Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = muti-source satellite radiance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 13665 KiB  
Article
Impacts of Multi-Source Microwave Satellite Radiance Data Assimilation on the Forecast of Typhoon Ampil
by Aiqing Shu, Dongmei Xu, Shiyu Zhang, Feifei Shen, Xuewei Zhang and Lixin Song
Atmosphere 2022, 13(9), 1427; https://doi.org/10.3390/atmos13091427 - 2 Sep 2022
Cited by 5 | Viewed by 2466
Abstract
This study investigates the impacts of the joint assimilation of microware temperature sensor, Advanced Microwave Sounding Unit-A (AMSUA), and microware humidity sensors, Microwave Humidity Sounder (MHS) and Microwave Humidity Sounder-2 (MWHS2), on the analyses and forecasts for the tropical cyclone (TC) system. Experiments [...] Read more.
This study investigates the impacts of the joint assimilation of microware temperature sensor, Advanced Microwave Sounding Unit-A (AMSUA), and microware humidity sensors, Microwave Humidity Sounder (MHS) and Microwave Humidity Sounder-2 (MWHS2), on the analyses and forecasts for the tropical cyclone (TC) system. Experiments are conducted using a three-dimensional variation (3DVAR) algorithm in the framework of the weather research and forecasting data assimilation (WRFDA) system for the forecasting of Typhoon Ampil (2018). The results show that the assimilation of MWHS2 radiance data improves the analyses better in terms of TC’s structure and moisture conditions than those of the MHS experiment. To some extent, the experiment with only AMSUA radiance delivers some positive impacts of the precipitation, track, and intensity forecast than the other two experiments do. In addition, the skill of the precipitation forecast is notably enhanced with higher equitable threat score (ETS) by the simultaneous assimilation of the MHS, MWHS2, and AMSUA radiance. Generally, assimilation of radiance from all sources of MHS, MWHS2, and AMSUA could combine the advantages of assimilating each type of sensors rather than individually. The consistent improvement is also confirmed for the TC’s track forecast with reduced error on average, whereas the improvement of intensity forecast is not obvious. Full article
Show Figures

Figure 1

Back to TopTop