Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = muddy water characteristics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5406 KiB  
Article
Risk Assessment of Yellow Muddy Water in High-Construction-Intensity Cities Based on the GIS Analytic Hierarchy Process Method: A Case Study of Guangzhou City
by Xichun Jia, Xuebing Jiang, Jun Huang, Le Li, Bingjun Liu and Shunchao Yu
Land 2025, 14(4), 779; https://doi.org/10.3390/land14040779 - 4 Apr 2025
Viewed by 444
Abstract
During urbanisation, extensive production and construction activities encroach on ecological spaces, leading to changes in environmental structures and soil erosion. The issue of yellow muddy water caused by rainfall in cities with high construction intensity has garnered significant attention. Taking Guangzhou City as [...] Read more.
During urbanisation, extensive production and construction activities encroach on ecological spaces, leading to changes in environmental structures and soil erosion. The issue of yellow muddy water caused by rainfall in cities with high construction intensity has garnered significant attention. Taking Guangzhou City as the research area, this study is the first to propose a risk assessment model for yellow muddy water in cities with high construction intensity, and the influence of construction sites on yellow muddy water was fully considered. Rainfall and construction sites were used as indicators to assess the hazards of yellow muddy water. Elevation, slope, normalised difference vegetation index (NDVI), soil erosion modulus, stream power index (SPI), surface permeability, and roads represent the exposure evaluation indicators. Population number and GDP (Gross Domestic Product) were used as vulnerability evaluation indicators. Based on the analytic hierarchy process (AHP) method, the weights of each evaluation indicator were determined, and a risk assessment system for yellow muddy water was established. By overlaying the weighted layers of different evaluation indicators on the geographic information system (GIS) platform, a risk degree distribution map of yellow muddy water disasters was generated. The evaluation results demonstrated that the disaster risk levels within the study area exhibited spatial differentiation, with areas of higher risk accounting for 14.76% of the total. The evaluation results were compared with historical yellow muddy water event information from Guangzhou, and the effectiveness of the model was verified by the receiver operating characteristic (ROC) curve. The validation results indicate that this model provides high accuracy in assessing the degree of risk of yellow muddy water in high-construction-intensity cities, offering effective technical support for precise disaster prevention and mitigation. Full article
(This article belongs to the Special Issue Applications of GIS-Based Methods in Land Change Science)
Show Figures

Figure 1

21 pages, 14565 KiB  
Article
Surficial Sediment Distribution in a Complex Marine Setting—The Example of Coastal and Open Sea Areas of Evia Island, Central Aegean, Greece
by Irene Zananiri and Ioannis Vakalas
Oceans 2025, 6(1), 8; https://doi.org/10.3390/oceans6010008 - 3 Feb 2025
Viewed by 1933
Abstract
This study examines sediment distribution patterns in the Aegean Sea, focusing on the western coast of Evia Island and the southern Evoikos and Petalioi Gulfs. A total of 200 granulometric data points were analyzed to evaluate textural characteristics, including mean grain size, sorting, [...] Read more.
This study examines sediment distribution patterns in the Aegean Sea, focusing on the western coast of Evia Island and the southern Evoikos and Petalioi Gulfs. A total of 200 granulometric data points were analyzed to evaluate textural characteristics, including mean grain size, sorting, and skewness. The findings reveal significant variation in mean grain size: finer sediments (ϕ = 5–8) dominate the northern Aegean near Skyros, while coarser sands (ϕ = 2–4) are prevalent in the South Evoikos and Petalioi gulfs. The coarsest materials (ϕ = 0–2) are found around Chalkis, with sorting generally poor except in those two areas. Negative skewness values in the northern part of the study area indicate a predominance of finer particles, while southern regions exhibit slightly positive skewness, suggesting a greater proportion of coarser grains. Complex net transport patterns between Evia and Skyros are influenced by north-northeast trending water currents from the northern Aegean, with fluvial influx observed in the southern Evia coastal area. Around Skyros, the interplay of water currents and prevailing north-northwest winds dictates the orientation of net transport vectors. In the Evoikos gulfs, sediment movement aligns with a general northward flow, featuring coarse sediments in the Petalioi Gulf and muddy deposits in the narrower northern segment, where minimal transport indicates stagnant conditions. Coarse-grained materials in North Evoikos are primarily influenced by strong tidal activity. Full article
Show Figures

Figure 1

16 pages, 6251 KiB  
Article
Study on Soil Water and Nitrogen Transport Characteristics of Unidirectional Intersection Infiltration with Muddy Water Fertilization Film Hole Irrigation
by Qianwen Fan, Liangjun Fei, Penghui Zhao, Fangyuan Shen and Yalin Gao
Agriculture 2024, 14(12), 2314; https://doi.org/10.3390/agriculture14122314 - 17 Dec 2024
Viewed by 657
Abstract
This study investigated the effects of film hole diameter and soil bulk density on the unidirectional intersection infiltration laws of muddy water fertilization film hole irrigation. Indoor soil box infiltration experiments were conducted. The thickness of the sediment layer, cumulative infiltration amount per [...] Read more.
This study investigated the effects of film hole diameter and soil bulk density on the unidirectional intersection infiltration laws of muddy water fertilization film hole irrigation. Indoor soil box infiltration experiments were conducted. The thickness of the sediment layer, cumulative infiltration amount per unit area, vertical wetting front transport distance, moisture distribution in the wetting body, and nitrate and ammonium nitrogen transport laws were observed and analyzed. The results indicated that both the thickness of the sediment layer and the cumulative infiltration per unit area are inversely correlated with film hole diameter and soil bulk density. Conversely, the vertical wetting front transport distance and nitrogen content are positively correlated with film hole diameter, while exhibiting a negative correlation with soil bulk density. Notably, the initial point of intersection for the moist body was located below the soil surface, with the peak vertical soil moisture content at the intersection approximately 1.5 cm beneath the surface. The distribution pattern of soil nitrate nitrogen at the conclusion of infiltration mirrored that of water content, characterized by a sharp decline near the wetting front. In contrast, soil ammonium nitrogen content decreased significantly in the shallow soil layer as soil depth increased, without a corresponding abrupt decrease near the wetting front. These findings may provide a theoretical foundation for future research on the intersection infiltration laws of muddy water fertilization through film hole irrigation. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

15 pages, 3055 KiB  
Article
Effect of Muddy Water Characteristics on Infiltration Laws and Stratum Compactum Soil Particle Composition under Film Hole Irrigation
by Youliang Peng, Liangjun Fei, Renming Xue, Fangyuan Shen, Runqiao Zhen and Qian Wang
Agriculture 2024, 14(8), 1377; https://doi.org/10.3390/agriculture14081377 - 16 Aug 2024
Viewed by 1113
Abstract
To investigate the impact of sediment on water infiltration and soil structure under muddy water irrigation conditions, indoor muddy water film hole infiltration experiments were conducted. Four different muddy water sediment concentrations (3%, 6%, 9%, 12%) and four typical sediment particle size distributions [...] Read more.
To investigate the impact of sediment on water infiltration and soil structure under muddy water irrigation conditions, indoor muddy water film hole infiltration experiments were conducted. Four different muddy water sediment concentrations (3%, 6%, 9%, 12%) and four typical sediment particle size distributions (which were quantified by the physical clay content with a particle size of less than 0.01 mm, d0.01: 9.13%, 16.46%, 27.34%, 44.02%) were employed to examine how muddy water properties affect infiltration law and the stratum compactum soil particle composition under film hole irrigation. The results showed that as the muddy water sediment concentration and physical clay content increased, the wetting front migration distance, cumulative infiltration amount, and soil water content gradually decreased simultaneously. The Kostiakov infiltration model effectively captured the changes in soil water infiltration during muddy water film hole irrigation, exhibiting a strong fit with a high coefficient of determination (R2 > 0.9). With higher muddy water sediment concentration, the deposition layer thickness increases within the same infiltration time. Conversely, higher physical clay content leads to a decrease in deposition layer thickness. The characteristics of the muddy water have a significant impact on the particle composition of the soil in the stratum compactum caused by film hole irrigation. The deposition layer has a lower relative content of fine soil particles compared to muddy water, but this content increases with higher muddy water sediment concentration and physical clay content. In the stranded layer soil, fine particles have a higher relative content than the original soil. Fine particle content increases notably with higher muddy water sediment concentration and physical clay content. The stranded layer soil particles exhibit a higher fractal dimension than the original soil, and as the infiltrated soil layer depth increases, the soil fractal dimension decreases until it matches the original soil. The fractal dimension increased with the increase in muddy water sediment concentration and physical clay content in muddy water irrigation conditions under the same soil layer depth. This research findings could serve as a theoretical foundation for understanding soil water movement under muddy water irrigation conditions. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

19 pages, 8013 KiB  
Article
Influence of Immersion Time on the Frequency Domain Characteristics of Acoustic Emission Signals in Clayey Mineral Rocks
by Jiaju Yan, Zhuxi Li, Dong Xia, Yuxin Bai and Guoliang Shao
Materials 2024, 17(13), 3147; https://doi.org/10.3390/ma17133147 - 27 Jun 2024
Cited by 1 | Viewed by 897
Abstract
The frequency domain characteristics of acoustic emission can reflect issues such as rock structure and stress conditions that are difficult to analyze in time domain parameters. Studying the influence of immersion time on the mechanical properties and acoustic emission frequency domain characteristics of [...] Read more.
The frequency domain characteristics of acoustic emission can reflect issues such as rock structure and stress conditions that are difficult to analyze in time domain parameters. Studying the influence of immersion time on the mechanical properties and acoustic emission frequency domain characteristics of muddy mineral rocks is of great significance for comprehensively analyzing rock changes under water–rock coupling conditions. In this study, uniaxial compression tests and acoustic emission tests were conducted on sandstones containing montmorillonite under dry, saturated, and different immersion time conditions, with a focus on analyzing the effect of immersion time on the dominant frequency of rock acoustic emission. The results indicated that immersion time had varying degrees of influence on compressive strength, the distribution characteristics of dominant acoustic emission frequencies, the frequency range of dominant frequencies, and precursor information of instability failure for sandstones. After initial saturation, the strength of the rock sample decreased from 53.52 MPa in the dry state to 49.51 MPa, and it stabilized after 30 days of immersion. Both dry and initially saturated rock samples exhibited three dominant frequency bands. After different immersion days, a dominant frequency band appeared between 95 kHz and 110 kHz. After 5 days of immersion, the dominant frequency band near 0 kHz gradually disappeared. After 60 days of immersion, the dominant frequency band between 35 kHz and 40 kHz gradually disappeared, and with increasing immersion time, the dominant frequency of the acoustic emission signals increased. During the loading process of dry rock samples, the dominant frequency of acoustic emission signals was mainly concentrated between 0 kHz and 310 kHz, while after saturation, the dominant frequencies were all below 180 kHz. The most significant feature before the rupture of dry rock samples was the frequent occurrence of high frequencies and sudden changes in dominant frequencies. Before rupture, the characteristics of precursor events for initially saturated and immersed samples for 5, 10, and 30 days were the appearance and rapid increase in sudden changes in dominant frequencies, as well as an enlargement of the frequency range of dominant frequencies. After 60 days of immersion, the precursor characteristics of rock sample rupture gradually disappeared, and sudden changes in dominant frequencies frequently occurred at various stages of sample loading, making it difficult to accurately predict the rupture of specimens based on these sudden changes. Full article
Show Figures

Figure 1

15 pages, 9134 KiB  
Article
Sedimentary Genesis and Model Analysis of Shale Lithofacies in Jiyang Depression
by Cunfei Ma, Shuangpeng Liu, Qi Zhao, Yongjun Fan, Yaoyao Qian, Xiantai Liu and Xinmin Ge
Processes 2023, 11(8), 2302; https://doi.org/10.3390/pr11082302 - 1 Aug 2023
Cited by 3 | Viewed by 1580
Abstract
Based on core observation, rock thin sections, logging data, and testing data, taking the shale of the upper submember of the 4th Member to the lower submember of the 3rd Member of Paleogene Shahejie Formation in Jiyang Depression of Bohai Bay Basin as [...] Read more.
Based on core observation, rock thin sections, logging data, and testing data, taking the shale of the upper submember of the 4th Member to the lower submember of the 3rd Member of Paleogene Shahejie Formation in Jiyang Depression of Bohai Bay Basin as an example, we determine the lithofacies division scheme, divide the main lithofacies types, analyze the sedimentary origin and development location of different shale lithofacies, establish the continental lake basin sedimentary model, determine the types and enrichment areas of favorable lithofacies, and provide guidance for the exploration and development of Shale oil. The results show that: (1) According to the mineral composition, sedimentary structure, and organic matter abundance, the division scheme of shale lithofacies in the study area is proposed, and the shale lithofacies of the study area was mainly divided into 17 types. (2) Based on the lithologic changes, the lacustrine sedimentary shale area was divided into muddy water area, transition area, and clear water area. (3) Under the background of locally uplifted slope paleogeomorphology, considering the combined effects of climate, topography, hydrodynamic, mechanical, and chemical differentiation of sediments and biological habits, the sedimentary model of shale was established. (4) Organic-rich shale was mainly deposited between the clear water area and the end of the muddy water area, with the characteristics of water, brackish water, strong reduction, and water stratification, and was mainly enriched in the low-lying parts of paleotopography. Full article
Show Figures

Figure 1

18 pages, 2795 KiB  
Article
Effects of Bio-Organic Fertilizer on Soil Infiltration, Water Distribution, and Leaching Loss under Muddy Water Irrigation Conditions
by Youliang Peng, Liangjun Fei, Feilong Jie, Kun Hao, Lihua Liu, Fangyuan Shen and Qianwen Fan
Agronomy 2023, 13(8), 2014; https://doi.org/10.3390/agronomy13082014 - 29 Jul 2023
Cited by 4 | Viewed by 2195
Abstract
This study analyzes the soil water infiltration characteristics under muddy water irrigation and bio-organic fertilizer conditions in the current context of muddy water irrigation rarely being used in agricultural production and in combination with the problems of water resource shortages and low soil [...] Read more.
This study analyzes the soil water infiltration characteristics under muddy water irrigation and bio-organic fertilizer conditions in the current context of muddy water irrigation rarely being used in agricultural production and in combination with the problems of water resource shortages and low soil fertility in arid and semi-arid regions. An indoor one-dimensional soil column infiltration device was used for studying the effects of four muddy water sediment concentration levels (ρ0: 0; ρ1: 4%; ρ2: 8%; ρ3: 12%) and four bio-organic fertilizer levels (FO0: 0; FO1: 2250 kg·hm−2; FO2: 4500 kg·hm−2; sFO3: 6750 kg·hm−2) on soil water infiltration, evaporation characteristics, and leaching loss. The results demonstrated that a higher muddy water sediment concentration and fertilization level resulted in a smaller wetting front distance and cumulative infiltration amount within the same time, but the infiltration reduction rate (η) gradually increased. The three infiltration models (Kostiakov, Philip, and Horton) were fitted, and it was discovered that all three had good fitting results (R2 > 0.8), with the Kostiakov model displaying the best fit and the Horton model exhibiting the worst fit. The cumulative evaporation amount and evaporation time in muddy water irrigation and fertilization conditions was consistent with the Black and Rose evaporation models (R2 > 0.9), the Black model was proved to be higher than the Rose model. In comparison to ρ0, muddy water irrigation increased conductivity and total dissolved solids (TDS) in the leaching solution, but it reduced cumulative evaporation, soil moisture content, the uniformity coefficient of soil water distribution, and leaching solution volume. Compared with FO0, the application of bio-organic fertilizer increased soil water content and reduced soil water evaporation while also reducing the leaching solution volume, conductivity, and TDS in the leaching solution. The results of this research can provide scientific reference for the efficient utilization of muddy water irrigation and the rational application of bio-organic fertilizer. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

19 pages, 5922 KiB  
Article
Grain Size Characteristics of Surface Sediments and Their Migration Trends in the Nearshore Waters of East Guangdong
by Hongbing Wang, Yuxi Wu, Xiaoming Wan, Lu Xia and Si Wang
Sustainability 2023, 15(14), 11069; https://doi.org/10.3390/su151411069 - 15 Jul 2023
Cited by 2 | Viewed by 3207
Abstract
By collecting surface sediment samples from 158 stations in the near-shore waters of eastern Guangdong, grain size analysis and grain size parameter calculations were performed to explore the characteristics and migration trends of surface sediments in the area. The analysis of the grain [...] Read more.
By collecting surface sediment samples from 158 stations in the near-shore waters of eastern Guangdong, grain size analysis and grain size parameter calculations were performed to explore the characteristics and migration trends of surface sediments in the area. The analysis of the grain size results showed that the surface sediments in the nearshore waters of east Guangdong could be classified into nine sediment types, mainly including seven types of gravel sand ((g)S), gravel muddy sand ((g)mS), gravelly mud ((g)M), sand (S), silty sand (zS), sandy silt (sZ) and silt (Z). The relative percentages of gravel, sand, silt and mud were 0.7%, 40.56%, 46.7% and 12.04%, respectively. The average grain size varied from −2φ to 8φ, with an average of 4.94φ. The selection coefficient ranged from 0.44 to 3.78, with an average value of 1.8. The skewness distribution ranged from −0.34 to 0.67, with an average value of 0.07. By extracting and analyzing the spatial distribution information of grain size in the study area, using the Gao–Collins migration trend analysis method and incorporating dynamic factors such as tidal currents and waves, the transport direction and trend of surface sediments in the study area could be analyzed and inferred. The results show that the surface sediment migration trend was significant, migration on the north side of Nan’ao Island was in an east-to-west direction, and the sediment of Yifeng River was mainly deposited to the sand spout at the mouth of Lianyang River. After southward transport from the Houjiang waterway, the migration was mainly southeastward and the trend was quite significant until the 20 m isobath, where the trend gradually decreased. The sediments of the Rongjiang River were mainly deposited outside the mouth of Niutian Yang and Rongjiang River, and the surface sediments of Guang’ao Bay and Haimen Bay migrated in the northwest–southeast direction. After the 30 m isobath, the southeast corner of the study area migrated in the southeast–south direction. This sediment transport pattern revealed by the grain size migration trend is in good agreement with the physical and hydrodynamic conditions of the study area and provides an important reference for decisions regarding port dredging and waterway management in the area. Full article
(This article belongs to the Special Issue Nutrient and Carbon Export under Global Warming and Land Use Change)
Show Figures

Figure 1

14 pages, 3913 KiB  
Essay
Characteristics of Vegetation Resistance Variation in Muddy Water Flows
by Xiaolei Zhang, Yu Zhu, Haoran Wu, Zhengzheng Bi and Zhiheng Xu
Water 2023, 15(12), 2238; https://doi.org/10.3390/w15122238 - 14 Jun 2023
Cited by 3 | Viewed by 1663
Abstract
The shoal area of the lower Yellow River in China is not flooded with water during the dry season, so various plants can grow. When floods overflow the plains in the flood season, the complexity of water resistance is increased due to the [...] Read more.
The shoal area of the lower Yellow River in China is not flooded with water during the dry season, so various plants can grow. When floods overflow the plains in the flood season, the complexity of water resistance is increased due to the resistance to water flow by vegetation, which directly affects flood discharge in the beach area. The drag force coefficient (CD), Manning’s roughness coefficient (n), and Darcy-Weisbach resistance coefficient (f) are commonly used to characterize vegetation drag force. Such studies are commonly conducted in clear water, but flood water in the lower Yellow River is generally muddy. In order to study the effect of the same sediment content and different sedimentation thicknesses on the resistance of muddy waters containing vegetation, this study conducted experiments in a flume (length = 28 m, width = 0.5 m, and height = 0.5 m) under different deposition thicknesses. The results showed that the vegetation drag force coefficient (CD), vegetation roughness (nb), and Darcy-Weisbach drag coefficient (f) all decreased logarithmically with increasing Reynolds number (Re) and Froude number (Fr). When Re > 30,000, under the conditions of different siltation thicknesses of vegetation, the vegetation roughness tended to stabilize near its minimum value. When the Reynolds number of the water flow is large (Re > 20,000), the variation of the Darcy-Weisbach drag coefficient f slows down with the Reynolds number Re. Logarithmic functions were established for the above resistance coefficients and flow coefficients, and the corresponding correlation coefficients were high, indicating that the conclusions were reliable. Full article
(This article belongs to the Topic Advances in Environmental Hydraulics)
Show Figures

Figure 1

23 pages, 14984 KiB  
Article
Quantitative Analysis of Rapid Siltation and Erosion Caused Coastline Evolution in the Coastal Mudflat Areas of Jiangsu
by Lirong Huang, Chengyi Zhao, Caixia Jiao, Guanghui Zheng and Jianting Zhu
Water 2023, 15(9), 1679; https://doi.org/10.3390/w15091679 - 26 Apr 2023
Cited by 12 | Viewed by 4336
Abstract
Muddy coast due to natural and human-induced factors can be variable over a wide range of different spatiotemporal scales. Our limited capability to understand and especially predict this variability can lead to misinterpretation of muddy coastal change information, which hampers informed decision-making and [...] Read more.
Muddy coast due to natural and human-induced factors can be variable over a wide range of different spatiotemporal scales. Our limited capability to understand and especially predict this variability can lead to misinterpretation of muddy coastal change information, which hampers informed decision-making and subsequent design and implementation of engineering interventions. Therefore, the research on the evolution of the historical coastline is particularly important. In this study, annual mean coastlines and causes for the variability and possible evolutions are analyzed in a manner that avoids these effects by averaging the instantaneous coastline positions registered during the same year. A set of coastlines is obtained from Landsat MSS/TM/OLI series of remote sensing images taken between 1985 and 2020 in the Google Earth Engine at Jiangsu muddy coast of China Yellow Sea. The coastline is extracted based on the water body index and the Otsu method, and is classified by fractal dimension, annual rate of change, area calculation, center of gravity shift, and artificial index to calculate the temporal and spatial changes in the coastline. The results showed that most of the coastline advanced seaward due to rapid siltation and coastal development in the past 35 years with only a small portion receding landward. The entire coast experienced segmental changes and different evolutionary characteristics and the coastline shifted from rapid erosion to siltation. The silted banks were mainly distributed in the middle section of the coastline in the radial sandbank. The annual change rate in the coast section was 82.21 m/a and the average annual area increased by 18.07 km2. The artificial coastline increased substantially, while the natural coastline gradually decreased due to rapid erosion. From 1985 to 2020, the proportion of artificial coastline in Jiangsu rose from 14% to 77%. The coastline became more curved and the center of gravity of the coastline moved 5.13 km to the northwest by 61°. Before 2000, the driving force affecting the coastline variability was mainly rapid siltation, while the impact of rapid erosion and human activities gradually increased after 2000 with the natural coastline being continuously cut and straightened. Overall, Jiangsu’s muddy coast was the site with the highest anthropogenic pressure and highest vulnerability. However, it is difficult to generalize the results under other conditions, especially on decadal time scales. Scientific and engineering improvements still require more quantitative insight into the physical mechanisms behind the natural and forced shore behavior responsible for the variability to better explain the change process of the coastline and provide a basis for coastal management and sustainable development. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

19 pages, 7721 KiB  
Article
Control of MHD Flow and Heat Transfer of a Micropolar Fluid through Porous Media in a Horizontal Channel
by Miloš Kocić, Živojin Stamenković, Jelena Petrović and Jasmina Bogdanović-Jovanović
Fluids 2023, 8(3), 93; https://doi.org/10.3390/fluids8030093 - 8 Mar 2023
Cited by 12 | Viewed by 2597
Abstract
The problem considered in this paper is a steady micropolar fluid flow in porous media between two plates. This model can be used to describe the flow of some types of fluids with microstructures, such as human and animal blood, muddy water, colloidal [...] Read more.
The problem considered in this paper is a steady micropolar fluid flow in porous media between two plates. This model can be used to describe the flow of some types of fluids with microstructures, such as human and animal blood, muddy water, colloidal fluids, lubricants and chemical suspensions. Fluid flow is a consequence of the constant pressure gradient along the flow, while two parallel plates are fixed and have different constant temperatures during the fluid flow. Perpendicular to the flow, an external magnetic field is applied. General equations of the problem are reduced to ordinary differential equations and solved in the closed form. Solutions for velocity, microrotation and temperature are used to explain the influence of the external magnetic field (Hartmann number), the characteristics of the micropolar fluid (coupling and spin gradient viscosity parameter) and the characteristics of the porous medium (porous parameter) using graphs. The results obtained in the paper show that the increase in the additional viscosity of micropolar fluids emphasizes the microrotation vector. Moreover, the analysis of the effect of the porosity parameter shows how the permeability of a porous medium can influence the fluid flow and heat transfer of a micropolar fluid. Finally, it is shown that the influence of the external magnetic field reduces the characteristics of micropolar fluids and tends to reduce the velocity field and make it uniform along the cross-section of the channel. Full article
(This article belongs to the Special Issue Focus on Supercritical Fluids: Control and Extraction)
Show Figures

Figure 1

18 pages, 6950 KiB  
Article
Land Subsidence Characteristics and Numerical Analysis of the Impact on Major Infrastructure in Ningbo, China
by Feng Gao, Tuanzhi Zhao, Xuebin Zhu, Lingwei Zheng, Wenjun Wang and Xudong Zheng
Sustainability 2023, 15(1), 543; https://doi.org/10.3390/su15010543 - 28 Dec 2022
Cited by 6 | Viewed by 3061
Abstract
For the construction and safe operation of major infrastructure in coastal cities, the impact of regional land subsidence that has occurred or is slowly proceeding deserves attention. Previous studies have mainly focused on the surrounding land subsidence caused during construction or operation, as [...] Read more.
For the construction and safe operation of major infrastructure in coastal cities, the impact of regional land subsidence that has occurred or is slowly proceeding deserves attention. Previous studies have mainly focused on the surrounding land subsidence caused during construction or operation, as well as the superposition effect of land subsidence caused by groundwater extraction. However, research on the different impacts of damage due to land subsidence in the construction and operation of urban infrastructure needs to be carried out according to the actual geological environmental conditions, reflected in parameters such as the soil properties and common loads. Numerical simulation cannot fully reflect the details of reality; however, it can avoid the influence of other conditions to focus on different factors influencing land subsidence and thus highlight the contribution of a single factor influencing land subsidence. Therefore, in this paper, we adopt field measurement data and carry out a numerical simulation analysis of different influencing factors. First, taking the Ningbo Jiangdong subsidence center (now located in Yinzhou District) as an example, area growth, cumulative subsidence and the occurrence and development of the subsidence rate of a typical urban subsidence funnel area are analyzed. Then, taking the Ningbo Chunxiao–Meishan area as an example, based on the physical and mechanical characteristics of the main soil layers in the coastal reclamation area, a numerical analysis of the self-weight/backfill and surcharge consolidation settlement of the soil layer (considering the water permeability/impermeability of the bottom surface) and a numerical analysis of the nonuniform settlement caused by pile foundation engineering are carried out. Finally, the Ximenkou–Gulou area is taken as the analysis object. Numerical simulation of metro tunnel pipeline deformation is carried out considering uniform/nonuniform settlement. The results show that the comprehensive prohibition of groundwater exploitation is beneficial to slow the land subsidence rate, while the sedimentation of silty clay in Layer 4 (muddy clay) is the largest among all the soil layers. Compared with uniform settlement, nonuniform settlement is more likely to cause connection failure between tunnel segments. The above research results can provide references for the prevention and control of land subsidence and thus the safe operation of major infrastructure. Full article
Show Figures

Figure 1

17 pages, 4157 KiB  
Article
Resilience and Species Accumulation across Seafloor Habitat Transitions in a Northern New Zealand Harbour
by Stephanie Mangan, Richard H. Bulmer, Barry L. Greenfield, Sarah F. Hailes, Kelly Carter, Judi E. Hewitt and Andrew M. Lohrer
Diversity 2022, 14(11), 998; https://doi.org/10.3390/d14110998 - 18 Nov 2022
Cited by 2 | Viewed by 2195
Abstract
Biodiversity is crucial for maintaining ecosystem stability and functionality under increasing anthropogenic stress. Part of this resilience comes from having many species performing the same function (functional redundancy) leading to the quantification of community composition and functional redundancy in relation to increasing stress. [...] Read more.
Biodiversity is crucial for maintaining ecosystem stability and functionality under increasing anthropogenic stress. Part of this resilience comes from having many species performing the same function (functional redundancy) leading to the quantification of community composition and functional redundancy in relation to increasing stress. However, much of the research within coastal ecosystems focuses on distinct areas, rather than whole ecosystems. Here, we investigate the relationship between biodiversity and functional redundancy across two environmental gradients (sediment mud content and water column depth) and different habitat types following a survey of benthic macrofauna and sediment characteristics at 24 sites within Whangārei Harbour, New Zealand. We observed strong gradients in biodiversity which fragmented communities into fewer species that were a subset of the wider community. The lowest biodiversity was observed at muddy, intertidal and shallow subtidal sites which also had the lowest predicted functional redundancy. We show the stronger influence of water column depth on predicted functional redundancy than sediment mud content, highlighting the importance of subtidal regions. Overall, our study highlights the importance of studying the individual contributions of different areas in a landscape to characterise effective colonist pool size and how this can be used to predict recovery potential following disturbance. Full article
Show Figures

Figure 1

8 pages, 245 KiB  
Article
Schistosomiasis Control in Ethiopia: The Role of Snail Mapping in Endemic Communities
by Asrat Meleko, Sarah Li, Dorin Brener Turgeman, Michal Bruck, Nisan Z. Kesete, Willemijn Zaadnoordijk, David Rollinson, Galia Sabar, Zvi Bentwich and Rachel Golan
Trop. Med. Infect. Dis. 2022, 7(10), 272; https://doi.org/10.3390/tropicalmed7100272 - 28 Sep 2022
Cited by 8 | Viewed by 3724
Abstract
Introduction: Schistosomiasis, a neglected tropical disease (NTD), remains a public health problem in Ethiopia. Freshwater snails, acting as intermediate hosts, release cercariae, the infectious parasite, into the water, which penetrate human skin that encounters infested waters. The objective of this study was to [...] Read more.
Introduction: Schistosomiasis, a neglected tropical disease (NTD), remains a public health problem in Ethiopia. Freshwater snails, acting as intermediate hosts, release cercariae, the infectious parasite, into the water, which penetrate human skin that encounters infested waters. The objective of this study was to map snail abundance along rivers and study its association with schistosomiasis infection in communities using these rivers. Materials and Methods: A cross-sectional study was carried out at 20 river sites in Mizan Aman city administration, Bench Sheko zone, South West Ethiopia Peoples (SWEP) region, Ethiopia, to study the distribution of host snails and transmission sites for intestinal schistosomiasis. This study used a quantitative database consisting of data on the prevalence of infected snails, the characteristics of rivers and riverbanks, and the prevalence of schistosomiasis in the community, based on stool samples collected from community members near the sampling sites. Results: Aquatic snails were found in 11 of the 20 sites sampled. A total of 598 snails was collected, including Biomphalaria pfeifferi, Biomphalaria sudanica, Radix natalensis and Bulinus globosus species; the most abundant species was Biomphalaria pfeifferi. Stool samples were collected from 206 community members from all 20 sites. Forty-one (19.9%) were positive for Schistosoma mansoni. A positive correlation was found between the presence of snails and positive stool samples (r = 0.60, p = 0.05) and between the presence of infected snails and the prevalence of infection (r = 0.64, p = 0.03). Locations with muddy riverbanks were associated with the presence of snails (r = 0.81, p < 0.001). Conclusions: These results emphasize the importance of mapping snails for the control of schistosomiasis by defining hotspots of infection and identifying factors associated with the presence of infected snails. The results support the need for a continuous mapping of snails and the introduction of snail control as a major element for the successful control of schistosomiasis in endemic communities. Full article
18 pages, 3193 KiB  
Article
Food Sources for Benthic Grazers in Trophic Networks of Macrophyte Habitats in a Transitional Baltic Ecosystem
by Rasa Morkūnė, Martynas Bučas, Marija Kataržytė, Tobia Politi, Diana Vaičiūtė, Salvatrice Vizzini and Georg Martin
Water 2022, 14(10), 1565; https://doi.org/10.3390/w14101565 - 13 May 2022
Cited by 5 | Viewed by 2286
Abstract
In this study, we provide insights into that characteristics of two sites representing different conditions of productivity and salinity impact on trophic network structures of macrophyte habitats and diet of benthic grazers at the active vegetation period in the Curonian Lagoon (southeastern Baltic [...] Read more.
In this study, we provide insights into that characteristics of two sites representing different conditions of productivity and salinity impact on trophic network structures of macrophyte habitats and diet of benthic grazers at the active vegetation period in the Curonian Lagoon (southeastern Baltic Sea). Regarding the epiphytic growth, macrophytes were more overgrown in the relatively less productive (northern) site with a muddy bottom and more frequent marine water inflow than in the (southern) site with higher productivity and freshwater sandy habitat. Stable isotope analysis revealed that organisms’ samples from the northern site were more enriched with the heavier carbon isotopes, but depleted in the heavier nitrogen isotopes than those from the southern site. Gastropods and amphipods mainly consumed sedimentary organic matter in the southern site, while they grazed epiphytes together with sedimentary organic matter in the northern site. Although to a low extent, gastropods consumed more charophytes than pondweeds in the southern site. This study contributes to a better understanding of the functioning and structure of lagoonal systems, highlighting the importance, often overlooked, of the benthic compartment, which, however, may have a relevant influence on the productivity of the whole system. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

Back to TopTop