Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = muon–matter interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2471 KiB  
Article
Interactions of Low-Energy Muons with Silicon: Numerical Simulation of Negative Muon Capture and Prospects for Soft Errors
by Jean-Luc Autran and Daniela Munteanu
J. Nucl. Eng. 2024, 5(1), 91-110; https://doi.org/10.3390/jne5010007 - 5 Mar 2024
Cited by 1 | Viewed by 2244
Abstract
In this paper, the interactions of low-energy muons (E < 10 MeV) with natural silicon, the basic material of microelectronics, are studied by Geant4 and SRIM simulation. The study is circumscribed to muons susceptible to slowdown/stop in the target and able to transfer [...] Read more.
In this paper, the interactions of low-energy muons (E < 10 MeV) with natural silicon, the basic material of microelectronics, are studied by Geant4 and SRIM simulation. The study is circumscribed to muons susceptible to slowdown/stop in the target and able to transfer sufficient energy to the semiconductor to create single events in silicon devices or related circuits. The capture of negative muons by silicon atoms is of particular interest, as the resulting nucleus evaporation and its effects can be catastrophic in terms of the emission of secondary ionizing particles ranging from protons to aluminum ions. We investigate in detail these different nuclear capture reactions in silicon and quantitatively evaluate their relative importance in terms of number of products, energy, linear energy transfer, and range distributions, as well as in terms of charge creation in silicon. Finally, consequences in the domain of soft errors in microelectronics are discussed. Full article
Show Figures

Graphical abstract

16 pages, 1013 KiB  
Article
Secondary Beams at High-Intensity Electron Accelerator Facilities
by Marco Battaglieri, Andrea Bianconi, Mariangela Bondí, Raffaella De Vita, Antonino Fulci, Giulia Gosta, Stefano Grazzi, Hyon-Suk Jo, Changhui Lee, Giuseppe Mandaglio, Valerio Mascagna, Tetiana Nagorna, Alessandro Pilloni, Marco Spreafico, Luca J. Tagliapietra, Luca Venturelli and Tommaso Vittorini
Instruments 2024, 8(1), 1; https://doi.org/10.3390/instruments8010001 - 4 Jan 2024
Cited by 1 | Viewed by 2433
Abstract
The interaction of a high-current O(100 µA), medium energy O(10 GeV) electron beam with a thick target O(1m) produces an overwhelming shower of standard model particles in addition to hypothetical light dark matter particles. While most of the radiation (gamma, [...] Read more.
The interaction of a high-current O(100 µA), medium energy O(10 GeV) electron beam with a thick target O(1m) produces an overwhelming shower of standard model particles in addition to hypothetical light dark matter particles. While most of the radiation (gamma, electron/positron) is contained in the thick target, deep penetrating particles (muons, neutrinos, and light dark matter particles) propagate over a long distance, producing high-intensity secondary beams. Using sophisticated Monte Carlo simulations based on FLUKA and GEANT4, we explored the characteristics of secondary muons and neutrinos and (hypothetical) dark scalar particles produced by the interaction of the Jefferson Lab 11 GeV intense electron beam with the experimental Hall-A beam dump. Considering the possible beam energy upgrade, this study was repeated for a 22 GeV CEBAF beam. Full article
Show Figures

Figure 1

18 pages, 9129 KiB  
Article
Exploring the Interaction of Cosmic Rays with Water by Using an Old-Style Detector and Rossi’s Method
by Marco Arcani, Domenico Liguori and Andrea Grana
Particles 2023, 6(3), 801-818; https://doi.org/10.3390/particles6030051 - 30 Aug 2023
Cited by 1 | Viewed by 3791
Abstract
Cosmic ray air showers are a phenomenon that can be observed on Earth when high-energy particles from outer space collide with the Earth’s atmosphere. These energetic particles in space are called primary cosmic rays and consist mainly of protons (about 89%), along with [...] Read more.
Cosmic ray air showers are a phenomenon that can be observed on Earth when high-energy particles from outer space collide with the Earth’s atmosphere. These energetic particles in space are called primary cosmic rays and consist mainly of protons (about 89%), along with nuclei of helium (10%) and heavier nuclei (1%). Particles resulting from interactions in the atmosphere are called secondary cosmic rays. The composition of air showers in the atmosphere can include several high-energy particles such as mesons, electrons, muons, photons, and others, depending on the energy and type of the primary cosmic ray. Other than air, primary cosmic rays can also produce showers of particles when they interact with any type of matter; for instance, particle showers are also produced within the soil of planets without an atmosphere. In the same way, secondary cosmic particles can start showers of tertiary particles in any substance. In the 1930s, Bruno Rossi conducted an experiment to measure the energy loss of secondary cosmic rays passing through thin metal sheets. Surprisingly, he observed that as the thickness of the metal sheets increased, the number of particles emerging from the metal also increased. However, by adding more metal sheets, the number of particles eventually decreased. This was consistent with the expectation that cosmic rays were interacting with the atoms in the metals and losing energy to produce multiple secondary particles. In this paper, we describe a new–old approach for measuring particle showers in water using a cosmic ray telescope and Rossi’s method. Our instrument consists of four Geiger–Müller tubes (GMT) arranged to detect muons and particle showers. GMT sensors are highly sensitive devices capable of detecting electrons and gamma rays with energies ranging from a few tens of keV up to several tens of MeV. Since Rossi studied the effects caused by cosmic rays as they pass through metals, we wondered if the same process could also happen in water. We present results from a series of experiments conducted with this instrument, demonstrating its ability to detect and measure particle showers produced by the interaction of cosmic rays in water with good confidence. To the best of our knowledge, this experiment has never been conducted before. Our approach offers a low-cost and easy-to-use alternative to more sophisticated cosmic ray detectors, making it accessible to a wider range of researchers and students. Full article
Show Figures

Figure 1

6 pages, 1594 KiB  
Proceeding Paper
LDMX: The Light Dark Matter eXperiment and M3: The Muon Missing Momentum Experiment
by Matthew Solt
Phys. Sci. Forum 2023, 8(1), 17; https://doi.org/10.3390/psf2023008017 - 20 Jul 2023
Viewed by 1449
Abstract
The constituents of dark matter are still unknown, and the viable possibilities span a very large mass range. The scenario where dark matter originates from thermal contact with familiar matter in the early Universe requires the DM mass to lie within approximately an [...] Read more.
The constituents of dark matter are still unknown, and the viable possibilities span a very large mass range. The scenario where dark matter originates from thermal contact with familiar matter in the early Universe requires the DM mass to lie within approximately an MeV to 100 TeV. Considerable experimental attention has been given to exploring weakly interacting massive particles in the upper end of this range (few GeV–TeV), while the MeV to GeV region has been steadily gaining more attention in recent years. If there is an interaction between light DM and ordinary matter, as there must be in the case of a thermal origin, then there is a production mechanism in accelerator-based experiments. The Light Dark Matter eXperiment (LDMX) is a planned electron-beam fixed-target missing-momentum experiment that has unique sensitivity to light DM in the sub-GeV range. Of particular interest to the NuFact muon working group is a proposal for a muon LDMX that uses a muon beam to probe the electron-phobic scenario. This contribution will provide an overview of the theoretical motivation, the main experimental challenges, how they are addressed, and the projected sensitivities in comparison to other experiments. Full article
(This article belongs to the Proceedings of The 23rd International Workshop on Neutrinos from Accelerators)
Show Figures

Figure 1

13 pages, 1645 KiB  
Review
Principles and Perspectives of Radiographic Imaging with Muons
by Luigi Cimmino
J. Imaging 2021, 7(12), 253; https://doi.org/10.3390/jimaging7120253 - 26 Nov 2021
Cited by 7 | Viewed by 5018
Abstract
Radiographic imaging with muons, also called Muography, is based on the measurement of the absorption of muons, generated by the interaction of cosmic rays with the earth’s atmosphere, in matter. Muons are elementary particles with high penetrating power, a characteristic that makes them [...] Read more.
Radiographic imaging with muons, also called Muography, is based on the measurement of the absorption of muons, generated by the interaction of cosmic rays with the earth’s atmosphere, in matter. Muons are elementary particles with high penetrating power, a characteristic that makes them capable of crossing bodies of dimensions of the order of hundreds of meters. The interior of bodies the size of a pyramid or a volcano can be seen directly with the use of this technique, which can rely on highly segmented muon trackers. Since the muon flux is distributed in energy over a wide spectrum that depends on the direction of incidence, the main difference with radiography made with X-rays is in the source. The source of muons is not tunable, neither in energy nor in direction; to improve the signal-to-noise ratio, muography requires large instrumentation, long time data acquisition and high background rejection capacity. Here, we present the principles of the Muography, illustrating how radiographic images can be obtained, starting from the measurement of the attenuation of the muon flux through an object. It will then be discussed how recent technologies regarding artificial intelligence can give an impulse to this methodology in order to improve its results. Full article
(This article belongs to the Special Issue X-ray Digital Radiography and Computed Tomography)
Show Figures

Figure 1

Back to TopTop