Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = nanogel dressing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 967 KB  
Systematic Review
Topical Zinc Oxide Nanoparticle Formulations for Acne Vulgaris: A Systematic Review of Pre-Clinical and Early-Phase Clinical Evidence
by Daniela Crainic, Roxana Popescu, Cristina-Daliborca Vlad, Daniela-Vasilica Serban, Daniel Popa, Cristina Annemari Popa and Ana-Olivia Toma
Biomedicines 2025, 13(9), 2156; https://doi.org/10.3390/biomedicines13092156 - 4 Sep 2025
Viewed by 4818
Abstract
Background and objectives: Antibiotic resistance in Cutibacterium acnes is undermining topical macrolides and clindamycin, prompting renewed interest in zinc oxide nanoparticles (ZnO-NPs) as non-antibiotic alternatives. We aimed to (i) determine the antimicrobial and anti-inflammatory performance of topical ZnO-NP formulations across in vitro, animal [...] Read more.
Background and objectives: Antibiotic resistance in Cutibacterium acnes is undermining topical macrolides and clindamycin, prompting renewed interest in zinc oxide nanoparticles (ZnO-NPs) as non-antibiotic alternatives. We aimed to (i) determine the antimicrobial and anti-inflammatory performance of topical ZnO-NP formulations across in vitro, animal and early human models; (ii) identify physicochemical parameters that modulate potency and tolerance; and (iii) delineate translational gaps and priority design elements for randomised trials. Methods: We systematically searched PubMed, Scopus and Web of Science until 1 June 2025 for in vitro, animal and human studies that evaluated ≤100 nm ZnO-NPs applied topically to C. acnes cultures, extracting data on bacterial load, lesion counts, biophysical skin parameters and acute toxicity. Eight eligible investigations (five in vitro, two animal, one exploratory human) analysed particles 20–50 nm in diameter carrying mildly anionic zeta potentials. Results: Hyaluronic acid-coated ZnO-NPs achieved a sixteen-fold higher selective kill ratio over Staphylococcus epidermidis at 32 µg mL1, while centrifugally spun polyvinyl alcohol dressings reduced C. acnes burden by 3.1 log10 on porcine skin within 24 h, and plant-derived nanogels generated inhibition zones that were 11% wider than benzoyl-peroxide’s 5%. In human subjects, twice-daily 0.5% hyaluronic–ZnO nanogel cut inflammatory-lesion counts by 58% at week four and lowered transepidermal water loss without erythema. Preclinical safety was reassuring, zero mortality among animals at 100 µg mL1 and no irritation among patients, although high-dose sunscreen-grade ZnO (20 nm) delayed rat wound closure by 38%, highlighting dose-dependent differences. Conclusions: Collectively, the evidence indicates that nanoscale reformulation markedly augments zinc’s antibacterial and anti-inflammatory performance while maintaining favourable acute tolerance, supporting progression to rigorously designed, adequately powered randomised trials that will benchmark ZnO-NPs against benzoyl peroxide and retinoids, optimise dosing for efficacy versus phototoxicity, and establish long-term dermatological safety. Full article
(This article belongs to the Section Nanomedicine and Nanobiology)
Show Figures

Figure 1

29 pages, 6293 KB  
Review
Advances in Nanohybrid Hydrogels for Wound Healing: From Functional Mechanisms to Translational Prospects
by Yunfei Mo, Tao Zhou, Weichang Li, Yuqing Niu and Chialin Sheu
Gels 2025, 11(7), 483; https://doi.org/10.3390/gels11070483 - 23 Jun 2025
Cited by 5 | Viewed by 3518
Abstract
Chronic wounds, such as diabetic ulcers and pressure injuries, remain a major global health burden, affecting over 40 million people worldwide and imposing significant socioeconomic strain. Hydrogel-based wound dressings have gained clinical attention for their ability to maintain moisture, mimic the extracellular matrix, [...] Read more.
Chronic wounds, such as diabetic ulcers and pressure injuries, remain a major global health burden, affecting over 40 million people worldwide and imposing significant socioeconomic strain. Hydrogel-based wound dressings have gained clinical attention for their ability to maintain moisture, mimic the extracellular matrix, and support tissue regeneration. However, traditional hydrogels often lack the mechanical robustness, antimicrobial efficacy, and dynamic responsiveness needed to treat complex wound environments effectively. To address these limitations, nanohybrid hydrogels, composite systems that integrate functional nanomaterials into hydrogel matrices, have emerged as intelligent platforms for advanced wound care. These systems enable multifunctional therapeutic action, including antibacterial activity, antioxidant regulation, angiogenesis promotion, immune modulation, and stimuli-responsive drug delivery. This review synthesizes recent advances in nanohybrid hydrogel design, beginning with an overview of traditional polymeric systems and their constraints. We categorize functional mechanisms according to biological targets and classify nanohybrid architectures by material type, including metal-based nanoparticles, nanozymes, carbon-based nanomaterials, polymeric nanogels, and metal–organic frameworks. Representative studies are summarized in a comparative table, and challenges related to biosafety, clinical translation, and design optimization are discussed. Nanohybrid hydrogels represent a rapidly evolving frontier in wound care, offering bioresponsive, multifunctional platforms with the potential to transform chronic wound management. Full article
(This article belongs to the Special Issue Chemical Properties and Application of Gel Materials)
Show Figures

Figure 1

24 pages, 19674 KB  
Article
Nanogel Dressing with Targeted Glucose Reduction and pH/Hyaluronidase Dual-Responsive Release for Synergetic Therapy of Diabetic Bacterial Wounds
by Wanhe Luo, Yongtao Jiang, Jinhuan Liu, Samah Attia Algharib, Ali Sobhy Dawood and Shuyu Xie
Gels 2025, 11(6), 380; https://doi.org/10.3390/gels11060380 - 22 May 2025
Cited by 1 | Viewed by 1365
Abstract
The hyperglycemic microenvironment in diabetic wounds predisposes them to bacterial infections, sustains chronic inflammation, and hinders therapeutic efficacy. In this study, antibiotic-loaded fast-crosslinked hybrid nanogel wound dressings (florfenicol nanogels) based on Schiff’s base bond were obtained through N, O-carboxymethyl chitosan (N, O-CMCS) and [...] Read more.
The hyperglycemic microenvironment in diabetic wounds predisposes them to bacterial infections, sustains chronic inflammation, and hinders therapeutic efficacy. In this study, antibiotic-loaded fast-crosslinked hybrid nanogel wound dressings (florfenicol nanogels) based on Schiff’s base bond were obtained through N, O-carboxymethyl chitosan (N, O-CMCS) and oxidized hyaluronic acid (OHA). The successfully prepared florfenicol N, O-CMCS/OHA nanogels exhibited obvious pH- and HAase-responsiveness release, which allowed it to quickly release florfenicol at infected wounds to exert on-demand antibacterial activity, as well as accelerate diabetic bacterial-infected wound healing. The nanogel dressings showed excellent antibacterial activity by destroying the bacterial cell membrane and wall. More specifically, the glucose oxidase in the dressings can catalyze the breakdown of high-concentration glucose, generating abundant ROS that directly cause cellular damage. According to the results of wound healing, the dressings showed satisfactory anti-inflammatory and therapeutic effects for the full-thickness mouse skin defect wounds. The nanogel dressings are anticipated to be excellent wound dressings to synergistically overcome the theraputic difficulty of diabetic bacterial wounds. Full article
(This article belongs to the Special Issue Functional Gels Applied in Drug Delivery)
Show Figures

Graphical abstract

24 pages, 1431 KB  
Review
Biomedical Application of Nanogels: From Cancer to Wound Healing
by Mohammad Zafaryab and Komal Vig
Molecules 2025, 30(10), 2144; https://doi.org/10.3390/molecules30102144 - 13 May 2025
Cited by 3 | Viewed by 2428
Abstract
Nanogels are polymer-based, crosslinked hydrogel particles on the nanometer scale. Nanogels developed from synthetic and natural polymers have gathered a great deal of attention in industry and scientific society due to having an increased surface area, softness, flexibility, absorption, and drug loading ability, [...] Read more.
Nanogels are polymer-based, crosslinked hydrogel particles on the nanometer scale. Nanogels developed from synthetic and natural polymers have gathered a great deal of attention in industry and scientific society due to having an increased surface area, softness, flexibility, absorption, and drug loading ability, as well as their mimicking the environment of a tissue. Nanogels having biocompatibility, nontoxic and biodegradable properties with exceptional design, fabrication, and coating facilities may be used for a variety of different biomedical applications, such as drug delivery and therapy, tissue engineering, and bioimaging. Nanogels fabricated by chemical crosslinking and physical self-assembly displayed the ability to encapsulate therapeutics, including hydrophobic, hydrophilic, and small molecules, proteins, peptides, RNA and DNA sequences, and even ultrasmall nanoparticles within their three-dimensional polymer networks. One of the many drug delivery methods being investigated as a practical option for targeted delivery of drugs for cancer treatment is nanogels. The delivery of DNA and anticancer drugs like doxorubicin, epirubicin, and paclitaxel has been eased by polymeric nanogels. Stimuli-responsive PEGylated nanogels have been reported as smart nanomedicines for cancer diagnostics and therapy. Another promising biomedical application of nanogels is wound healing. Wounds are injuries to living tissue caused by a cut, blow, or other impact. There are numerous nanogels having different polymer compositions that have been reported to enhance the wound healing process, such as hyaluronan, poly-L-lysine, and berberine. When antimicrobial resistance is present, wound healing becomes a complicated process. Researchers are looking for novel alternative approaches, as foreign microorganisms in wounds are becoming resistant to antibiotics. Silver nanogels have been reported as a popular antimicrobial choice, as silver has been used as an antimicrobial throughout a prolonged period. Lignin-incorporated nanogels and lidocaine nanogels have also been reported as an antioxidant wound-dressing material that can aid in wound healing. In this review, we will summarize recent progress in biomedical applications for various nanogels, with a prime focus on cancer and wound healing. Full article
Show Figures

Figure 1

19 pages, 5798 KB  
Article
Enzymatically-Crosslinked Gelatin Hydrogels with Nanostructured Architecture and Self-Healing Performance for Potential Use as Wound Dressings
by Alina Gabriela Rusu, Loredana Elena Nita, Natalia Simionescu, Alina Ghilan, Aurica P. Chiriac and Liliana Mititelu-Tartau
Polymers 2023, 15(3), 780; https://doi.org/10.3390/polym15030780 - 3 Feb 2023
Cited by 25 | Viewed by 4285
Abstract
Development of natural protein-based hydrogels with self-healing performance and tunable physical properties has attracted increased attention owing to their wide potential not only in the pharmaceutical field, but also in wounds management. This work reports the development of a versatile hydrogel based on [...] Read more.
Development of natural protein-based hydrogels with self-healing performance and tunable physical properties has attracted increased attention owing to their wide potential not only in the pharmaceutical field, but also in wounds management. This work reports the development of a versatile hydrogel based on enzymatically-crosslinked gelatin and nanogels loaded with amoxicillin (Amox), an antibiotic used in wound infections. The transglutaminase (TGase)-crosslinked hydrogels and encapsulating nanogels were formed rapidly through enzymatic crosslinking and self-assembly interactions in mild conditions. The nanogels formed through the self-assemble of maleoyl-chitosan (MAC5) and polyaspartic acid (PAS) may have positive influence on the self-healing capacity and drug distribution within the hydrogel network through the interactions established between gelatin and gel-like nanocarriers. The physicochemical properties of the enzymatically-crosslinked hydrogels, such as internal structure, swelling and degradation behavior, were studied. In addition, the Amox release studies indicated a rapid release when the pH of the medium decreased, which represents a favorable characteristic for use in the healing of infected wounds. It was further observed through the in vitro and in vivo biocompatibility assays that the optimized scaffolds have great potential to be used as wound dressings. Full article
(This article belongs to the Special Issue Self-Healing Polymers, Proteins and Composites)
Show Figures

Graphical abstract

15 pages, 3845 KB  
Article
Bioactive Surfaces of Polylactide and Silver Nanoparticles for the Prevention of Microbial Contamination
by Oana Gherasim, Alexandru Mihai Grumezescu, Valentina Grumezescu, Florin Iordache, Bogdan Stefan Vasile and Alina Maria Holban
Materials 2020, 13(3), 768; https://doi.org/10.3390/ma13030768 - 7 Feb 2020
Cited by 35 | Viewed by 4224
Abstract
Thanks to its peculiar interactions with biological molecules and structures, metallic silver in the form of silver nanoparticles achieved a remarkable comeback as a potential antimicrobial agent. The antimicrobial use of silver nanoparticles is of clinical importance, as several pathogenic microorganisms developed resistance [...] Read more.
Thanks to its peculiar interactions with biological molecules and structures, metallic silver in the form of silver nanoparticles achieved a remarkable comeback as a potential antimicrobial agent. The antimicrobial use of silver nanoparticles is of clinical importance, as several pathogenic microorganisms developed resistance against various conventional drug treatments. Hence, given the extensive efficiency of silver nanoparticles against drug-sensitive and drug-resistant pathogens, their therapeutic implications were demonstrated in multiple medical applications, such as silver-based dressings, silver-coated biomedical devices and silver-containing nanogels. Bacterial strains possess an intrinsic ability to form well-organized microbial communities, capable of developing adaptive mechanisms to environmental aggression and self-protective pathways against antibiotics. The formation of these mono- or poly-microbial colonies, called biofilms, is closely related with the occurrence of infectious processes which result in severe and chronic pathologies. Therefore, substantial efforts were oriented to the development of new protective coatings for biomedical surfaces, capable of sustaining the physiological processes within human-derived normal cells and to disrupt the microbial contamination and colonization stages. Nanostructured materials based on polylactic acid and silver nanoparticles are herein proposed as bioactive coatings able to prevent the formation of microbial biofilms on biomedical relevant surfaces. Full article
Show Figures

Graphical abstract

Back to TopTop