Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (91)

Search Parameters:
Keywords = multi-term fractional equation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 501 KiB  
Article
Identification of a Time-Dependent Source Term in Multi-Term Time–Space Fractional Diffusion Equations
by Yushan Li, Yuxuan Yang and Nanbo Chen
Mathematics 2025, 13(13), 2123; https://doi.org/10.3390/math13132123 - 28 Jun 2025
Viewed by 250
Abstract
This paper investigates the inverse problem of identifying a time-dependent source term in multi-term time–space fractional diffusion Equations (TSFDE). First, we rigorously establish the existence and uniqueness of strong solutions for the associated direct problem under homogeneous Dirichlet boundary conditions. A novel implicit [...] Read more.
This paper investigates the inverse problem of identifying a time-dependent source term in multi-term time–space fractional diffusion Equations (TSFDE). First, we rigorously establish the existence and uniqueness of strong solutions for the associated direct problem under homogeneous Dirichlet boundary conditions. A novel implicit finite difference scheme incorporating matrix transfer technique is developed for solving the initial-boundary value problem numerically. Regarding the inverse problem, we prove the solution uniqueness and stability estimates based on interior measurement data. The source identification problem is reformulated as a variational problem using the Tikhonov regularization method, and an approximate solution to the inverse problem is obtained with the aid of the optimal perturbation algorithm. Extensive numerical simulations involving six test cases in both 1D and 2D configurations demonstrate the high effectiveness and satisfactory stability of the proposed methodology. Full article
Show Figures

Figure 1

19 pages, 1286 KiB  
Article
Adsorption–Desorption at Anomalous Diffusion: Fractional Calculus Approach
by Ivan Bazhlekov and Emilia Bazhlekova
Fractal Fract. 2025, 9(7), 408; https://doi.org/10.3390/fractalfract9070408 - 24 Jun 2025
Viewed by 586
Abstract
A mathematical model of the anomalous diffusion of surfactant and the process of adsorption–desorption on an interface is analyzed using a fractional calculus approach. The model is based on time-fractional partial differential equations in the bulk phases and the corresponding time-fractional description of [...] Read more.
A mathematical model of the anomalous diffusion of surfactant and the process of adsorption–desorption on an interface is analyzed using a fractional calculus approach. The model is based on time-fractional partial differential equations in the bulk phases and the corresponding time-fractional description of the flux bulk–interface. The general case, when the surfactant is soluble in both phases, is considered under the assumption that the adsorption–desorption process is diffusion-controlled. Some of the most popular kinetic models of Henry, Langmuir, and Volmer are considered. Applying the Laplace transform, the partial differential model is transformed into a single multi-term time-fractional nonlinear ordinary differential equation for the surfactant concentration on the interface. Based on existing analytical solutions of linear time-fractional differential equations, the exact solution in the case of the Henry model is derived in terms of multinomial Mittag–Leffler functions, and its asymptotic behavior is studied. Further, the fractional differential model in the general nonlinear case is rewritten as an integral equation, which is a generalization of the well-known Ward–Tordai equation. For computer simulations, based on the obtained integral equation, a predictor–corrector numerical technique is developed. Numerical results are presented and analyzed. Full article
Show Figures

Figure 1

14 pages, 1288 KiB  
Article
The Optimal L2-Norm Error Estimate of a Weak Galerkin Finite Element Method for a Multi-Dimensional Evolution Equation with a Weakly Singular Kernel
by Haopan Zhou, Jun Zhou and Hongbin Chen
Fractal Fract. 2025, 9(6), 368; https://doi.org/10.3390/fractalfract9060368 - 5 Jun 2025
Viewed by 412
Abstract
This paper proposes a weak Galerkin (WG) finite element method for solving a multi-dimensional evolution equation with a weakly singular kernel. The temporal discretization employs the backward Euler scheme, while the fractional integral term is approximated via a piecewise constant function method. A [...] Read more.
This paper proposes a weak Galerkin (WG) finite element method for solving a multi-dimensional evolution equation with a weakly singular kernel. The temporal discretization employs the backward Euler scheme, while the fractional integral term is approximated via a piecewise constant function method. A fully discrete scheme is constructed by integrating the WG finite element approach for spatial discretization. L2-norm stability and convergence analysis of the fully discrete scheme are rigorously established. Numerical experiments are conducted to validate the theoretical findings and demonstrate optimal convergence order in both spatial and temporal directions. The numerical results confirm that the proposed method achieves an accuracy of the order Oτ+hk+1, where τ and h represent the time step and spatial mesh size, respectively. This work extends previous studies on one-dimensional problems to higher spatial dimensions, providing a robust framework for handling evolution equations with a weakly singular kernel. Full article
Show Figures

Figure 1

22 pages, 2193 KiB  
Article
Novel Hybrid Function Operational Matrices of Fractional Integration: An Application for Solving Multi-Order Fractional Differential Equations
by Seshu Kumar Damarla and Madhusree Kundu
AppliedMath 2025, 5(2), 55; https://doi.org/10.3390/appliedmath5020055 - 10 May 2025
Viewed by 986
Abstract
Although fractional calculus has evolved significantly since its origin in the 1695 correspondence between Leibniz and L’Hôpital, the numerical treatment of multi-order fractional differential equations remains a challenge. Existing methods are often either computationally expensive or reliant on complex operational frameworks that hinder [...] Read more.
Although fractional calculus has evolved significantly since its origin in the 1695 correspondence between Leibniz and L’Hôpital, the numerical treatment of multi-order fractional differential equations remains a challenge. Existing methods are often either computationally expensive or reliant on complex operational frameworks that hinder their broader applicability. In the present study, a novel numerical algorithm is proposed based on orthogonal hybrid functions (HFs), which were constructed as linear combinations of piecewise constant sample-and-hold functions and piecewise linear triangular functions. These functions, belonging to the class of degree-1 orthogonal polynomials, were employed to obtain the numerical solution of multi-order fractional differential equations defined in the Caputo sense. A generalized one-shot operational matrix was derived to explicitly express the Riemann–Liouville fractional integral of HFs in terms of the HFs themselves. This allowed the original multi-order fractional differential equation to be transformed directly into a system of algebraic equations, thereby simplifying the solution process. The developed algorithm was then applied to a range of benchmark problems, including both linear and nonlinear multi-order FDEs with constant and variable coefficients. Numerical comparisons with well-established methods in the literature revealed that the proposed approach not only achieved higher accuracy but also significantly reduced computational effort, demonstrating its potential as a reliable and efficient numerical tool for fractional-order modeling. Full article
Show Figures

Figure 1

25 pages, 329 KiB  
Article
Hyers–Ulam Stability Results of Solutions for a Multi-Point φ-Riemann-Liouville Fractional Boundary Value Problem
by Hicham Ait Mohammed, Safa M. Mirgani, Brahim Tellab, Abdelkader Amara, Mohammed El-Hadi Mezabia, Khaled Zennir and Keltoum Bouhali
Mathematics 2025, 13(9), 1450; https://doi.org/10.3390/math13091450 - 28 Apr 2025
Viewed by 320
Abstract
In this study, we investigate the existence, uniqueness, and Hyers–Ulam stability of a multi-term boundary value problem involving generalized φ-Riemann–Liouville operators. The uniqueness of the solution is demonstrated using Banach’s fixed-point theorem, while the existence is established through the application of classical [...] Read more.
In this study, we investigate the existence, uniqueness, and Hyers–Ulam stability of a multi-term boundary value problem involving generalized φ-Riemann–Liouville operators. The uniqueness of the solution is demonstrated using Banach’s fixed-point theorem, while the existence is established through the application of classical fixed-point theorems by Krasnoselskii. We then delve into the Hyers–Ulam stability of the solutions, an aspect that has garnered significant attention from various researchers. By adapting certain sufficient conditions, we achieve stability results for the Hyers–Ulam (HU) type. Finally, we illustrate the theoretical findings with examples to enhance understanding. Full article
39 pages, 391 KiB  
Article
Applications of Inverse Operators to a Fractional Partial Integro-Differential Equation and Several Well-Known Differential Equations
by Chenkuan Li and Wenyuan Liao
Fractal Fract. 2025, 9(4), 200; https://doi.org/10.3390/fractalfract9040200 - 25 Mar 2025
Cited by 3 | Viewed by 390
Abstract
This paper mainly consists of two parts: (i) We study the uniqueness, existence, and stability of a new fractional nonlinear partial integro-differential equation in Rn with three-point conditions and variable coefficients in a Banach space using inverse operators containing multi-variable functions, a [...] Read more.
This paper mainly consists of two parts: (i) We study the uniqueness, existence, and stability of a new fractional nonlinear partial integro-differential equation in Rn with three-point conditions and variable coefficients in a Banach space using inverse operators containing multi-variable functions, a generalized Mittag-Leffler function, as well as a few popular fixed-point theorems. These studies have good applications in general since uniqueness, existence and stability are key and important topics in many fields. Several examples are presented to demonstrate applications of results obtained by computing approximate values of the generalized Mittag-Leffler functions. (ii) We use the inverse operator method and newly established spaces to find analytic solutions to a number of notable partial differential equations, such as a multi-term time-fractional convection problem and a generalized time-fractional diffusion-wave equation in Rn with initial conditions only, which have never been previously considered according to the best of our knowledge. In particular, we deduce the uniform solution to the non-homogeneous wave equation in n dimensions for all n1, which coincides with classical results such as d’Alembert and Kirchoff’s formulas but is much easier in the computation of finding solutions without any complicated integrals on balls or spheres. Full article
28 pages, 3393 KiB  
Article
An Improved Numerical Scheme for 2D Nonlinear Time-Dependent Partial Integro-Differential Equations with Multi-Term Fractional Integral Items
by Fan Ouyang, Hongyan Liu and Yanying Ma
Fractal Fract. 2025, 9(3), 167; https://doi.org/10.3390/fractalfract9030167 - 11 Mar 2025
Viewed by 699
Abstract
This paper is dedicated to investigating a highly accurate numerical solution for a class of 2D nonlinear time-dependent partial integro-differential equations with multi-term fractional integral items. These integrals are weakly singular with respect to time, which are handled using the product integration rule [...] Read more.
This paper is dedicated to investigating a highly accurate numerical solution for a class of 2D nonlinear time-dependent partial integro-differential equations with multi-term fractional integral items. These integrals are weakly singular with respect to time, which are handled using the product integration rule on graded meshes to compensate for the influence generated by the initial weak singular nature of the exact solution. The temporal derivative is approximated by a generalized Crank–Nicolson difference scheme, while the nonlinear term is approximated by a linearized method. Furthermore, the stability and convergence of the derived time semi-discretization scheme are strictly proved by revising the finite discrete parameters. Meanwhile, the differential matrices of the spatial high-order derivatives based on barycentric rational interpolation are utilized to obtain the fully discrete scheme. Finally, the effectiveness and reliability of the proposed method are validated by means of several numerical experiments. Full article
Show Figures

Figure 1

17 pages, 318 KiB  
Article
Existence and Hyers–Ulam Stability Analysis of Nonlinear Multi-Term Ψ-Caputo Fractional Differential Equations Incorporating Infinite Delay
by Yating Xiong, Abu Bakr Elbukhari and Qixiang Dong
Fractal Fract. 2025, 9(3), 140; https://doi.org/10.3390/fractalfract9030140 - 22 Feb 2025
Cited by 1 | Viewed by 571
Abstract
The aim of the paper is to prove the existence results and Hyers–Ulam stability to nonlinear multi-term Ψ-Caputo fractional differential equations with infinite delay. Some specified assumptions are supposed to be satisfied by the nonlinear item and the delayed term. The Leray–Schauder [...] Read more.
The aim of the paper is to prove the existence results and Hyers–Ulam stability to nonlinear multi-term Ψ-Caputo fractional differential equations with infinite delay. Some specified assumptions are supposed to be satisfied by the nonlinear item and the delayed term. The Leray–Schauder alternative theorem and the Banach contraction principle are utilized to analyze the existence and uniqueness of solutions for infinite delay problems. Some new inequalities are presented in this paper for delayed fractional differential equations as auxiliary results, which are convenient for analyzing Hyers–Ulam stability. Some examples are discussed to illustrate the obtained results. Full article
17 pages, 472 KiB  
Article
Detection of a Spatial Source Term Within a Multi-Dimensional, Multi-Term Time-Space Fractional Diffusion Equation
by Mofareh Alhazmi, Yasser Alrashedi, Hamed Ould Sidi and Maawiya Ould Sidi
Mathematics 2025, 13(5), 705; https://doi.org/10.3390/math13050705 - 21 Feb 2025
Viewed by 460
Abstract
The main objective of this study was to identify the undetermined source term (ST) in a fractional space-time scattering equation with multiple terms, using data obtained from the most recent observations. To address this complex problem, we reformulated the equation by adopting a [...] Read more.
The main objective of this study was to identify the undetermined source term (ST) in a fractional space-time scattering equation with multiple terms, using data obtained from the most recent observations. To address this complex problem, we reformulated the equation by adopting a regularization-based optimization approach. This methodology not only makes it possible to determine the existence of a single minimum solution, but also to assess its stability. In the numerical context, we estimate and approach the function (ST) by applying the Levenberg–Marquardt regularization method, a powerful tool for solving inverse problems. In order to demonstrate the effectiveness of the proposed approach, we performed numerical simulations in one-dimensional and two-dimensional scenarios. These simulations illustrate our method’s ability to process complex data and provide accurate and stable solutions. Through this extended approach, we aimed to discover the single source term in a multi-term space-time fractional scattering equation, ensuring robust and reliable results, supported by the most recent observational data. Full article
(This article belongs to the Special Issue Inverse Problems and Numerical Computation in Mathematical Physics)
Show Figures

Figure 1

38 pages, 16379 KiB  
Article
Hyperbolic Sine Function Control-Based Finite-Time Bipartite Synchronization of Fractional-Order Spatiotemporal Networks and Its Application in Image Encryption
by Lvming Liu, Haijun Jiang, Cheng Hu, Haizheng Yu, Siyu Chen, Yue Ren, Shenglong Chen and Tingting Shi
Fractal Fract. 2025, 9(1), 36; https://doi.org/10.3390/fractalfract9010036 - 13 Jan 2025
Viewed by 868
Abstract
This work is devoted to the hyperbolic sine function (HSF) control-based finite-time bipartite synchronization of fractional-order spatiotemporal networks and its application in image encryption. Initially, the addressed networks adequately take into account the nature of anisotropic diffusion, i.e., the diffusion matrix can be [...] Read more.
This work is devoted to the hyperbolic sine function (HSF) control-based finite-time bipartite synchronization of fractional-order spatiotemporal networks and its application in image encryption. Initially, the addressed networks adequately take into account the nature of anisotropic diffusion, i.e., the diffusion matrix can be not only non-diagonal but also non-square, without the conservative requirements in plenty of the existing literature. Next, an equation transformation and an inequality estimate for the anisotropic diffusion term are established, which are fundamental for analyzing the diffusion phenomenon in network dynamics. Subsequently, three control laws are devised to offer a detailed discussion for HSF control law’s outstanding performances, including the swifter convergence rate, the tighter bound of the settling time and the suppression of chattering. Following this, by a designed chaotic system with multi-scroll chaotic attractors tested with bifurcation diagrams, Poincaré map, and Turing pattern, several simulations are pvorided to attest the correctness of our developed findings. Finally, a formulated image encryption algorithm, which is evaluated through imperative security tests, reveals the effectiveness and superiority of the obtained results. Full article
Show Figures

Figure 1

17 pages, 949 KiB  
Article
Adaptive Control for Multi-Agent Systems Governed by Fractional-Order Space-Varying Partial Integro-Differential Equations
by Zhen Liu, Yingying Wen, Bin Zhao and Chengdong Yang
Mathematics 2025, 13(1), 112; https://doi.org/10.3390/math13010112 - 30 Dec 2024
Viewed by 791
Abstract
This paper investigates a class of multi-agent systems (MASs) governed by nonlinear fractional-order space-varying partial integro-differential equations (SVPIDEs), which incorporate both nonlinear state terms and integro terms. Firstly, a distributed adaptive control protocol is developed for leaderless fractional-order SVPIDE-based MASs, aiming to achieve [...] Read more.
This paper investigates a class of multi-agent systems (MASs) governed by nonlinear fractional-order space-varying partial integro-differential equations (SVPIDEs), which incorporate both nonlinear state terms and integro terms. Firstly, a distributed adaptive control protocol is developed for leaderless fractional-order SVPIDE-based MASs, aiming to achieve consensus among all agents without a leader. Then, for leader-following fractional-order SVPIDE-based MASs, the protocol is extended to account for communication between the leader and follower agents, ensuring that the followers reach consensus with the leader. Finally, three examples are presented to illustrate the effectiveness of the proposed distributed adaptive control protocols. Full article
(This article belongs to the Special Issue Dynamic Modeling and Simulation for Control Systems, 3rd Edition)
Show Figures

Figure 1

20 pages, 612 KiB  
Article
Finite Difference and Chebyshev Collocation for Time-Fractional and Riesz Space Distributed-Order Advection–Diffusion Equation with Time-Delay
by Fang Wang, Yuxue Chen and Yuting Liu
Fractal Fract. 2024, 8(12), 700; https://doi.org/10.3390/fractalfract8120700 - 27 Nov 2024
Viewed by 772
Abstract
In this paper, we have established a numerical method for a class of time-fractional and Riesz space distributed-order advection–diffusion equation with time-delay. Firstly, we transform the Riesz space distributed-order derivative term of the diffusion equation into multi-term fractional derivatives by using the Gauss [...] Read more.
In this paper, we have established a numerical method for a class of time-fractional and Riesz space distributed-order advection–diffusion equation with time-delay. Firstly, we transform the Riesz space distributed-order derivative term of the diffusion equation into multi-term fractional derivatives by using the Gauss quadrature formula. Secondly, we discretize time by using second-order finite differences, discretize space by using second kind Chebyshev polynomials, and convert the multi-term fractional equation to a system of algebraic equations. Finally, we solve the algebraic equations by the iterative method, and prove the stability and convergence. Moreover, relevant examples are shown to verify the validity of our algorithm. Full article
Show Figures

Figure 1

15 pages, 6045 KiB  
Article
Numerical Simulation Based on Interpolation Technique for Multi-Term Time-Fractional Convection–Diffusion Equations
by Xindong Zhang, Yan Chen, Leilei Wei and Sunil Kumar
Fractal Fract. 2024, 8(12), 687; https://doi.org/10.3390/fractalfract8120687 - 23 Nov 2024
Viewed by 694
Abstract
This paper introduces a novel approach for solving multi-term time-fractional convection–diffusion equations with the fractional derivatives in the Caputo sense. The proposed highly accurate numerical algorithm is based on the barycentric rational interpolation collocation method (BRICM) in conjunction with the Gauss–Legendre quadrature rule. [...] Read more.
This paper introduces a novel approach for solving multi-term time-fractional convection–diffusion equations with the fractional derivatives in the Caputo sense. The proposed highly accurate numerical algorithm is based on the barycentric rational interpolation collocation method (BRICM) in conjunction with the Gauss–Legendre quadrature rule. The discrete scheme constructed in this paper can achieve high computational accuracy with very few interval partitioning points. To verify the effectiveness of the present discrete scheme, some numerical examples are presented and are compared with the other existing method. Numerical results demonstrate the effectiveness of the method and the correctness of the theoretical analysis. Full article
(This article belongs to the Section Numerical and Computational Methods)
Show Figures

Figure 1

17 pages, 532 KiB  
Article
Numerical Study of Multi-Term Time-Fractional Sub-Diffusion Equation Using Hybrid L1 Scheme with Quintic Hermite Splines
by Priyanka Priyanka, Shelly Arora, Saroj Sahani and Sharandeep Singh
Math. Comput. Appl. 2024, 29(6), 100; https://doi.org/10.3390/mca29060100 - 2 Nov 2024
Viewed by 1035
Abstract
Anomalous diffusion of particles has been described by the time-fractional reaction–diffusion equation. A hybrid formulation of numerical technique is proposed to solve the time-fractional-order reaction–diffusion (FRD) equation numerically. The technique comprises the semi-discretization of the time variable using an L1 finite-difference scheme and [...] Read more.
Anomalous diffusion of particles has been described by the time-fractional reaction–diffusion equation. A hybrid formulation of numerical technique is proposed to solve the time-fractional-order reaction–diffusion (FRD) equation numerically. The technique comprises the semi-discretization of the time variable using an L1 finite-difference scheme and space discretization using the quintic Hermite spline collocation method. The hybrid technique reduces the problem to an iterative scheme of an algebraic system of equations. The stability analysis of the proposed numerical scheme and the optimal error bounds for the approximate solution are also studied. A comparative study of the obtained results and an error analysis of approximation show the efficiency, accuracy, and effectiveness of the technique. Full article
Show Figures

Figure 1

30 pages, 2587 KiB  
Article
A Local Radial Basis Function Method for Numerical Approximation of Multidimensional Multi-Term Time-Fractional Mixed Wave-Diffusion and Subdiffusion Equation Arising in Fluid Mechanics
by Kamran, Ujala Gul, Zareen A. Khan, Salma Haque and Nabil Mlaiki
Fractal Fract. 2024, 8(11), 639; https://doi.org/10.3390/fractalfract8110639 - 29 Oct 2024
Cited by 2 | Viewed by 1437
Abstract
This article develops a simple hybrid localized mesh-free method (LMM) for the numerical modeling of new mixed subdiffusion and wave-diffusion equation with multi-term time-fractional derivatives. Unlike conventional multi-term fractional wave-diffusion or subdiffusion equations, this equation features a unique time–space coupled derivative while simultaneously [...] Read more.
This article develops a simple hybrid localized mesh-free method (LMM) for the numerical modeling of new mixed subdiffusion and wave-diffusion equation with multi-term time-fractional derivatives. Unlike conventional multi-term fractional wave-diffusion or subdiffusion equations, this equation features a unique time–space coupled derivative while simultaneously incorporating both wave-diffusion and subdiffusion terms. Our proposed method follows three basic steps: (i) The given equation is transformed into a time-independent form using the Laplace transform (LT); (ii) the LMM is then used to solve the transformed equation in the LT domain; (iii) finally, the time domain solution is obtained by inverting the LT. We use the improved Talbot method and the Stehfest method to invert the LT. The LMM is used to circumvent the shape parameter sensitivity and ill-conditioning of interpolation matrices that commonly arise in global mesh-free methods. Traditional time-stepping methods achieve accuracy only with very small time steps, significantly increasing the computational time. To overcome these shortcomings, the LT is used to provide a more powerful alternative by removing the need for fine temporal discretization. Additionally, the Ulam–Hyers stability of the considered model is analyzed. Four numerical examples are presented to illustrate the effectiveness and practical applicability of the method. Full article
(This article belongs to the Special Issue Advanced Numerical Methods for Fractional Functional Models)
Show Figures

Figure 1

Back to TopTop