in high disturbance sites compared to low disturbance sites. Overall, these results indicate that the nature of well site construction, including the extent of soil removal, soil piling, and debris treatment, may collectively alter forest re-establishment, with associated implications for forest management. Full article
(This article belongs to the Special Issue Post-Disturbance Forest Management and Regeneration Dynamics)
Show Figures

Figure 1

21 pages, 3874 KiB  
Article
Clearcutting and Site Preparation, but Not Planting, Promoted Early Tree Regeneration in Boreal Alaska
by Miho Morimoto, Glenn Juday and Brian Young
Forests 2017, 8(1), 12; https://doi.org/10.3390/f8010012 - 25 Dec 2016
Cited by 5 | Viewed by 4770
Abstract
The stand initiation stage decisively influences future forest structure and composition, particularly in the boreal forest which is a stand replacement disturbance driven system. In boreal Alaska, the conventional forest management paradigm has focused on the production of large-dimension timber, particularly white spruce [...] Read more.
The stand initiation stage decisively influences future forest structure and composition, particularly in the boreal forest which is a stand replacement disturbance driven system. In boreal Alaska, the conventional forest management paradigm has focused on the production of large-dimension timber, particularly white spruce (Picea glauca). However, energy generation and heating from wood is increasing, and is likely to significantly expand total forest harvest, further shifting management focus to fuelwood production. We evaluated the effects of forest harvest management practices on post-harvest regeneration by examining whether harvest type, site preparation method, and reforestation technique resulted in differences in forest regeneration in terms of species presence, dominance, basal area, and total stem biomass using a stochastic gradient boosting (TreeNet algorithm). We recorded diameter at breast height and height of white spruce, birch (Betula neoalaskana), and aspen (Populus tremuloides) in 726 plots from 30 harvest units, distributed across the various harvest and treatment types, harvest years, harvest sizes, and geographical locations. Our results indicate that management practices suitable/acceptable for woody biomass production differ from the more traditional dimensional timber production from white spruce-focused management. Artificial reforestation does not differ from natural regeneration in obtaining more stems or producing greater biomass. Clearcutting and site preparation increased tree regeneration, basal area, and woody biomass when compared to a partial harvest with no site preparation. Planting of white spruce in the Alaskan boreal forest may only be necessary in some specific circumstances, such as years with no/low white spruce seed crop, or in landscapes depleted of seed trees. Full article
Show Figures

Figure 1

Back to TopTop