Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = mycoheterotrophic orchids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2050 KiB  
Article
Genome Skimming Reveals Plastome Conservation, Phylogenetic Structure, and Novel Molecular Markers in Valuable Orchid Changnienia amoena
by Rui-Sen Lu, Ke Hu, Yu Liu, Xiao-Qin Sun and Xing-Jian Liu
Genes 2025, 16(7), 723; https://doi.org/10.3390/genes16070723 - 20 Jun 2025
Viewed by 359
Abstract
Background/Objectives: Changnienia amoena is a rare and endangered terrestrial orchid endemic to China, valued for its ornamental and medicinal properties. However, limited genomic resources hinder its effective conservation strategies and sustainable utilization. This study aimed to generate comprehensive plastome resources and develop [...] Read more.
Background/Objectives: Changnienia amoena is a rare and endangered terrestrial orchid endemic to China, valued for its ornamental and medicinal properties. However, limited genomic resources hinder its effective conservation strategies and sustainable utilization. This study aimed to generate comprehensive plastome resources and develop molecular markers to support the phylogenetics, identification, and conservation management of C. amoena. Methods: Genome skimming was employed to assemble and annotate the complete plastomes of seven geographically distinct C. amoena accessions. Comparative analyses were conducted to assess structural features and sequence divergence within C. amoena and across related species in the Calypsoinae subtribe. Phylogenetic relationships were inferred from protein-coding genes. Simple sequence repeats (SSRs), dispersed repeats, and hypervariable regions were identified from the plastomes, while nuclear SSRs were developed from assembled nuclear sequences. Results: All seven plastomes exhibited a conserved quadripartite structure with identical gene content and order, showing only minor variations in genome size. Sequence divergence was mainly confined to non-coding regions. Across Calypsoinae species, mycoheterotrophic taxa exhibited reduced plastomes. Phylogenetic analyses resolved four well-supported intergeneric clades within Calypsoinae and revealed a notable divergence between the HuNGZ accession and other C. amoena accessions, which otherwise showed low plastome-level differentiation. We also identified 69–74 plastome-derived SSRs, 22–25 dispersed repeats, and three hypervariable regions that may serve as informative molecular markers for C. amoena. Additionally, 16 polymorphic nuclear SSRs were developed from assembled nuclear sequences. Conclusions: These findings significantly expand the genomic resources available for C. amoena and provide essential insights for its phylogeny, molecular identification, conservation management, and future breeding efforts. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

27 pages, 5854 KiB  
Article
Naturalness and Tree Composition Determine the Abundance of Rare and Threatened Orchids in Mature and Old-Growth Abies alba Forests in the Northern Apennines (Italy)
by Antonio Pica, Bartolomeo Schirone, Sara Magrini, Paolo Laghi, Kevin Cianfaglione and Alfredo Di Filippo
Land 2025, 14(3), 579; https://doi.org/10.3390/land14030579 - 10 Mar 2025
Viewed by 1087
Abstract
Forest Orchidaceae are important for European temperate forests, yet their distribution and abundance have so far interested limited research. In three pure or mixed silver fir stands in the Foreste Casentinesi National Park (NP) (Northern Apennines, Italy) we analysed how structural traits in [...] Read more.
Forest Orchidaceae are important for European temperate forests, yet their distribution and abundance have so far interested limited research. In three pure or mixed silver fir stands in the Foreste Casentinesi National Park (NP) (Northern Apennines, Italy) we analysed how structural traits in mature and old-growth forests affected orchid communities in terms of abundance of the main genera, trophic strategy and rarity in the NP. We established three 20 × 60 m plots to quantify the structure of living and dead tree community, including a set of old-growth attributes connected to large trees, deadwood, and established regeneration. In each plot, we measured the abundance of all orchid species and explored their behaviour according to the trophic strategy (autotrophy/mixotrophy, obligate mycoheterotrophy), rarity within the NP, and threatened status according to the IUCN Red List. We used multivariate ordination and classification techniques to assess plot similarities according to forest structure and Orchid Community and identify the main structural factors related to orchid features. The main structural factors were used as predictors of community traits. Forest composition (i.e., the dominance/abundance of silver fir) affected the presence of the main orchid genera: Epipactis were abundant in silver fir-dominated forests, Cephalanthera in mixed beech and fir forests. Interestingly, Cephalanthera could become limited even in beech-dominated conditions if fir regeneration was abundant and established. Old-growth attributes like the density of deadwood and large tree volume were important determinants of the presence of rare and mycoheterotrophic species. Our results provided a first quantitative description of forest reference conditions to be used in the protection and restoration of threatened and rare orchid species. Full article
(This article belongs to the Special Issue Species Vulnerability and Habitat Loss II)
Show Figures

Figure 1

16 pages, 5330 KiB  
Article
Mitochondrial Genome Characteristics Reveal Evolution of Danxiaorchis yangii and Phylogenetic Relationships
by Xuedie Liu, Huolin Luo, Zhong-Jian Liu and Bo-Yun Yang
Int. J. Mol. Sci. 2025, 26(2), 562; https://doi.org/10.3390/ijms26020562 - 10 Jan 2025
Cited by 1 | Viewed by 1089
Abstract
Danxiaorchis yangii is a fully mycoheterotrophic orchid that lacks both leaves and roots, belonging to the genus Danxiaorchis in the subtribe Calypsoinae. In this study, we assembled and annotated its mitochondrial genome (397,867 bp, GC content: 42.70%), identifying 55 genes, including 37 protein-coding [...] Read more.
Danxiaorchis yangii is a fully mycoheterotrophic orchid that lacks both leaves and roots, belonging to the genus Danxiaorchis in the subtribe Calypsoinae. In this study, we assembled and annotated its mitochondrial genome (397,867 bp, GC content: 42.70%), identifying 55 genes, including 37 protein-coding genes (PCGs), 16 tRNAs, and 2 rRNAs, and conducted analyses of relative synonymous codon usage (RSCU), repeat sequences, horizontal gene transfers (HGTs), and gene selective pressure (dN/dS). Additionally, we sequenced and assembled its plastome, which has a reduced size of 110,364 bp (GC content: 36.60%), comprising 48 PCGs, 26 tRNAs, and 4 rRNAs. We identified 64 potential chloroplast DNA fragments transferred to the mitogenome. Phylogenomic analysis focusing on 33 mitogenomes, with Vitis vinifera as the outgroup, indicated that D. yangii is grouped as follows: D. yangii + ((Dendrobium wilsonii + Dendrobium wilsonii henanense) + Phalaenopsis aphrodite). Phylogenetic analysis based on 83 plastid PCGs from these species showed that D. yangii is grouped as follows: (D. yangii + Pha. aphrodite) + (Den. wilsonii + Den. henanense). Gene selective pressure analysis revealed that most mitochondrial and plastid genes in D. yangii are under purifying selection, ensuring functional stability, and certain genes may have undergone positive selection or adaptive evolution, reflecting the species’ adaptation to specific ecological environments. Our study provides valuable data on the plastomes and mitogenomes of D. yangii and lays the groundwork for future research on genetic variation, evolutionary relationships, and the breeding of orchids. Full article
(This article belongs to the Special Issue Advances in Plant Genomics and Genetics: 2nd Edition)
Show Figures

Figure 1

15 pages, 9053 KiB  
Article
Prediction of Suitable Regions for Danxiaorchis yangii Combined with Pollinators Based on the SDM Model
by Xuedie Liu, Can Gao, Guo Yang and Boyun Yang
Plants 2024, 13(21), 3101; https://doi.org/10.3390/plants13213101 - 3 Nov 2024
Cited by 1 | Viewed by 1521
Abstract
Danxiaorchis yangii, a newly discovered fully mycoheterotrophic orchid. It relies on Lysimachia alfredii and Dufourea spp. for pollination, and environmental factors closely influence the growth and distribution of these pollinators, which in turn directly affects the growth and reproduction of D. yangii [...] Read more.
Danxiaorchis yangii, a newly discovered fully mycoheterotrophic orchid. It relies on Lysimachia alfredii and Dufourea spp. for pollination, and environmental factors closely influence the growth and distribution of these pollinators, which in turn directly affects the growth and reproduction of D. yangii. Climate change threatens the suitable habitats for these three species, emphasizing the need to understand D. yangii’s response. This study comprehensively utilized the field distribution of D. yangii and related climatic data, along with future climate predictions from global models, to predict the climate suitability areas of D. yangii under two greenhouse gas emission scenarios (SSP245 and SSP370) using species distribution models (SDMs), which encompassed a random forest (RF) model. Additionally, we selected the optimal ensemble model (OEM) for Dufourea spp. and applied generalized boosted models (GBMs) and RF for L. alfredii in our predictions. The study found that precipitation of the driest quarter plays a pivotal role in determining the distribution of D. yangii, with an optimal range of 159 to 730 mm being most conducive to its growth. Comparative analysis further indicated that precipitation exerts a greater influence on D. yangii than temperature. Historically, D. yangii has been predominantly distributed across Jiangxi, Hunan, Zhejiang, and the Guangxi Zhuang Autonomous Region, with Jiangxi Province containing the largest area of highly suitable habitat, and this distribution largely overlaps with the suitable regions of its pollinators. Full article
(This article belongs to the Special Issue Orchid Conservation and Biodiversity)
Show Figures

Figure 1

14 pages, 2529 KiB  
Brief Report
Clonostachys rosea, a Pathogen of Brown Rot in Gastrodia elata in China
by Huan Yao, Kang Liu, Lei Peng, Touli Huang, Jinzhen Shi, Beilin Sun and Juan Zou
Biology 2024, 13(9), 730; https://doi.org/10.3390/biology13090730 - 17 Sep 2024
Cited by 1 | Viewed by 1798
Abstract
Gastrodia elata, commonly known as Tian Ma, is a perennial mycoheterotrophic orchid. Qianyang Tian Ma (QTM), a geographical indication agricultural product from Hongjiang City, Hunan Province, China, is primarily characterized by the red variety, G. elata f. elata. A severe outbreak [...] Read more.
Gastrodia elata, commonly known as Tian Ma, is a perennial mycoheterotrophic orchid. Qianyang Tian Ma (QTM), a geographical indication agricultural product from Hongjiang City, Hunan Province, China, is primarily characterized by the red variety, G. elata f. elata. A severe outbreak of tuber brown rot disease was documented in QTM during the harvesting season in Hunan. The fungal pathogen associated with the disease was isolated on potato saccharose agar (PSA) and identified through morphological and phylogenetic analyses. Pathogenicity tests were performed on healthy tubers of G. elata f. elata. The results showed that the representative isolate, named TMB, produced white hyphal colonies with a ring structure, broom-like phialides, partially curved ellipsoidal conidia, and orange–yellow spherical ascocarps on PSA. Phylogenetic analysis of the ITS, LSU, rpb2 and tub2 sequences using Bayesian and maximum-likelihood methods identified the isolate TMB as Clonostachys rosea, based on morphological and phylogenetic data. Pathogenicity tests revealed typical disease symptoms on healthy G. elata tubers 15 days post-inoculation with the isolate TMB. C. rosea is known to cause diseases in economically important crops, but there are no reports of its occurrence on G. elata f. elata in China. This study provides valuable insights into the occurrence, prevention, and control of brown rot disease in G. elata f. elata. Full article
(This article belongs to the Special Issue Advances in Research on Diseases of Plants)
Show Figures

Figure 1

14 pages, 10342 KiB  
Article
Organelle Genomes of Epipogium roseum Provide Insight into the Evolution of Mycoheterotrophic Orchids
by Zhuang Zhao, Yuanyuan Li, Jun-Wen Zhai, Zhong-Jian Liu and Ming-He Li
Int. J. Mol. Sci. 2024, 25(3), 1578; https://doi.org/10.3390/ijms25031578 - 27 Jan 2024
Cited by 10 | Viewed by 2019
Abstract
Epipogium roseum, commonly known as one of the ghost orchids due to its rarity and almost transparent color, is a non-photosynthetic and fully mycoheterotrophic plant. Given its special nutritional strategies and evolutionary significance, the mitogenome was first characterized, and three plastomes sampled [...] Read more.
Epipogium roseum, commonly known as one of the ghost orchids due to its rarity and almost transparent color, is a non-photosynthetic and fully mycoheterotrophic plant. Given its special nutritional strategies and evolutionary significance, the mitogenome was first characterized, and three plastomes sampled from Asia were assembled. The plastomes were found to be the smallest among Orchidaceae, with lengths ranging from 18,339 to 19,047 bp, and exhibited high sequence variety. For the mitogenome, a total of 414,552 bp in length, comprising 26 circular chromosomes, were identified. A total of 54 genes, including 38 protein-coding genes, 13 tRNA genes, and 3 rRNA genes, were annotated. Multiple repeat sequences spanning a length of 203,423 bp (45.47%) were discovered. Intriguingly, six plastid regions via intracellular gene transfer and four plastid regions via horizontal gene transfer to the mitogenome were observed. The phylogenomics, incorporating 90 plastomes and 56 mitogenomes, consistently revealed the sister relationship of Epipogium and Gastrodia, with a bootstrap percentage of 100%. These findings shed light on the organelle evolution of Orchidaceae and non-photosynthetic plants. Full article
(This article belongs to the Special Issue Molecular Research on Orchid Plants)
Show Figures

Figure 1

19 pages, 8697 KiB  
Article
Ancient Horizontal Gene Transfers from Plastome to Mitogenome of a Nonphotosynthetic Orchid, Gastrodia pubilabiata (Epidendroideae, Orchidaceae)
by Young-Kee Kim, Sangjin Jo, Se-Hwan Cheon, Ja-Ram Hong and Ki-Joong Kim
Int. J. Mol. Sci. 2023, 24(14), 11448; https://doi.org/10.3390/ijms241411448 - 14 Jul 2023
Cited by 11 | Viewed by 2343
Abstract
Gastrodia pubilabiata is a nonphotosynthetic and mycoheterotrophic orchid belonging to subfamily Epidendroideae. Compared to other typical angiosperm species, the plastome of G. pubilabiata is dramatically reduced in size to only 30,698 base pairs (bp). This reduction has led to the loss of most [...] Read more.
Gastrodia pubilabiata is a nonphotosynthetic and mycoheterotrophic orchid belonging to subfamily Epidendroideae. Compared to other typical angiosperm species, the plastome of G. pubilabiata is dramatically reduced in size to only 30,698 base pairs (bp). This reduction has led to the loss of most photosynthesis-related genes and some housekeeping genes in the plastome, which now only contains 19 protein coding genes, three tRNAs, and three rRNAs. In contrast, the typical orchid species contains 79 protein coding genes, 30 tRNAs, and four rRNAs. This study decoded the entire mitogenome of G. pubilabiata, which consisted of 44 contigs with a total length of 867,349 bp. Its mitogenome contained 38 protein coding genes, nine tRNAs, and three rRNAs. The gene content of G. pubilabiata mitogenome is similar to the typical plant mitogenomes even though the mitogenome size is twice as large as the typical ones. To determine possible gene transfer events between the plastome and the mitogenome individual BLASTN searches were conducted, using all available orchid plastome sequences and flowering plant mitogenome sequences. Plastid rRNA fragments were found at a high frequency in the mitogenome. Seven plastid protein coding gene fragments (ndhC, ndhJ, ndhK, psaA, psbF, rpoB, and rps4) were also identified in the mitogenome of G. pubilabiata. Phylogenetic trees using these seven plastid protein coding gene fragments suggested that horizontal gene transfer (HGT) from plastome to mitogenome occurred before losses of photosynthesis related genes, leading to the lineage of G. pubilabiata. Compared to species phylogeny of the lineage of orchid, it was estimated that HGT might have occurred approximately 30 million years ago. Full article
(This article belongs to the Special Issue Orchid Biochemistry)
Show Figures

Figure 1

30 pages, 5831 KiB  
Article
Habitat Ecology, Structure Influence Diversity, and Host-Species Associations of Wild Orchids in Undisturbed and Disturbed Forests in Peninsular Malaysia
by Edward Entalai Besi, Muskhazli Mustafa, Christina Seok Yien Yong and Rusea Go
Forests 2023, 14(3), 544; https://doi.org/10.3390/f14030544 - 9 Mar 2023
Cited by 3 | Viewed by 4449
Abstract
As an attempt to examine the causes of forest disturbance and degradation of the orchid community, a comparative study on diversity and ecology in eight undisturbed and ten disturbed forests in Peninsular Malaysia was conducted that varied in areas, elevations, vegetation types, and [...] Read more.
As an attempt to examine the causes of forest disturbance and degradation of the orchid community, a comparative study on diversity and ecology in eight undisturbed and ten disturbed forests in Peninsular Malaysia was conducted that varied in areas, elevations, vegetation types, and disturbance regimes. Density and individual-based rarefaction curves were used to describe the abundance. Univariate and multivariate analyses were also performed to explore the associations of species abundance with biotic and abiotic factors. The study reported 239 orchid species belonging to 65 genera. Species richness, abundance, density, and diversity of orchids varied by locality. Higher density of orchids (2.433 plants/km2) occurred in the undisturbed forests than in the disturbed forests (0.228 plants/km2). As with the character of undisturbed forests, the temperature was between 27.8 ± 0.3 °C and 31.2 ± 0.2 °C, humid (77.1 ± 1.2%–89.6 ± 0.9%), and with low light intensity (23.8 ± 3.3 μmol m−2s−1–171.7 ± 18.8 μmol m−2s−1), thus supporting the high density of the plants. Disturbed forests had higher diversity (H = 4.934 and 1-D = 0.990) and abundance (183 species of 57 genera) but were determined to be highly influenced by the higher abundance of epiphytic orchids on the fallen trees and ease of accessibility in the logged forests. Terrestrial and mycoheterotroph orchids were much lower in density and abundance in the disturbed habitat indicating a gradual reduction in their niche availability following the disturbance. Additionally, the ecology data show that the microclimate conditions of the canopy-covered forest was influenced by proximity to the logged area which had eventually reduced the orchids’ habitat quality. Furthermore, the results show that the abundance of epiphytic orchid communities was associated with the host plant characteristics. Host types and bark texture preference were apparent for the epiphytic orchid species, with certain types and textures hosting more orchid species than others. Overall results show that extreme temperature, humidity, and light intensity caused by the canopy opening inflicted damages to the habitat conditions and bark textures of the host plants and limits recolonisation of the orchids in the disturbed forests. The species diversity and density patterns of orchids in undisturbed and disturbed forests revealed in this study provide a baseline for conservationists, policy makers, and forest authorities in expanding the understanding of the forest ecology and vegetation along the disturbance gradient, forest regeneration, and criteria for plant selection for forest restoration in Peninsular Malaysia. Full article
(This article belongs to the Special Issue Genetic Diversity and Conservation of Forest Species)
Show Figures

Figure 1

11 pages, 9770 KiB  
Article
Differing Life-History Strategies of Two Mycoheterotrophic Orchid Species Associated with Leaf Litter- and Wood-Decaying Fungi
by Yuki Ogura-Tsujita, Kenshi Tetsuka, Shuichiro Tagane, Miho Kubota, Shuichiro Anan, Yumi Yamashita, Koichi Tone and Tomohisa Yukawa
Diversity 2021, 13(4), 161; https://doi.org/10.3390/d13040161 - 8 Apr 2021
Cited by 8 | Viewed by 4186
Abstract
Mycoheterotrophic orchids depend completely on mycorrhizal fungi for their supply of carbon. The life-history traits of mycoheterotrophic plants (MHPs) can differ according to the characteristics of the associated mycorrhizal fungi. We compared the life-history strategies of two mycoheterotrophic orchids associated with wood- and [...] Read more.
Mycoheterotrophic orchids depend completely on mycorrhizal fungi for their supply of carbon. The life-history traits of mycoheterotrophic plants (MHPs) can differ according to the characteristics of the associated mycorrhizal fungi. We compared the life-history strategies of two mycoheterotrophic orchids associated with wood- and leaf litter-decaying fungi over a maximum of six years of field monitoring. Seventy percent of the aboveground stems of Erythrorchis altissima, associated with wood-decaying fungi, disappeared from the host wood within two years after tagging, likely due to nutrient depletion. In contrast, Gastrodia confusa, associated with leaf litter-decaying fungi, occurred continuously (18 to 108 fruiting stalks) every year within a small-scale plot (12 × 45 m) for six years through seed and clonal propagation. Our results support the idea that mycoheterotrophic orchids associated with wood-decaying fungi disappear from their habitats due to nutrient depletion after their host wood has mostly decayed, while mycoheterotrophic orchids associated with leaf litter-decaying fungi can survive in small-scale habitats where substantial leaf fall regularly occurs to sustain the associated fungi. Our study provides basic information about a unique life-history strategy in MHPs associated with saprotrophic fungi and an understanding of the variation in life-history strategies among MHPs. Full article
(This article belongs to the Special Issue The Ecology and Diversity of Orchids)
Show Figures

Graphical abstract

11 pages, 1976 KiB  
Article
Severe Plastid Genome Size Reduction in a Mycoheterotrophic Orchid, Danxiaorchis singchiana, Reveals Heavy Gene Loss and Gene Relocations
by Shiou Yih Lee, Kaikai Meng, Haowei Wang, Renchao Zhou, Wenbo Liao, Fang Chen, Shouzhou Zhang and Qiang Fan
Plants 2020, 9(4), 521; https://doi.org/10.3390/plants9040521 - 17 Apr 2020
Cited by 9 | Viewed by 3372
Abstract
Danxiaorchis singchiana (Orchidaceae) is a leafless mycoheterotrophic orchid in the subfamily Epidendroideae. We sequenced the complete plastome of D. singchiana. The plastome has a reduced size of 87,931 bp, which includes a pair of inverted repeat (IR) regions of 13,762 bp each [...] Read more.
Danxiaorchis singchiana (Orchidaceae) is a leafless mycoheterotrophic orchid in the subfamily Epidendroideae. We sequenced the complete plastome of D. singchiana. The plastome has a reduced size of 87,931 bp, which includes a pair of inverted repeat (IR) regions of 13,762 bp each that are separated by a large single copy (LSC) region of 42,575 bp and a small single copy (SSC) region of 17,831 bp. When compared to its sister taxa, Cremastra appendiculata and Corallorhiza striata var. involuta, D. singchiana showed an inverted gene block in the LSC and SSC regions. A total of 61 genes were predicted, including 21 tRNA, 4 rRNA, and 36 protein-coding genes. While most of the housekeeping genes were still intact and seem to be protein-coding, only four photosynthesis-related genes appeared presumably intact. The majority of the presumably intact protein-coding genes seem to have undergone purifying selection (dN/dS < 1), and only the psaC gene was positively selected (dN/dS > 1) when compared to that in Cr. appendiculata. Phylogenetic analysis of 26 complete plastome sequences from 24 species of the tribe Epidendreae had revealed that D. singchiana diverged after Cr. appendiculata and is sister to the genus Corallorhiza with strong bootstrap support (100%). Full article
Show Figures

Figure 1

Back to TopTop