Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = mutant huntingtin (mHTT)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2757 KiB  
Review
Antioxidant and Anti-Inflammatory Defenses in Huntington’s Disease: Roles of NRF2 and PGC-1α, and Therapeutic Strategies
by Francesco D’Egidio, Elvira Qosja, Fabrizio Ammannito, Skender Topi, Michele d’Angelo, Annamaria Cimini and Vanessa Castelli
Life 2025, 15(4), 577; https://doi.org/10.3390/life15040577 - 1 Apr 2025
Cited by 2 | Viewed by 1194
Abstract
Huntington’s disease (HD) is a detrimental neurodegenerative disease caused by the expansion of a CAG triplet in the HTT gene. This mutation leads to the production of mutant Huntingtin (Htt) protein with toxic gain-of-function. The mHtt is responsible in several ways for the [...] Read more.
Huntington’s disease (HD) is a detrimental neurodegenerative disease caused by the expansion of a CAG triplet in the HTT gene. This mutation leads to the production of mutant Huntingtin (Htt) protein with toxic gain-of-function. The mHtt is responsible in several ways for the establishment of an intricate pathogenetic scenario in affected cells, particularly in HD neurons. Among the features of HD, oxidative stress plays a relevant role in the progression of the disease at the cellular level. Mitochondrial dysfunction, bioenergetic deficits, Reactive Oxygen Species (ROS) production, neuroinflammation, and general reduction of antioxidant levels are all involved in the promotion of a toxic oxidative environment, eventually causing cell death. Nonetheless, neuronal cells exert antioxidant molecules to build up defense mechanisms. Key components of these defensive mechanisms are the nuclear factor erythroid 2-related factor 2 (NRF2) and peroxisome proliferator-activated receptor gamma coactivator-1 α (PGC-1α). Thus, this review aims to describe the involvement of oxidative stress in HD by exploring the roles of NRF2 and PGC-1α, crucial actors in this play. Finally, antioxidant therapeutic strategies targeting such markers are discussed. Full article
(This article belongs to the Special Issue Neuroinflammation in Huntington’s Disease: Detrimental Crosstalk)
Show Figures

Figure 1

20 pages, 2502 KiB  
Review
The Search for a Universal Treatment for Defined and Mixed Pathology Neurodegenerative Diseases
by Danton H. O’Day
Int. J. Mol. Sci. 2024, 25(24), 13424; https://doi.org/10.3390/ijms252413424 - 14 Dec 2024
Cited by 1 | Viewed by 1531
Abstract
The predominant neurodegenerative diseases, Alzheimer’s disease, Parkinson’s disease, dementia with Lewy Bodies, Huntington’s disease, amyotrophic lateral sclerosis, and frontotemporal dementia, are rarely pure diseases but, instead, show a diversity of mixed pathologies. At some level, all of them share a combination of one [...] Read more.
The predominant neurodegenerative diseases, Alzheimer’s disease, Parkinson’s disease, dementia with Lewy Bodies, Huntington’s disease, amyotrophic lateral sclerosis, and frontotemporal dementia, are rarely pure diseases but, instead, show a diversity of mixed pathologies. At some level, all of them share a combination of one or more different toxic biomarker proteins: amyloid beta (Aβ), phosphorylated Tau (pTau), alpha-synuclein (αSyn), mutant huntingtin (mHtt), fused in sarcoma, superoxide dismutase 1, and TAR DNA-binding protein 43. These toxic proteins share some common attributes, making them potentially universal and simultaneous targets for therapeutic intervention. First, they all form toxic aggregates prior to taking on their final forms as contributors to plaques, neurofibrillary tangles, Lewy bodies, and other protein deposits. Second, the primary enzyme that directs their aggregation is transglutaminase 2 (TGM2), a brain-localized enzyme involved in neurodegeneration. Third, TGM2 binds to calmodulin, a regulatory event that can increase the activity of this enzyme threefold. Fourth, the most common mixed pathology toxic biomarkers (Aβ, pTau, αSyn, nHtt) also bind calmodulin, which can affect their ability to aggregate. This review examines the potential therapeutic routes opened up by this knowledge. The end goal reveals multiple opportunities that are immediately available for universal therapeutic treatment of the most devastating neurodegenerative diseases facing humankind. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

21 pages, 4816 KiB  
Article
Roscovitine, a CDK Inhibitor, Reduced Neuronal Toxicity of mHTT by Targeting HTT Phosphorylation at S1181 and S1201 In Vitro
by Hongshuai Liu, Ainsley McCollum, Asvini Krishnaprakash, Yuxiao Ouyang, Tianze Shi, Tamara Ratovitski, Mali Jiang, Wenzhen Duan, Christopher A. Ross and Jing Jin
Int. J. Mol. Sci. 2024, 25(22), 12315; https://doi.org/10.3390/ijms252212315 - 16 Nov 2024
Cited by 2 | Viewed by 1692
Abstract
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disease caused by a single mutation in the huntingtin gene (HTT). Normal HTT has a CAG trinucleotide repeat at its N-terminal within the range of 36. However, once the CAG repeats exceed 37, the mutant [...] Read more.
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disease caused by a single mutation in the huntingtin gene (HTT). Normal HTT has a CAG trinucleotide repeat at its N-terminal within the range of 36. However, once the CAG repeats exceed 37, the mutant gene (mHTT) will encode mutant HTT protein (mHTT), which results in neurodegeneration in the brain, specifically in the striatum and other brain regions. Since the mutation was discovered, there have been many research efforts to understand the mechanism and develop therapeutic strategies to treat HD. HTT is a large protein with many post-translational modification sites (PTMs) and can be modified by phosphorylation, acetylation, methylation, sumoylation, etc. Some modifications reduced mHTT toxicity both in cell and animal models of HD. We aimed to find the known kinase inhibitors that can modulate the toxicity of mHTT. We performed an in vitro kinase assay using HTT peptides, which bear different PTM sites identified by us previously. A total of 368 kinases were screened. Among those kinases, cyclin-dependent kinases (CDKs) affected the serine phosphorylation on the peptides that contain S1181 and S1201 of HTT. We explored the effect of CDK1 and CDK5 on the phosphorylation of these PTMs of HTT and found that CDK5 modified these two serine sites, while CDK5 knockdown reduced the phosphorylation of S1181 and S1201. Modifying these two serine sites altered the neuronal toxicity induced by mHTT. Roscovitine, a CDK inhibitor, reduced the p-S1181 and p-S1201 and had a protective effect against mHTT toxicity. We further investigated the feasibility of the use of roscovitine in HD mice. We confirmed that roscovitine penetrated the mouse brain by IP injection and inhibited CDK5 activity in the brains of HD mice. It is promising to move this study to in vivo for pre-clinical HD treatment. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Graphical abstract

14 pages, 710 KiB  
Review
Regulation of HTT mRNA Biogenesis: The Norm and Pathology
by Alexandra E. Zubkova and Dmitry V. Yudkin
Int. J. Mol. Sci. 2024, 25(21), 11493; https://doi.org/10.3390/ijms252111493 - 26 Oct 2024
Cited by 3 | Viewed by 2142
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder caused by the expansion of the CAG repeat in exon 1 of the HTT gene, leading to the formation of a toxic variant of the huntingtin protein. It is a rare but severe hereditary disease for [...] Read more.
Huntington’s disease (HD) is a neurodegenerative disorder caused by the expansion of the CAG repeat in exon 1 of the HTT gene, leading to the formation of a toxic variant of the huntingtin protein. It is a rare but severe hereditary disease for which no effective treatment method has been found yet. The primary therapeutic targets include the mutant protein and the mutant mRNA of HTT. Current clinical trial approaches in gene therapy involve the application of splice modulation, siRNA, or antisense oligonucleotides for RNA-targeted knockdown of HTT. However, these approaches do not take into account the diversity of HTT transcript isoforms in the normal conditions and in HD. In this review, we discuss the features of transcriptional regulation and processing that lead to the formation of various HTT mRNA variants, each of which may uniquely contribute to the progression of the disease. Furthermore, understanding the role of known transcription factors of HTT in pathology may aid in the development of potentially new therapeutic tools based on endogenous regulators. Full article
(This article belongs to the Special Issue Molecular Mechanisms of mRNA Transcriptional Regulation: 2nd Edition)
Show Figures

Figure 1

14 pages, 2588 KiB  
Article
UBL3 Interacts with PolyQ-Expanded Huntingtin Fragments and Modifies Their Intracellular Sorting
by Soho Oyama, Hengsen Zhang, Rafia Ferdous, Yuna Tomochika, Bin Chen, Shuyun Jiang, Md. Shoriful Islam, Md. Mahmudul Hasan, Qing Zhai, A. S. M. Waliullah, Yashuang Ping, Jing Yan, Mst. Afsana Mimi, Chi Zhang, Shuhei Aramaki, Yusuke Takanashi, Tomoaki Kahyo, Yoshio Hashizume, Daita Kaneda and Mitsutoshi Setou
Neurol. Int. 2024, 16(6), 1175-1188; https://doi.org/10.3390/neurolint16060089 - 22 Oct 2024
Cited by 1 | Viewed by 1927
Abstract
Background/Objectives: UBL3 (Ubiquitin-like 3) is a protein that plays a crucial role in post-translational modifications, particularly in regulating protein transport within small extracellular vesicles. While previous research has predominantly focused on its interactions with α-synuclein, this study investigates UBL3’s role in Huntington’s disease [...] Read more.
Background/Objectives: UBL3 (Ubiquitin-like 3) is a protein that plays a crucial role in post-translational modifications, particularly in regulating protein transport within small extracellular vesicles. While previous research has predominantly focused on its interactions with α-synuclein, this study investigates UBL3’s role in Huntington’s disease (HD). HD is characterized by movement disorders and cognitive impairments, with its pathogenesis linked to toxic, polyglutamine (polyQ)-expanded mutant huntingtin fragments (mHTT). However, the mechanisms underlying the interaction between UBL3 and mHTT remain poorly understood. Methods: To elucidate this relationship, we performed hematoxylin and eosin (HE) staining and immunohistochemistry (IHC) on postmortem brain tissue from HD patients. Gaussia princeps-based split-luciferase complementation assay and co-immunoprecipitation were employed to confirm the interaction between UBL3 and mHTT. Additionally, we conducted a HiBiT lytic detection assay to assess the influence of UBL3 on the intracellular sorting of mHTT. Finally, immunocytochemical staining was utilized to validate the colocalization and distribution of these proteins. Results: Our findings revealed UBL3-positive inclusions in the cytoplasm and nuclei of neurons throughout the striatum of HD patients. We discovered that UBL3 colocalizes and interacts with mHTT and modulates its intracellular sorting. Conclusions: These results suggest that UBL3 may play a significant role in the interaction and sorting of mHTT, contributing to the understanding of its potential implications in the pathophysiology of Huntington’s disease. Full article
(This article belongs to the Special Issue New Insights into Genetic Neurological Diseases)
Show Figures

Figure 1

16 pages, 5952 KiB  
Article
Gastrodin Improves the Activity of the Ubiquitin–Proteasome System and the Autophagy–Lysosome Pathway to Degrade Mutant Huntingtin
by He Sun, Miao Li, Yunling Li, Na Zheng, Jiaxin Li, Xiang Li, Yingying Liu, Qianyun Ji, Liping Zhou, Jingwen Su, Wanxu Huang, Zhongbo Liu, Peng Liu and Libo Zou
Int. J. Mol. Sci. 2024, 25(14), 7709; https://doi.org/10.3390/ijms25147709 - 14 Jul 2024
Cited by 4 | Viewed by 2404
Abstract
Gastrodin (GAS) is the main chemical component of the traditional Chinese herb Gastrodia elata (called “Tianma” in Chinese), which has been used to treat neurological conditions, including headaches, epilepsy, stroke, and memory loss. To our knowledge, it is unclear whether GAS has a [...] Read more.
Gastrodin (GAS) is the main chemical component of the traditional Chinese herb Gastrodia elata (called “Tianma” in Chinese), which has been used to treat neurological conditions, including headaches, epilepsy, stroke, and memory loss. To our knowledge, it is unclear whether GAS has a therapeutic effect on Huntington’s disease (HD). In the present study, we evaluated the effect of GAS on the degradation of mutant huntingtin protein (mHtt) by using PC12 cells transfected with N-terminal mHtt Q74. We found that 0.1–100 μM GAS had no effect on the survival rate of Q23 and Q74 PC12 cells after 24–48 h of incubation. The ubiquitin–proteasome system (UPS) is the main system that clears misfolded proteins in eukaryotic cells. Mutated Htt significantly upregulated total ubiquitinated protein (Ub) expression, decreased chymotrypsin-like, trypsin-like and caspase-like peptidase activity, and reduced the colocalization of the 20S proteasome with mHtt. GAS (25 μM) attenuated all of the abovementioned pathological changes, and the regulatory effect of GAS on mHtt was found to be abolished by MG132, a proteasome inhibitor. The autophagy–lysosome pathway (ALP) is another system for misfolded protein degradation. Although GAS downregulated the expression of autophagy markers (LC3II and P62), it increased the colocalization of LC3II with lysosomal associated membrane protein 1 (LAMP1), which indicates that ALP was activated. Moreover, GAS prevented mHtt-induced neuronal damage in PC12 cells. GAS has a selective effect on mHtt in Q74 PC12 cells and has no effect on Q23 and proteins encoded by other genes containing long CAGs, such as Rbm33 (10 CAG repeats) and Hcn1 (>30 CAG repeats). Furthermore, oral administration of 100 mg/kg GAS increased grip strength and attenuated mHtt aggregates in B6-hHTT130-N transgenic mice. This is a high dose (100 mg/kg GAS) when compared with experiments on HD mice with other small molecules. We will design more doses to evaluate the dose–response relationship of the inhibition effect of GAS on mHtt in our next study. In summary, GAS can promote the degradation of mHtt by activating the UPS and ALP, making it a potential therapeutic agent for HD. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Treatments in Neurodegenerative Diseases)
Show Figures

Figure 1

12 pages, 1893 KiB  
Review
Role of TFEB in Huntington’s Disease
by Javier Ojalvo-Pacheco, Sokhna M. S. Yakhine-Diop, José M. Fuentes, Marta Paredes-Barquero and Mireia Niso-Santano
Biology 2024, 13(4), 238; https://doi.org/10.3390/biology13040238 - 4 Apr 2024
Cited by 1 | Viewed by 3322
Abstract
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disease caused by an expansion of the CAG trinucleotide repeat in exon 1 of the huntingtin (HTT) gene. This expansion leads to a polyglutamine (polyQ) tract at the N-terminal end of HTT, which reduces the [...] Read more.
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disease caused by an expansion of the CAG trinucleotide repeat in exon 1 of the huntingtin (HTT) gene. This expansion leads to a polyglutamine (polyQ) tract at the N-terminal end of HTT, which reduces the solubility of the protein and promotes its accumulation. Inefficient clearance of mutant HTT (mHTT) by the proteasome or autophagy–lysosomal system leads to accumulation of oligomers and toxic protein aggregates in neurons, resulting in impaired proteolytic systems, transcriptional dysregulation, impaired axonal transport, mitochondrial dysfunction and cellular energy imbalance. Growing evidence suggests that the accumulation of mHTT aggregates and autophagic and/or lysosomal dysfunction are the major pathogenic mechanisms underlying HD. In this context, enhancing autophagy may be an effective therapeutic strategy to remove protein aggregates and improve cell function. Transcription factor EB (TFEB), a master transcriptional regulator of autophagy, controls the expression of genes critical for autophagosome formation, lysosomal biogenesis, lysosomal function and autophagic flux. Consequently, the induction of TFEB activity to promote intracellular clearance may be a therapeutic strategy for HD. However, while some studies have shown that overexpression of TFEB facilitates the clearance of mHTT aggregates and ameliorates the disease phenotype, others indicate such overexpression may lead to mHTT co-aggregation and worsen disease progression. Further studies are necessary to confirm whether TFEB modulation could be an effective therapeutic strategy against mHTT-mediated toxicity in different disease models. Full article
(This article belongs to the Special Issue Lysosomes and Diseases Associated with Its Dysfunction)
Show Figures

Figure 1

34 pages, 508 KiB  
Review
Huntington’s Disease: Complex Pathogenesis and Therapeutic Strategies
by Huichun Tong, Tianqi Yang, Shuying Xu, Xinhui Li, Li Liu, Gongke Zhou, Sitong Yang, Shurui Yin, Xiao-Jiang Li and Shihua Li
Int. J. Mol. Sci. 2024, 25(7), 3845; https://doi.org/10.3390/ijms25073845 - 29 Mar 2024
Cited by 31 | Viewed by 7208
Abstract
Huntington’s disease (HD) arises from the abnormal expansion of CAG repeats in the huntingtin gene (HTT), resulting in the production of the mutant huntingtin protein (mHTT) with a polyglutamine stretch in its N-terminus. The pathogenic mechanisms underlying HD are complex and [...] Read more.
Huntington’s disease (HD) arises from the abnormal expansion of CAG repeats in the huntingtin gene (HTT), resulting in the production of the mutant huntingtin protein (mHTT) with a polyglutamine stretch in its N-terminus. The pathogenic mechanisms underlying HD are complex and not yet fully elucidated. However, mHTT forms aggregates and accumulates abnormally in neuronal nuclei and processes, leading to disruptions in multiple cellular functions. Although there is currently no effective curative treatment for HD, significant progress has been made in developing various therapeutic strategies to treat HD. In addition to drugs targeting the neuronal toxicity of mHTT, gene therapy approaches that aim to reduce the expression of the mutant HTT gene hold great promise for effective HD therapy. This review provides an overview of current HD treatments, discusses different therapeutic strategies, and aims to facilitate future therapeutic advancements in the field. Full article
23 pages, 1687 KiB  
Review
Pathogenetic Contributions and Therapeutic Implications of Transglutaminase 2 in Neurodegenerative Diseases
by Jun Liu and M. Maral Mouradian
Int. J. Mol. Sci. 2024, 25(4), 2364; https://doi.org/10.3390/ijms25042364 - 17 Feb 2024
Cited by 6 | Viewed by 2845
Abstract
Neurodegenerative diseases encompass a heterogeneous group of disorders that afflict millions of people worldwide. Characteristic protein aggregates are histopathological hallmark features of these disorders, including Amyloid β (Aβ)-containing plaques and tau-containing neurofibrillary tangles in Alzheimer’s disease, α-Synuclein (α-Syn)-containing Lewy bodies and Lewy neurites [...] Read more.
Neurodegenerative diseases encompass a heterogeneous group of disorders that afflict millions of people worldwide. Characteristic protein aggregates are histopathological hallmark features of these disorders, including Amyloid β (Aβ)-containing plaques and tau-containing neurofibrillary tangles in Alzheimer’s disease, α-Synuclein (α-Syn)-containing Lewy bodies and Lewy neurites in Parkinson’s disease and dementia with Lewy bodies, and mutant huntingtin (mHTT) in nuclear inclusions in Huntington’s disease. These various aggregates are found in specific brain regions that are impacted by neurodegeneration and associated with clinical manifestations. Transglutaminase (TG2) (also known as tissue transglutaminase) is the most ubiquitously expressed member of the transglutaminase family with protein crosslinking activity. To date, Aβ, tau, α-Syn, and mHTT have been determined to be substrates of TG2, leading to their aggregation and implicating the involvement of TG2 in several pathophysiological events in neurodegenerative disorders. In this review, we summarize the biochemistry and physiologic functions of TG2 and describe recent advances in the pathogenetic role of TG2 in these diseases. We also review TG2 inhibitors tested in clinical trials and discuss recent TG2-targeting approaches, which offer new perspectives for the design of future highly potent and selective drugs with improved brain delivery as a disease-modifying treatment for neurodegenerative disorders. Full article
(This article belongs to the Special Issue Transglutaminase 2 and Cellular Functions)
Show Figures

Figure 1

23 pages, 1237 KiB  
Review
Rodent Models of Huntington’s Disease: An Overview
by Giulio Nittari, Proshanta Roy, Ilenia Martinelli, Vincenzo Bellitto, Daniele Tomassoni, Enea Traini, Seyed Khosrow Tayebati and Francesco Amenta
Biomedicines 2023, 11(12), 3331; https://doi.org/10.3390/biomedicines11123331 - 16 Dec 2023
Cited by 11 | Viewed by 4404
Abstract
Huntington’s disease (HD) is an autosomal-dominant inherited neurological disorder caused by a genetic mutation in the IT15 gene. This neurodegenerative disorder is caused by a polyglutamine repeat expansion mutation in the widely expressed huntingtin (HTT) protein. HD is characterized by the degeneration of [...] Read more.
Huntington’s disease (HD) is an autosomal-dominant inherited neurological disorder caused by a genetic mutation in the IT15 gene. This neurodegenerative disorder is caused by a polyglutamine repeat expansion mutation in the widely expressed huntingtin (HTT) protein. HD is characterized by the degeneration of basal ganglia neurons and progressive cell death in intrinsic neurons of the striatum, accompanied by dementia and involuntary abnormal choreiform movements. Animal models have been extensively studied and have proven to be extremely valuable for therapeutic target evaluations. They reveal the hallmark of the age-dependent formation of aggregates or inclusions consisting of misfolded proteins. Animal models of HD have provided a therapeutic strategy to treat HD by suppressing mutant HTT (mHTT). Transgenic animal models have significantly increased our understanding of the molecular processes and pathophysiological mechanisms underlying the HD behavioral phenotype. Since effective therapies to cure or interrupt the course of the disease are not yet available, clinical research will have to make use of reliable animal models. This paper reviews the main studies of rodents as HD animal models, highlighting the neurological and behavioral differences between them. The choice of an animal model depends on the specific aspect of the disease to be investigated. Toxin-based models can still be useful, but most experimental hypotheses depend on success in a genetic model, whose choice is determined by the experimental question. There are many animal models showing similar HD symptoms or pathologies. They include chemical-induced HDs and genetic HDs, where cell-free and cell culture, lower organisms (such as yeast, Drosophila, C. elegans, zebrafish), rodents (mice, rats), and non-human primates are involved. These models provide accessible systems to study molecular pathogenesis and test potential treatments. For developing more effective pharmacological treatments, better animal models must be available and used to evaluate the efficacy of drugs. Full article
Show Figures

Figure 1

12 pages, 1829 KiB  
Article
Small Molecule Pytren-4QMn Metal Complex Slows down Huntington’s Disease Progression in Male zQ175 Transgenic Mice
by Marián Merino, Sonia González, Mª Carmen Tronch, Ana Virginia Sánchez-Sánchez, Mª Paz Clares, Antonio García-España, Enrique García-España and José L. Mullor
Int. J. Mol. Sci. 2023, 24(20), 15153; https://doi.org/10.3390/ijms242015153 - 13 Oct 2023
Cited by 3 | Viewed by 1468
Abstract
Huntington’s disease (HD) is an inherited neurodegenerative disorder considered a rare disease with a prevalence of 5.7 per 100,000 people. It is caused by an autosomal dominant mutation consisting of expansions of trinucleotide repeats that translate into poly-glutamine enlarged mutant huntingtin proteins (mHTT), [...] Read more.
Huntington’s disease (HD) is an inherited neurodegenerative disorder considered a rare disease with a prevalence of 5.7 per 100,000 people. It is caused by an autosomal dominant mutation consisting of expansions of trinucleotide repeats that translate into poly-glutamine enlarged mutant huntingtin proteins (mHTT), which are particularly deleterious in brain tissues. Since there is no cure for this progressive fatal disease, searches for new therapeutic approaches are much needed. The small molecule pytren-4QMn (4QMn), a highly water-soluble mimic of the enzyme superoxide dismutase, has shown in vivo beneficial anti-inflammatory activity in mice and was able to remove mHTT deposits in a C. elegans model of HD. In this study, we assessed 4QMn therapeutic potential in zQ175 neo-deleted knock-in mice, a model of HD that closely mimics the heterozygosity, genetic injury, and progressive nature of the human disease. We provide evidence that 4QMn has good acute and chronic tolerability, and can cross the blood–brain barrier, and in male, but not female, zQ175 mice moderately ameliorate HD-altered gene expression, mHtt aggregation, and HD disease phenotype. Our data highlight the importance of considering sex-specific differences when testing new therapies using animal models and postulate 4QMn as a potential novel type of small water-soluble metal complex that could be worth further investigating for its therapeutic potential in HD, as well as in other polyglutamine diseases. Full article
(This article belongs to the Special Issue Molecular Research on Rare Cancers and Metabolic Diseases)
Show Figures

Figure 1

21 pages, 4021 KiB  
Article
Dysregulated miRNA and mRNA Expression Affect Overlapping Pathways in a Huntington’s Disease Model
by Nóra Zsindely, Gábor Nagy, Fruzsina Siági, Anita Farkas and László Bodai
Int. J. Mol. Sci. 2023, 24(15), 11942; https://doi.org/10.3390/ijms241511942 - 26 Jul 2023
Cited by 7 | Viewed by 2503
Abstract
Huntington’s disease (HD) is a fatal neurodegenerative disorder caused by the expansion of a CAG trinucleotide repeat in the Huntingtin gene. Transcriptional dysregulation is one of the main cellular processes affected by mutant Huntingtin (mHtt). In this study, we investigate the alterations in [...] Read more.
Huntington’s disease (HD) is a fatal neurodegenerative disorder caused by the expansion of a CAG trinucleotide repeat in the Huntingtin gene. Transcriptional dysregulation is one of the main cellular processes affected by mutant Huntingtin (mHtt). In this study, we investigate the alterations in miRNA and mRNA expression levels in a Drosophila model of HD by RNA sequencing and assess the functional effects of misregulated miRNAs in vivo. We found that in head samples of HD flies, the level of 32 miRNAs changed significantly; half of these were upregulated, while the other half were downregulated. After comparing miRNA and mRNA expression data, we discovered similarities in the impacted molecular pathways. Additionally, we observed that the putative targets of almost all dysregulated miRNAs were overrepresented among the upregulated mRNAs. We tested the effects of overexpression of five misregulated miRNAs in the HD model and found that while mir-10 and mir-219 enhanced, mir-137, mir-305, and mir-1010 ameliorated mHtt-induced phenotypes. Based on our results, we propose that while altered expression of mir-10, mir-137, and mir-1010 might be part of HD pathology, the upregulation of mir-305 might serve as a compensatory mechanism as a response to mHtt-induced transcriptional dysregulation. Full article
(This article belongs to the Special Issue Epigenetic Regulation in Neurodegeneration Disease 2.0)
Show Figures

Figure 1

20 pages, 5019 KiB  
Article
Defective Mitochondrial Dynamics and Protein Degradation Pathways Underlie Cadmium-Induced Neurotoxicity and Cell Death in Huntington’s Disease Striatal Cells
by Paul J. Kamitsuka, Marwan M. Ghanem, Rania Ziar, Sarah E. McDonald, Morgan G. Thomas and Gunnar F. Kwakye
Int. J. Mol. Sci. 2023, 24(8), 7178; https://doi.org/10.3390/ijms24087178 - 13 Apr 2023
Cited by 8 | Viewed by 3113
Abstract
Exposure to heavy metals, including cadmium (Cd), can induce neurotoxicity and cell death. Cd is abundant in the environment and accumulates in the striatum, the primary brain region selectively affected by Huntington’s disease (HD). We have previously reported that mutant huntingtin protein (mHTT) [...] Read more.
Exposure to heavy metals, including cadmium (Cd), can induce neurotoxicity and cell death. Cd is abundant in the environment and accumulates in the striatum, the primary brain region selectively affected by Huntington’s disease (HD). We have previously reported that mutant huntingtin protein (mHTT) combined with chronic Cd exposure induces oxidative stress and promotes metal dyshomeostasis, resulting in cell death in a striatal cell model of HD. To understand the effect of acute Cd exposure on mitochondrial health and protein degradation pathways, we hypothesized that expression of mHTT coupled with acute Cd exposure would cooperatively alter mitochondrial bioenergetics and protein degradation mechanisms in striatal STHdh cells to reveal novel pathways that augment Cd cytotoxicity and HD pathogenicity. We report that mHTT cells are significantly more susceptible to acute Cd-induced cell death as early as 6 h after 40 µM CdCl2 exposure compared with wild-type (WT). Confocal microscopy, biochemical assays, and immunoblotting analysis revealed that mHTT and acute Cd exposure synergistically impair mitochondrial bioenergetics by reducing mitochondrial potential and cellular ATP levels and down-regulating the essential pro-fusion proteins MFN1 and MFN2. These pathogenic effects triggered cell death. Furthermore, Cd exposure increases the expression of autophagic markers, such as p62, LC3, and ATG5, and reduces the activity of the ubiquitin–proteasome system to promote neurodegeneration in HD striatal cells. Overall, these results reveal a novel mechanism to further establish Cd as a pathogenic neuromodulator in striatal HD cells via Cd-triggered neurotoxicity and cell death mediated by an impairment in mitochondrial bioenergetics and autophagy with subsequent alteration in protein degradation pathways. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

12 pages, 2850 KiB  
Review
Peripheral Biomarkers in Manifest and Premanifest Huntington’s Disease
by Emanuele Morena, Carmela Romano, Martina Marconi, Selene Diamant, Maria Chiara Buscarinu, Gianmarco Bellucci, Silvia Romano, Daniela Scarabino, Marco Salvetti and Giovanni Ristori
Int. J. Mol. Sci. 2023, 24(7), 6051; https://doi.org/10.3390/ijms24076051 - 23 Mar 2023
Cited by 15 | Viewed by 4179
Abstract
Huntington’s disease (HD) is characterized by clinical motor impairment (e.g., involuntary movements, poor coordination, parkinsonism), cognitive deficits, and psychiatric symptoms. An inhered expansion of the CAG triplet in the huntingtin gene causing a pathogenic gain-of-function of the mutant huntingtin (mHTT) protein [...] Read more.
Huntington’s disease (HD) is characterized by clinical motor impairment (e.g., involuntary movements, poor coordination, parkinsonism), cognitive deficits, and psychiatric symptoms. An inhered expansion of the CAG triplet in the huntingtin gene causing a pathogenic gain-of-function of the mutant huntingtin (mHTT) protein has been identified. In this review, we focus on known biomarkers (e.g., mHTT, neurofilament light chains) and on new biofluid biomarkers that can be quantified in plasma or peripheral blood mononuclear cells from mHTT carriers. Circulating biomarkers may fill current unmet needs in HD management: better stratification of patients amenable to etiologic treatment; the initiation of preventive treatment in premanifest HD; and the identification of peripheral pathogenic central nervous system cascades. Full article
Show Figures

Figure 1

20 pages, 363 KiB  
Review
What the Gut Tells the Brain—Is There a Link between Microbiota and Huntington’s Disease?
by Dorota Wronka, Anna Karlik, Julia O. Misiorek and Lukasz Przybyl
Int. J. Mol. Sci. 2023, 24(5), 4477; https://doi.org/10.3390/ijms24054477 - 24 Feb 2023
Cited by 20 | Viewed by 5031
Abstract
The human intestinal microbiota is a diverse and dynamic microenvironment that forms a complex, bi-directional relationship with the host. The microbiome takes part in the digestion of food and the generation of crucial nutrients such as short chain fatty acids (SCFA), but is [...] Read more.
The human intestinal microbiota is a diverse and dynamic microenvironment that forms a complex, bi-directional relationship with the host. The microbiome takes part in the digestion of food and the generation of crucial nutrients such as short chain fatty acids (SCFA), but is also impacts the host’s metabolism, immune system, and even brain functions. Due to its indispensable role, microbiota has been implicated in both the maintenance of health and the pathogenesis of many diseases. Dysbiosis in the gut microbiota has already been implicated in many neurodegenerative diseases such as Parkinson’s disease (PD) and Alzheimer’s disease (AD). However, not much is known about the microbiome composition and its interactions in Huntington’s disease (HD). This dominantly heritable, incurable neurodegenerative disease is caused by the expansion of CAG trinucleotide repeats in the huntingtin gene (HTT). As a result, toxic RNA and mutant protein (mHTT), rich in polyglutamine (polyQ), accumulate particularly in the brain, leading to its impaired functions. Interestingly, recent studies indicated that mHTT is also widely expressed in the intestines and could possibly interact with the microbiota, affecting the progression of HD. Several studies have aimed so far to screen the microbiota composition in mouse models of HD and find out whether observed microbiome dysbiosis could affect the functions of the HD brain. This review summarizes ongoing research in the HD field and highlights the essential role of the intestine-brain axis in HD pathogenesis and progression. The review also puts a strong emphasis on indicating microbiome composition as a future target in the urgently needed therapy for this still incurable disease. Full article
(This article belongs to the Special Issue Molecular Research in Human Microbiome)
Show Figures

Graphical abstract

Back to TopTop