Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = multipath acoustic waves

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7078 KiB  
Article
Prediction of Target-Induced Multipath Interference Acoustic Fields in Shallow-Sea Ideal Waveguides and Statistical Characteristics of Waveguide Invariants
by Yuanhang Zhang, Peizhen Zhang and Jincan Li
J. Mar. Sci. Eng. 2025, 13(6), 1100; https://doi.org/10.3390/jmse13061100 - 30 May 2025
Viewed by 287
Abstract
The acoustic scattering of targets in shallow-sea waveguides exhibits complex features such as multipath propagation and intricate echo components, with its acoustic field properties remaining incompletely understood. This study employs a hybrid method combining normal modes and scattering functions to numerically model the [...] Read more.
The acoustic scattering of targets in shallow-sea waveguides exhibits complex features such as multipath propagation and intricate echo components, with its acoustic field properties remaining incompletely understood. This study employs a hybrid method combining normal modes and scattering functions to numerically model the acoustic scattering of targets in waveguide channels. We analyze the coupling mechanisms of multipath acoustic waves and derive precise predictive formulas for the bright–dark interference fringe patterns in range–frequency spectra based on the physical mechanisms governing acoustic field interference. By tracking the peak trajectories of these interference fringes in range–frequency spectra, we investigate the variations of the waveguide invariant with frequency, range, and depth, revealing statistical patterns of the waveguide invariant in target–waveguide coupled scattering fields under different water depths. The results demonstrate that, under constant channel conditions, waveguide properties exhibit a weak correlation with target material characteristics. In shallow water environments, waveguide invariant values display broader distributions with higher probability density peaks, whereas increasing water depth progressively narrows the distribution range and monotonically reduces the peak magnitudes of the probability density function. Experimental validation via scaled elastic target echo testing confirms the observed trends of waveguide invariant variation with water depth. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 2435 KiB  
Article
DC-WUnet: An Underwater Ranging Signal Enhancement Network Optimized with Depthwise Separable Convolution and Conformer
by Xiaosen Liu, Juan Li, Jingyao Zhang, Yajie Bai and Zhaowei Cui
J. Mar. Sci. Eng. 2025, 13(5), 956; https://doi.org/10.3390/jmse13050956 - 14 May 2025
Viewed by 439
Abstract
Marine ship-radiated noise and multipath Doppler effect reduce the positioning accuracy of linear frequency modulation (LFM) signals in ocean waveguide environments. However, the assumption of Gaussian noise underlying most time–frequency domain algorithms limits their effectiveness in mitigating non-Gaussian interference. To address this issue, [...] Read more.
Marine ship-radiated noise and multipath Doppler effect reduce the positioning accuracy of linear frequency modulation (LFM) signals in ocean waveguide environments. However, the assumption of Gaussian noise underlying most time–frequency domain algorithms limits their effectiveness in mitigating non-Gaussian interference. To address this issue, we propose a Deep-separable Conformer Wave-Unet (DC-WUnet)-based underwater acoustic signal enhancement network designed to reconstruct signals from interference and noise. The encoder incorporates the Conformer module and skip connections to enhance the network’s multiscale feature extraction capability. Meanwhile, the network introduces depthwise separable convolution to reduce the number of parameters and improve computational efficiency. The decoder applies a slope-based linear interpolation method for upsampling to avoid introducing high-frequency noise during decoding. Additionally, the loss function employs joint time–frequency domain constraints to prevent signal loss and compression, particularly under low Signal-to-Noise Ratio (SNR) conditions. Experimental evaluations under an SNR of −10 dB indicate that the proposed method achieves at least a 32% improvement in delay estimation accuracy and a 2.3 dB enhancement in output SNR relative to state-of-the-art baseline algorithms. Consistent performance advantages are also observed under varying SNR conditions, thereby validating the effectiveness of the proposed approach in shipborne noisy environments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

30 pages, 17496 KiB  
Article
Frequency-Domain Finite Element Modeling of Seismic Wave Propagation Under Different Boundary Conditions
by Ying Zhang, Haiyang Liu, Shikun Dai and Herui Zhang
Mathematics 2025, 13(4), 578; https://doi.org/10.3390/math13040578 - 10 Feb 2025
Viewed by 838
Abstract
Seismic wave propagation in complex terrains, especially in the presence of air layers, plays a crucial role in accurate subsurface imaging. However, the influence of different boundary conditions on seismic wave propagation characteristics has not been fully explored. This study employs the finite [...] Read more.
Seismic wave propagation in complex terrains, especially in the presence of air layers, plays a crucial role in accurate subsurface imaging. However, the influence of different boundary conditions on seismic wave propagation characteristics has not been fully explored. This study employs the finite element method (FEM) to simulate and analyze seismic wavefields under different boundary conditions, including perfectly matched layer (PML), Neumann free boundary conditions, and air layer conditions. First, the finite element solution for the 2D frequency-domain acoustic wave equation is introduced, and the correctness of the algorithm is validated using a homogeneous model. Then, both horizontal and undulating terrain interfaces are designed to investigate the kinematic and dynamic characteristics of the wavefields under different boundary conditions. The results show that PML boundaries effectively absorb seismic waves, prevent reflections, and ensure stable wave propagation, making them an ideal choice for simulating open boundaries. In contrast, Neumann boundaries generate significant reflected waves, particularly in undulating terrains, complicating the wavefield characteristics. Introducing an air layer alters the dynamics of the wavefield, leading to energy leakage and multi-path effects, which are more consistent with real-world seismic-geophysical models. Finally, the computational results using the Overthrust model under different boundary conditions further demonstrate that different boundary conditions significantly affect wavefield morphology. It is essential to select appropriate boundary conditions based on the specific simulation requirements, and boundary conditions with an air layer are most consistent with real seismic geological models. This study provides new insights into the role of boundary conditions in seismic numerical simulations and offers theoretical guidance for improving the accuracy of wavefield simulations in realistic geological scenarios. Full article
(This article belongs to the Special Issue Analytical Methods in Wave Scattering and Diffraction, 2nd Edition)
Show Figures

Figure 1

17 pages, 6781 KiB  
Communication
An Iterative Orthogonal Frequency Division Multiplexing Receiver with Sequential Inter-Carrier Interference Canceling Modified Delay and Doppler Profiler for an Underwater Multipath Channel
by Suguru Kuniyoshi, Shiho Oshiro, Rie Saotome and Tomohisa Wada
J. Mar. Sci. Eng. 2024, 12(10), 1712; https://doi.org/10.3390/jmse12101712 - 27 Sep 2024
Cited by 2 | Viewed by 1225
Abstract
In 2023, we proposed the modified delay and Doppler profiler (mDDP) as an inter-carrier interference (ICI) countermeasure for underwater acoustic orthogonal frequency division multiplexing (OFDM) mobile communications in a multipath environment. However, the performance improvement in the computer simulation and pool experiments was [...] Read more.
In 2023, we proposed the modified delay and Doppler profiler (mDDP) as an inter-carrier interference (ICI) countermeasure for underwater acoustic orthogonal frequency division multiplexing (OFDM) mobile communications in a multipath environment. However, the performance improvement in the computer simulation and pool experiments was not significant. In a subsequent study, the accuracy of the channel transfer function (CTF), which is the input for the mDDP channel parameter estimation, was considered insufficient. Then a sequential ICI canceling mDDP was devised. This paper presents simulations of underwater OFDM communications using an iterative one- to three-step mDDP. The non-reflective pool experiment conditions are a two-wave multipath environment where the receiving transducer moves at a speed of 0.25 m/s and is subjected to a Doppler shift in the opposite direction. As NumCOL, the number of taps in the multitap equalizer which removes ICI, was increased, the bit error rate (BER) of 0.0526661 at NumCOL = 1 was significantly reduced by a factor of approximately 45 to a BER of 0.0011655 at NumCOL = 51 for the sequential ICI canceling mDDP. Full article
(This article belongs to the Special Issue Underwater Acoustic Communication and Network, 2nd Edition)
Show Figures

Figure 1

15 pages, 4523 KiB  
Article
A Cross-Medium Uplink Communication Model Merging Acoustic and Millimeter Waves
by Yu Gai, Qi Tan, Yating Zhang, Zhengyi Zhao, Yiguang Yang, Yanyan Liu, Ruitao Zhang and Jianquan Yao
J. Mar. Sci. Eng. 2023, 11(11), 2102; https://doi.org/10.3390/jmse11112102 - 2 Nov 2023
Cited by 7 | Viewed by 2034
Abstract
Uplink communication across the water–air interface holds great potential for offshore oil surveys and military applications. Among the various methods available for implementing uplink communication, translational acoustic-RF (TARF) communication stands out due to its ability to withstand wave interference and exhibit low absorption [...] Read more.
Uplink communication across the water–air interface holds great potential for offshore oil surveys and military applications. Among the various methods available for implementing uplink communication, translational acoustic-RF (TARF) communication stands out due to its ability to withstand wave interference and exhibit low absorption losses. However, the physical processes underlying such systems are currently under-researched, and channel models for evaluating its communication performance indicators are lacking. Herein, we propose a signal-to-noise ratio (SNR) channel model for evaluating the performance metrics of an uplink communication system combining acoustic and millimeter waves for the first time and validate the accuracy of the proposed model through experiments. Specifically, in the process of model construction, the physical process of the communication system was deeply studied, and the corrections of multipath effects, box vibrations, and second-order nonlinear coefficients of the amplitude of the water surface were realized. The water-to-air cross-medium communication system was built, and communication experiments were conducted to validate the feasibility of combining acoustic and millimeter wave communication. This research provides a theoretical and experimental foundation for the design and evaluation of TARF communication systems, providing valuable guidance for enhancing the system’s performance metrics and promising an innovative approach for modern seaborne communication. Full article
(This article belongs to the Special Issue Underwater Acoustics and Digital Signal Processing)
Show Figures

Figure 1

18 pages, 3670 KiB  
Article
Detection of the Large Surface Explosion Coupling Experiment by a Sparse Network of Balloon-Borne Infrasound Sensors
by Elizabeth A. Silber, Daniel C. Bowman and Miro Ronac Giannone
Remote Sens. 2023, 15(2), 542; https://doi.org/10.3390/rs15020542 - 16 Jan 2023
Cited by 13 | Viewed by 4093
Abstract
In recent years, high-altitude infrasound sensing has become more prolific, demonstrating an enormous value especially when utilized over regions inaccessible to traditional ground-based sensing. Similar to ground-based infrasound detectors, airborne sensors take advantage of the fact that impulsive atmospheric events such as explosions [...] Read more.
In recent years, high-altitude infrasound sensing has become more prolific, demonstrating an enormous value especially when utilized over regions inaccessible to traditional ground-based sensing. Similar to ground-based infrasound detectors, airborne sensors take advantage of the fact that impulsive atmospheric events such as explosions can generate low frequency acoustic waves, also known as infrasound. Due to negligible attenuation, infrasonic waves can travel over long distances, and provide important clues about their source. Here, we report infrasound detections of the Apollo detonation that was carried on 29 October 2020 as part of the Large Surface Explosion Coupling Experiment in Nevada, USA. Infrasound sensors attached to solar hot air balloons floating in the stratosphere detected the signals generated by the explosion at distances 170–210 km. Three distinct arrival phases seen in the signals are indicative of multipathing caused by the small-scale perturbations in the atmosphere. We also found that the local acoustic environment at these altitudes is more complex than previously thought. Full article
(This article belongs to the Special Issue Infrasound, Acoustic-Gravity Waves, and Atmospheric Dynamics)
Show Figures

Figure 1

22 pages, 14881 KiB  
Article
Layer-Averaged Water Temperature Sensing in a Lake by Acoustic Tomography with a Focus on the Inversion Stratification Mechanism
by Shijie Xu, Zhao Xue, Xinyi Xie, Haocai Huang and Guangming Li
Sensors 2021, 21(22), 7448; https://doi.org/10.3390/s21227448 - 9 Nov 2021
Cited by 8 | Viewed by 2262
Abstract
Continuous sensing of water parameters is of great importance to fluid dynamic progress study in oceans, coastal areas and inland waters. The acoustic tomography technique can perform water temperature field measurements horizontally and vertically using sound wave travel information. The layer-averaged water temperature [...] Read more.
Continuous sensing of water parameters is of great importance to fluid dynamic progress study in oceans, coastal areas and inland waters. The acoustic tomography technique can perform water temperature field measurements horizontally and vertically using sound wave travel information. The layer-averaged water temperature can also be measured with the acoustic tomography method. However, investigations focusing on the stratified mechanism, which consists of stratification form and its influence on inversion error, are seldom performed. In this study, an acoustic tomography experiment was carried out in a reservoir along two vertical slices to observe the layer-averaged water temperature. Specifically, multi-path sound travel information is identified through ray tracing using high-precision topography data obtained via a ship-mounted ADCP during the experiment. Vertical slices between sound stations are divided into different layers to study layer division inversion methods in different preset types. The inversion method is used to calculate the average water temperature and inversion temperature error of every layer. Different layer methods are studied with a comparison of results. The layer division principle studied in this paper can be used for layer-averaged water temperature sensing with multi-path sound transmission information. Full article
(This article belongs to the Special Issue Sensors and Sensor Systems for Hydrodynamics)
Show Figures

Figure 1

20 pages, 14653 KiB  
Article
Continuous Sensing of Water Temperature in a Reservoir with Grid Inversion Method Based on Acoustic Tomography System
by Haocai Huang, Shijie Xu, Xinyi Xie, Yong Guo, Luwen Meng and Guangming Li
Remote Sens. 2021, 13(13), 2633; https://doi.org/10.3390/rs13132633 - 5 Jul 2021
Cited by 16 | Viewed by 3430
Abstract
The continuous sensing of water parameters is of great importance to the study of dynamic processes in the ocean, coastal areas, and inland waters. Conventional fixed-point and ship-based observing systems cannot provide sufficient sampling of rapidly varying processes, especially for small-scale phenomena. Acoustic [...] Read more.
The continuous sensing of water parameters is of great importance to the study of dynamic processes in the ocean, coastal areas, and inland waters. Conventional fixed-point and ship-based observing systems cannot provide sufficient sampling of rapidly varying processes, especially for small-scale phenomena. Acoustic tomography can achieve the sensing of water parameter variations over time by continuously using sound wave propagation information. A multi-station acoustic tomography experiment was carried out in a reservoir with three sound stations for water temperature observation. Specifically, multi-path propagation sound waves were identified with ray tracing using high-precision topography data obtained with ship-mounted ADCP. A new grid inverse method is proposed in this paper for water temperature profiling along a vertical slice. The progression of water temperature variation in three vertical slices between acoustic stations was mapped by solving an inverse problem. The reliability and adaptability of the grid method developed in this research are verified by comparison with layer-averaged water temperature results. The grid method can be further developed for the 3D mapping of water parameters over time, especially in small-scale water areas, where sufficient multi-path propagation sound waves can be obtained. Full article
Show Figures

Figure 1

25 pages, 23065 KiB  
Article
Induced Magnetic Field-Based Indoor Positioning System for Underwater Environments
by Sizhen Bian, Peter Hevesi, Leif Christensen and Paul Lukowicz
Sensors 2021, 21(6), 2218; https://doi.org/10.3390/s21062218 - 22 Mar 2021
Cited by 13 | Viewed by 5020
Abstract
Autonomous underwater vehicles (AUV) are seen as an emerging technology for maritime exploration but are still restricted by the availability of short range, accurate positioning methods necessary, e.g., when docking remote assets. Typical techniques used for high-accuracy positioning in indoor use case scenarios, [...] Read more.
Autonomous underwater vehicles (AUV) are seen as an emerging technology for maritime exploration but are still restricted by the availability of short range, accurate positioning methods necessary, e.g., when docking remote assets. Typical techniques used for high-accuracy positioning in indoor use case scenarios, such as systems using ultra-wide band radio signals (UWB), cannot be applied for underwater positioning because of the quick absorption of the positioning medium caused by the water. Acoustic and optic solutions for underwater positioning also face known problems, such as the multi-path effects, high propagation delay (acoustics), and environmental dependency. This paper presents an oscillating magnetic field-based indoor and underwater positioning system. Unlike those radio wave-based positioning modalities, the magnetic approach generates a bubble-formed magnetic field that will not be deformed by the environmental variation because of the very similar permeability of water and air. The proposed system achieves an underwater positioning mean accuracy of 13.3 cm in 2D and 19.0 cm in 3D with the multi-lateration positioning method and concludes the potential of the magnetic field-based positioning technique for underwater applications. A similar accuracy was also achieved for various indoor environments that were used to test the influence of cluttered environment and of cross environment. The low cost and power consumption system is scalable for extensive coverage area and could plug-and-play without pre-calibration. Full article
(This article belongs to the Special Issue Underwater Wireless Sensing and Wireless Sensor Networks)
Show Figures

Figure 1

13 pages, 4575 KiB  
Article
Passive Source Localization Using Acoustic Intensity in Multipath-Dominant Shallow-Water Waveguide
by Sunhyo Kim, Sungho Cho, Seom-kyu Jung and Jee Woong Choi
Sensors 2021, 21(6), 2198; https://doi.org/10.3390/s21062198 - 21 Mar 2021
Cited by 3 | Viewed by 3180
Abstract
The array invariant technique has been recently proposed for passive source localization in the ocean. It has successfully estimated the source–receiver horizontal range in multipath-dominant shallow-water waveguides. However, it requires a relatively large-scale hydrophone array. This study proposes an array invariant method that [...] Read more.
The array invariant technique has been recently proposed for passive source localization in the ocean. It has successfully estimated the source–receiver horizontal range in multipath-dominant shallow-water waveguides. However, it requires a relatively large-scale hydrophone array. This study proposes an array invariant method that uses acoustic intensity, which is a vector quantity that has the same direction as the sound wave propagating through a water medium. This method can be used to estimate not only the source–receiver horizontal range, but also the azimuth to an acoustic source. The feasibility of using a vector quantity for the array invariant method is examined through a simulation and an acoustic experiment in which particle velocity signals are obtained using a finite difference approximation of the pressure signals at two adjacent points. The source localization results estimated using acoustic intensity are compared with those obtained from beamforming of the acoustic signals acquired by the vertical line array. Full article
(This article belongs to the Special Issue Underwater Acoustic Sensors and Applications)
Show Figures

Figure 1

14 pages, 6225 KiB  
Letter
Short-Range Water Temperature Profiling in a Lake with Coastal Acoustic Tomography
by Haocai Huang, Yong Guo, Guangming Li, Kaneko Arata, Xinyi Xie and Pan Xu
Sensors 2020, 20(16), 4498; https://doi.org/10.3390/s20164498 - 12 Aug 2020
Cited by 5 | Viewed by 2867
Abstract
Coastal acoustic tomography (CAT), as an innovative technology, can perform water temperature measurements both in horizontal and vertical slices. Investigations on vertical slice observations are significantly fewer in number than horizontal observations due to difficulties in multi-path arrival peak identification. In this study, [...] Read more.
Coastal acoustic tomography (CAT), as an innovative technology, can perform water temperature measurements both in horizontal and vertical slices. Investigations on vertical slice observations are significantly fewer in number than horizontal observations due to difficulties in multi-path arrival peak identification. In this study, a two-station sound transmission experiment is carried out in Thousand-Island Lake, Hangzhou, China, to acquire acoustic data for water temperature profiling. Time windows, determined by range-independent ray simulation, are used to identify multi-path arrival peaks and obtain corresponding sound wave travel times. Special attention is paid to travel time correction, whose errors are caused by position drifting by more than 2 m of moored stations. The sound speed and temperature profiling are divided into four layers and are calculated by regularized inversion. Results show a good consistency with conductivity–temperature–depth (CTD) measurements. The root mean square error (RMSE) of water temperature is 0.3494, 0.6838, 1.0236 and 1.0985 °C for layer 1, 2, 3 and 4, respectively. The fluctuations of measurement are further smoothed by the moving average, which decreases the RMSE of water temperature to 0.2858, 0.4742, 0.7719 and 0.9945 °C, respectively. This study illustrates the feasibility and high accuracy of the coastal acoustic tomography method in short-range water temperature measurement. Furthermore, 3D water temperature field profiling can be performed with combined analyzing in horizontal and vertical slices. Full article
(This article belongs to the Special Issue Underwater Wireless Sensor Networks)
Show Figures

Figure 1

19 pages, 1107 KiB  
Article
Connectivity on Underwater MI-Assisted Acoustic Cooperative MIMO Networks
by Qingyan Ren, Yanjing Sun, Yu Huo, Liang Zhang and Song Li
Sensors 2020, 20(11), 3317; https://doi.org/10.3390/s20113317 - 10 Jun 2020
Cited by 6 | Viewed by 3077
Abstract
In traditional underwater wireless sensor networks (UWSNs), it is difficult to establish reliable communication links as the acoustic wave experiences severe multipath effect, channel fading, and ambient noise. Recently, with the assistance of magnetic induction (MI) technique, cooperative multi-input-multi-output (MIMO) is utilized in [...] Read more.
In traditional underwater wireless sensor networks (UWSNs), it is difficult to establish reliable communication links as the acoustic wave experiences severe multipath effect, channel fading, and ambient noise. Recently, with the assistance of magnetic induction (MI) technique, cooperative multi-input-multi-output (MIMO) is utilized in UWSNs to enable the reliable long range underwater communication. Compared with the acoustic-based UWSNs, the UWSNs adopting MI-assisted acoustic cooperative MIMO are referred to as heterogeneous UWSNs, which are able to significantly improve the effective cover space and network throughput. Due to the complex channel characteristics and the heterogeneous architecture, the connectivity of underwater MI-assisted acoustic cooperative MIMO networks is much more complicated than that of acoustic-based UWSNs. In this paper, a mathematical model is proposed to analyze the connectivity of the networks, which considers the effects of channel characteristics, system parameters, and synchronization errors. The lower and upper bounds of the connectivity probability are also derived, which provide guidelines for the design and deployment of underwater MI-assisted acoustic cooperative MIMO networks. Monte Carlo simulations were performed, and the results validate the accuracy of the proposed model. Full article
(This article belongs to the Special Issue Underwater Wireless Sensing and Wireless Sensor Networks)
Show Figures

Figure 1

12 pages, 1498 KiB  
Article
Using Fast Frequency Hopping Technique to Improve Reliability of Underwater Communication System
by Jan H. Schmidt
Appl. Sci. 2020, 10(3), 1172; https://doi.org/10.3390/app10031172 - 10 Feb 2020
Cited by 32 | Viewed by 5935
Abstract
Acoustic underwater communication systems designed to work reliably in shallow coastal waters must overcome major limitations such as multipath propagation and the Doppler effect. These restrictions are the reason for the complexity of receivers being built, whose task is to decode a symbol [...] Read more.
Acoustic underwater communication systems designed to work reliably in shallow coastal waters must overcome major limitations such as multipath propagation and the Doppler effect. These restrictions are the reason for the complexity of receivers being built, whose task is to decode a symbol on the basis of the received signal. Additional complications are caused by the low propagation speed of the acoustic wave in the water and the relatively narrow bandwidth. Despite the continuous development of communication systems using coherent modulations, they are still not as reliable as is desirable for reliable data transmission applications. This article presents an acoustic underwater communication system that uses one of the varieties of the spread spectrum technique i.e., the fast frequency hopping technique (FFH). This technique takes advantage of binary frequency-shift keying (BFSK) with an incoherent detection method to ensure the implementation of a system whose main priority is reliable data transmission and secondary priority is the transmission rate. The compromised choice of parameters consisted of the selection between the narrow band of the hydroacoustic transducer and the maximum number of carrier frequency hops, which results from the need to take into account the effects of the Doppler effect. In turn, the number of hops and the symbol duration were selected adequately for the occurrence of multipath propagations of an acoustic wave. In addition, this article describes experimental communication tests carried out using a laboratory model of the FFH-BFSK data transmission system in the shallow water environment of Lake Wdzydze/Poland. The test results obtained for three channels of different lengths are discussed. Full article
(This article belongs to the Special Issue Underwater Acoustic Communications and Networks)
Show Figures

Figure 1

17 pages, 4014 KiB  
Article
M-ary Cyclic Shift Keying Spread Spectrum Underwater Acoustic Communications Based on Virtual Time-Reversal Mirror
by Feng Zhou, Bing Liu, Donghu Nie, Guang Yang, Wenbo Zhang and Dongdong Ma
Sensors 2019, 19(16), 3577; https://doi.org/10.3390/s19163577 - 16 Aug 2019
Cited by 27 | Viewed by 3863
Abstract
Underwater acoustic communications are challenging because channels are complex, and acoustic waves when propagating in the ocean are subjected to a variety of interferences, such as noise, reflections, scattering and so on. Spread spectrum technique thus has been widely used in underwater acoustic [...] Read more.
Underwater acoustic communications are challenging because channels are complex, and acoustic waves when propagating in the ocean are subjected to a variety of interferences, such as noise, reflections, scattering and so on. Spread spectrum technique thus has been widely used in underwater acoustic communications for its strong anti-interference ability and good confidentiality. Underwater acoustic channels are typical coherent multipath channels, in which the inter-symbol interference seriously affects the performance of underwater acoustic communications. Time-reversal mirror technique utilizes this physical characteristic of underwater acoustic channels to restrain the inter-symbol interference by reconstructing multipath signals and reduce the influence of channel fading by spatial focusing. This paper presents an M-ary cyclic shift keying spread spectrum underwater acoustic communication scheme based on the virtual time-reversal mirror. Compared to the traditional spread spectrum techniques, this method is more robust, for it uses the M-ary cyclic shift keying spread spectrum to improve the communication rate and uses the virtual time-reversal mirror to ensure a low bit error rate. The performance of this method is verified by simulations and pool experiments. Full article
Show Figures

Figure 1

24 pages, 13124 KiB  
Article
Reliable Acoustic Path and Direct-Arrival Zone Spatial Gain Analysis for a Vertical Line Array
by Chunyu Qiu, Shuqing Ma, Yu Chen, Zhou Meng and Jianfei Wang
Sensors 2018, 18(10), 3462; https://doi.org/10.3390/s18103462 - 15 Oct 2018
Cited by 6 | Viewed by 5020
Abstract
A method is developed in this paper to calculate the spatial gain of a vertical line array when the plane-wave assumption is not applicable and when the oceanic ambient noise is correlated. The proposed optimal array gain (OAG), which can evaluate the array’s [...] Read more.
A method is developed in this paper to calculate the spatial gain of a vertical line array when the plane-wave assumption is not applicable and when the oceanic ambient noise is correlated. The proposed optimal array gain (OAG), which can evaluate the array’s performance and effectively guide its deployment, can be given by an equation in which the noise gain (NG) is subtracted from the signal gain (SG); hence, a high SG and a negative NG can enhance the performance of the array. OAGs and SGs with different array locations are simulated and analyzed based on the sound propagation properties of the direct-arrival zone (DAZ) and the reliable acoustic path (RAP) using ray theory. SG and NG are related to the correlation coefficients of the signals and noise, respectively, and the vertical correlation is determined by the structures of the multipath arrivals. The SG in the DAZ is always high because there is little difference between the multipath waves, while the SG in the RAP changes with the source-receiver range because of the variety of structure in the multiple arrivals. The SG under different conditions is simulated in this work. The “dual peak” structure can often be observed in the vertical directionality pattern of the noise because of the presence of bottom reflection and deep sound channel. When the directions of the signal and noise are close, the conventional beamformer will enhance the correlation of not only the signals but also the noise; thus, the directivity of the signals and noise are analyzed. Under the condition of having a typical sound speed profile, the OAG in some areas of the DAZ and RAP can achieve high values and even exceed the ideal gain of horizontal line array 10 logN dB, while, in some other areas, it will be lowered because of the influence of the NG. The proposed method of gain analysis can provide analysis methods for vertical arrays in the deep ocean under many conditions with references. The theory and simulation are tested by experimental data. Full article
(This article belongs to the Special Issue Ultrasonic Sensors 2018)
Show Figures

Figure 1

Back to TopTop