Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,675)

Search Parameters:
Keywords = motor drive system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 8352 KiB  
Article
Research on Vibration Characteristics of Electric Drive Systems Based on Open-Phase Self-Fault-Tolerant Control
by Wenyu Bai, Yun Kuang, Zhizhong Xu, Yawen Wang and Xia Hua
Appl. Sci. 2025, 15(15), 8707; https://doi.org/10.3390/app15158707 (registering DOI) - 6 Aug 2025
Abstract
This paper presents an electromechanical coupling model integrating an equivalent magnetic network (EMN) model of a dual three-phase permanent magnet synchronous motor (DTP-PMSM) with the dynamic model of a helical planetary gear transmission system. Using this model, this study analyzes the dynamic characteristics [...] Read more.
This paper presents an electromechanical coupling model integrating an equivalent magnetic network (EMN) model of a dual three-phase permanent magnet synchronous motor (DTP-PMSM) with the dynamic model of a helical planetary gear transmission system. Using this model, this study analyzes the dynamic characteristics of an electric drive system, specifically motor phase current, electromagnetic torque, and gear meshing force, under self-fault-tolerant control strategies. Simulation and experimental results demonstrate that the self-fault-tolerant control strategy enables rapid fault tolerance during open-phase faults, significantly reducing system fault recovery time. Meanwhile, compared to the open-phase faults conditions, the self-fault-tolerant control effectively suppresses most harmonic components within the system; only the second harmonic amplitude of the electromagnetic torque exhibited an increase. This harmonic disturbance propagates to the gear system through electromechanical coupling, synchronously amplifying the second harmonic amplitude in the gear system’s vibration response. This study demonstrates that self-fault-tolerant control strategies significantly enhance the dynamic response performance of the electric drive system under open-phase faults conditions. Furthermore, this study also investigates the electromechanical coupling mechanism through which harmonics generated by this strategy affect the gear system’s dynamic response, providing theoretical support for co-optimization electromechanical coupling design and fault-tolerant control in high-reliability electric drive transmission systems. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

27 pages, 30231 KiB  
Article
Modelling and Simulation of a 3MW, Seventeen-Phase Permanent Magnet AC Motor with AI-Based Drive Control for Submarines Under Deep-Sea Conditions
by Arun Singh and Anita Khosla
Energies 2025, 18(15), 4137; https://doi.org/10.3390/en18154137 - 4 Aug 2025
Abstract
The growing need for high-efficiency and reliable propulsion systems in naval applications, particularly within the evolving landscape of submarine warfare, has led to an increased interest in multiphase Permanent Magnet AC motors. This study presents a modelling and simulation approach for a 3MW, [...] Read more.
The growing need for high-efficiency and reliable propulsion systems in naval applications, particularly within the evolving landscape of submarine warfare, has led to an increased interest in multiphase Permanent Magnet AC motors. This study presents a modelling and simulation approach for a 3MW, seventeen-phase Permanent Magnet AC motor designed for submarine propulsion, integrating an AI-based drive control system. Despite the advantages of multiphase motors, such as higher power density and enhanced fault tolerance, significant challenges remain in achieving precise torque and variable speed, especially for externally mounted motors operating under deep-sea conditions. Existing control strategies often struggle with the inherent nonlinearities, unmodelled dynamics, and extreme environmental variations (e.g., pressure, temperature affecting oil viscosity and motor parameters) characteristic of such demanding deep-sea applications, leading to suboptimal performance and compromised reliability. Addressing this gap, this research investigates advanced control methodologies to enhance the performance of such motors. A MATLAB/Simulink framework was developed to model the motor, whose drive system leverages an AI-optimised dual fuzzy-PID controller refined using the Harmony Search Algorithm. Additionally, a combination of Indirect Field-Oriented Control (IFOC) and Space Vector PWM strategies are implemented to optimise inverter switching sequences for precise output modulation. Simulation results demonstrate significant improvements in torque response and control accuracy, validating the efficacy of the proposed system. The results highlight the role of AI-based propulsion systems in revolutionising submarine manoeuvrability and energy efficiency. In particular, during a test case involving a speed transition from 75 RPM to 900 RPM, the proposed AI-based controller achieves a near-zero overshoot compared to an initial control scheme that exhibits 75.89% overshoot. Full article
Show Figures

Figure 1

32 pages, 12538 KiB  
Article
Study on Vibration Characteristics and Harmonic Suppression of an Integrated Electric Drive System Considering the Electromechanical Coupling Effect
by Yue Cui, Hong Lu, Jinli Xu, Yongquan Zhang and Lin Zou
Actuators 2025, 14(8), 386; https://doi.org/10.3390/act14080386 - 4 Aug 2025
Abstract
The study of vibration characteristics and suppression methods in integrated electric drive systems of electric vehicles is of critical importance. To investigate these characteristics, both current harmonics within the motor and nonlinear factors within the drivetrain were considered. A 17-degree-of-freedom nonlinear torsional–planar dynamic [...] Read more.
The study of vibration characteristics and suppression methods in integrated electric drive systems of electric vehicles is of critical importance. To investigate these characteristics, both current harmonics within the motor and nonlinear factors within the drivetrain were considered. A 17-degree-of-freedom nonlinear torsional–planar dynamic model was developed, with electromagnetic torque and output speed as coupling terms. The model’s accuracy was experimentally validated, and the system’s dynamic responses were analyzed under different working conditions. To mitigate vibrations caused by torque ripple, a coordinated control strategy was proposed, combining a quasi-proportional multi-resonant (QPMR) controller and a full-frequency harmonic controller (FFHC). The results demonstrate that the proposed strategy effectively suppresses multi-order current harmonics in the driving motor, reduces torque ripple by 45.1%, and enhances transmission stability. In addition, the proposed electromechanical coupling model provides valuable guidance for the analysis of integrated electric drive systems. Full article
(This article belongs to the Section Actuators for Surface Vehicles)
Show Figures

Figure 1

23 pages, 4451 KiB  
Article
Energy Management and Power Distribution for Battery/Ultracapacitor Hybrid Energy Storage System in Electric Vehicles with Regenerative Braking Control
by Abdelsalam A. Ahmed, Young Il Lee, Saleh Al Dawsari, Ahmed A. Zaki Diab and Abdelsalam A. Ezzat
Math. Comput. Appl. 2025, 30(4), 82; https://doi.org/10.3390/mca30040082 - 3 Aug 2025
Viewed by 204
Abstract
This paper presents an advanced energy management system (EMS) for optimizing power distribution in a battery/ultracapacitor (UC) hybrid energy storage system (HESS) for electric vehicles (EVs). The proposed EMS accounts for all energy flow scenarios within a practical driving cycle. A regenerative braking [...] Read more.
This paper presents an advanced energy management system (EMS) for optimizing power distribution in a battery/ultracapacitor (UC) hybrid energy storage system (HESS) for electric vehicles (EVs). The proposed EMS accounts for all energy flow scenarios within a practical driving cycle. A regenerative braking control strategy is developed to maximize kinetic energy recovery using an induction motor, efficiently distributing the recovered energy between the UC and battery. Additionally, a power flow management approach is introduced for both motoring (discharge) and braking (charge) operations via bidirectional buck–boost DC-DC converters. In discharge mode, an optimal distribution factor is dynamically adjusted to balance power delivery between the battery and UC, maximizing efficiency. During charging, a DC link voltage control mechanism prioritizes UC charging over the battery, reducing stress and enhancing energy recovery efficiency. The proposed EMS is validated through simulations and experiments, demonstrating significant improvements in vehicle acceleration, energy efficiency, and battery lifespan. Full article
(This article belongs to the Special Issue Applied Optimization in Automatic Control and Systems Engineering)
Show Figures

Figure 1

14 pages, 2454 KiB  
Article
A Comparative Study of Storage Batteries for Electrical Energy Produced by Photovoltaic Panels
by Petru Livinti
Appl. Sci. 2025, 15(15), 8549; https://doi.org/10.3390/app15158549 (registering DOI) - 1 Aug 2025
Viewed by 191
Abstract
This article presents a comparative study of the storage of energy produced by photovoltaic panels by means of two types of batteries: Lead–Acid and Lithium-Ion batteries. The work involved the construction of a model in MATLAB-Simulink for controlling the loading/unloading of storage batteries [...] Read more.
This article presents a comparative study of the storage of energy produced by photovoltaic panels by means of two types of batteries: Lead–Acid and Lithium-Ion batteries. The work involved the construction of a model in MATLAB-Simulink for controlling the loading/unloading of storage batteries with energy produced by photovoltaic panels through a buck-type DC-DC convertor, controlled by means of the MPPT algorithm implemented through the method of incremental conductance based on a MATLAB function. The program for the MATLAB function was developed by the author in the C++ programming environment. The MPPT algorithm provides maximum energy transfer from the photovoltaic panels to the battery. The electric power taken over at a certain moment by Lithium-Ion batteries in photovoltaic panels is higher than the electric power taken over by Lead–Acid batteries. Two types of batteries were successively used in this model: Lead–Acid and Lithium-Ion batteries. Based on the results being obtained and presented in this work it may be affirmed that the storage battery Lithium-Ion is more performant than the Lead-Acid storage battery. At the Laboratory of Electrical Machinery and Drives of the Engineering Faculty of Bacau, an experimental stand was built for a storing system for electric energy produced by photovoltaic panels. For controlling DC-DC buck-type convertors, a program was developed in the programming environment Arduino IDE for implementing the MPPT algorithm for incremental conductance. The simulation part of this program is similar to that of the program developed in C++. Through conducting experiments, it was observed that, during battery charging, along with an increase in the charging voltage, an increase in the filling factor of the PWM signal controlling the buck DC-DC convertor also occurred. The findings of this study may be applicable to the storage of battery-generated electrical energy used for supplying electrical motors in electric cars. Full article
Show Figures

Figure 1

16 pages, 3379 KiB  
Article
Research on Electric Vehicle Differential System Based on Vehicle State Parameter Estimation
by Huiqin Sun and Honghui Wang
Vehicles 2025, 7(3), 80; https://doi.org/10.3390/vehicles7030080 - 30 Jul 2025
Viewed by 220
Abstract
To improve the stability and safety of electric vehicles during medium-to-high-speed cornering, this paper investigates torque differential control for dual rear-wheel hub motor drive systems, extending beyond traditional speed control based on the Ackermann steering model. A nonlinear three-degree-of-freedom vehicle dynamics model incorporating [...] Read more.
To improve the stability and safety of electric vehicles during medium-to-high-speed cornering, this paper investigates torque differential control for dual rear-wheel hub motor drive systems, extending beyond traditional speed control based on the Ackermann steering model. A nonlinear three-degree-of-freedom vehicle dynamics model incorporating the Dugoff tire model was established. By introducing the maximum correntropy criterion, an unscented Kalman filter was developed to estimate longitudinal velocity, sideslip angle at the center of mass, and yaw rate. Building upon the speed differential control achieved through Ackermann steering model-based rear-wheel speed calculation, improvements were made to the conventional exponential reaching law, while a novel switching function was proposed to formulate a new sliding mode controller for computing an additional yaw moment to realize torque differential control. Finally, simulations conducted on the Carsim/Simulink platform demonstrated that the maximum correntropy criterion unscented Kalman filter effectively improves estimation accuracy, achieving at least a 22.00% reduction in RMSE metrics compared to conventional unscented Kalman filter. With torque control exhibiting higher vehicle stability than speed control, the RMSE values of yaw rate and sideslip angle at the center of mass are reduced by at least 20.00% and 4.55%, respectively, enabling stable operation during medium-to-high-speed cornering conditions. Full article
Show Figures

Figure 1

25 pages, 2693 KiB  
Article
Adipokine and Hepatokines in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): Current and Developing Trends
by Salvatore Pezzino, Stefano Puleo, Tonia Luca, Mariacarla Castorina and Sergio Castorina
Biomedicines 2025, 13(8), 1854; https://doi.org/10.3390/biomedicines13081854 - 30 Jul 2025
Viewed by 347
Abstract
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a major global health challenge characterized by complex adipose–liver interactions mediated by adipokines and hepatokines. Despite rapid field evolution, a comprehensive understanding of research trends and translational advances remains fragmented. This study systematically maps the [...] Read more.
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a major global health challenge characterized by complex adipose–liver interactions mediated by adipokines and hepatokines. Despite rapid field evolution, a comprehensive understanding of research trends and translational advances remains fragmented. This study systematically maps the scientific landscape through bibliometric analysis, identifying emerging domains and future clinical translation directions. Methods: A comprehensive bibliometric analysis of 1002 publications from 2004 to 2025 was performed using thematic mapping, temporal trend evaluation, and network analysis. Analysis included geographical and institutional distributions, thematic cluster identification, and research paradigm evolution assessment, focusing specifically on adipokine–hepatokine signaling mechanisms and clinical implications. Results: The United States and China are at the forefront of research output, whereas European institutions significantly contribute to mechanistic discoveries. The thematic map analysis reveals the motor/basic themes residing at the heart of the field, such as insulin resistance, fatty liver, metabolic syndrome, steatosis, fetuin-A, and other related factors that drive innovation. Basic clusters include metabolic foundations (obesity, adipose tissue, FGF21) and adipokine-centered subjects (adiponectin, leptin, NASH). New themes focus on inflammation, oxidative stress, gut microbiota, lipid metabolism, and hepatic stellate cells. Niche areas show targeted fronts such as exercise therapies, pediatric/novel adipokines (chemerin, vaspin, omentin-1), and advanced molecular processes that focus on AMPK and endoplasmic-reticulum stress. Temporal analysis shows a shift from single liver studies to whole models that include the gut microbiota, mitochondrial dysfunction, and interactions between other metabolic systems. The network analysis identifies nine major clusters: cardiovascular–metabolic links, adipokine–inflammatory pathways, hepatokine control, and new therapeutic domains such as microbiome interventions and cellular stress responses. Conclusions: In summary, this study delineates current trends and emerging areas within the field and elucidates connections between mechanistic research and clinical translation to provide guidance for future research and development in this rapidly evolving area. Full article
(This article belongs to the Special Issue Advances in Hepatology)
Show Figures

Figure 1

19 pages, 8681 KiB  
Article
Design and Implementation of a Biomimetic Underwater Robot Propulsion System Inspired by Bullfrog Hind Leg Movements
by Yichen Chu, Yahui Wang, Yanhui Fu, Mingxu Ma, Yunan Zhong and Tianbiao Yu
Biomimetics 2025, 10(8), 498; https://doi.org/10.3390/biomimetics10080498 - 30 Jul 2025
Viewed by 370
Abstract
Underwater propulsion systems are the fundamental functional modules of underwater robotics and are crucial in intricate underwater operational scenarios. This paper proposes a biomimetic underwater robot propulsion scheme that is motivated by the hindlimb movements of the bullfrog. A multi-linkage mechanism was developed [...] Read more.
Underwater propulsion systems are the fundamental functional modules of underwater robotics and are crucial in intricate underwater operational scenarios. This paper proposes a biomimetic underwater robot propulsion scheme that is motivated by the hindlimb movements of the bullfrog. A multi-linkage mechanism was developed to replicate the “kicking-and-retracting” motion of the bullfrog by employing motion capture systems to acquire biological data on their hindlimb movements. The FDM 3D printing and PC board engraving techniques were employed to construct the experimental prototype. The prototype’s biomimetic and motion characteristics were validated through motion capture experiments and comparisons with a real bullfrog. The biomimetic bullfrog hindlimb propulsion system was tested with six-degree-of-freedom force experiments to evaluate its propulsion capabilities. The system achieved an average thrust of 2.65 N. The effectiveness of motor drive parameter optimization was validated by voltage comparison experiments, which demonstrated a nonlinear increase in thrust as voltage increased. This design approach, which transforms biological kinematic characteristics into mechanical drive parameters, exhibits excellent feasibility and efficacy, offering a novel solution and quantitative reference for underwater robot design. Full article
Show Figures

Figure 1

33 pages, 4686 KiB  
Article
Modeling of Dynamics of Nonideal Mixer at Oscillation and Aperiodic Damped Mode of Driving Member Motion
by Kuatbay Bissembayev, Zharilkassin Iskakov, Assylbek Jomartov and Akmaral Kalybayeva
Appl. Sci. 2025, 15(15), 8391; https://doi.org/10.3390/app15158391 - 29 Jul 2025
Viewed by 259
Abstract
The dynamics of the vibrational mode of motion of the driving member of a nonideal system, a mixing–whipping device based on a simple slide-crank mechanism, was studied. The highly nonlinear differential equations of motion were solved numerically by the Runge–Kutta method. The interaction [...] Read more.
The dynamics of the vibrational mode of motion of the driving member of a nonideal system, a mixing–whipping device based on a simple slide-crank mechanism, was studied. The highly nonlinear differential equations of motion were solved numerically by the Runge–Kutta method. The interaction of the mixing–whipping device with the nonideal excitation source causes the rotational speed of the engine shaft and the rotation angle of the driving member to fluctuate, accomplishing a damped process. The parameters of the device and the nonideal energy source have an effect on the kinematic, vibrational and energy characteristics of the system. An increase in the engine’s torque, crank length, number and radius of piston holes, and piston mass, as well as a decrease in the fluid’s density, leads to a reduction in the oscillation range of the crank angle, amplitude and period of angular velocity oscillations of the engine shaft and the mixing–whipping force power. The effects of a nonideal energy source may be used in designing a mixing–whipping device based on a slider-crank mechanism to select effective system parameters and an energy-saving motor in accordance with the requirements of technological processes and products. Full article
(This article belongs to the Special Issue Dynamics and Vibrations of Nonlinear Systems with Applications)
Show Figures

Figure 1

20 pages, 3170 KiB  
Article
Sensorless SPMSM Control for Heavy Handling Machines Electrification: An Innovative Proposal
by Marco Bassani, Andrea Toscani and Carlo Concari
Energies 2025, 18(15), 4021; https://doi.org/10.3390/en18154021 - 28 Jul 2025
Viewed by 281
Abstract
The electrification of road vehicles is a relatively mature sector, while other areas of mobility, such as construction machinery, are just beginning their transition to electric solutions. This work presents the design and realization of an integrated drive system specifically developed for retrofitting [...] Read more.
The electrification of road vehicles is a relatively mature sector, while other areas of mobility, such as construction machinery, are just beginning their transition to electric solutions. This work presents the design and realization of an integrated drive system specifically developed for retrofitting fan drives in heavy machinery, like bulldozers and tractors, utilizing existing 48 VDC batteries. By replacing or complementing internal combustion and hydraulic technologies with electric solutions, significant advantages in efficiency, reduced environmental impact, and versatility can be achieved. Focusing on the fan drive system addresses the critical challenge of thermal management in high ambient temperatures and harsh environments, particularly given the high current requirements for 3kW-class applications. A sensorless architecture has been selected to enhance reliability by eliminating mechanical position sensors. The developed fan drive has been extensively tested both on a braking bench and in real-world applications, demonstrating its effectiveness and robustness. Future work will extend this prototype to electrify additional onboard hydraulic motors in these machines, further advancing the electrification of heavy-duty equipment and improving overall efficiency and environmental impact. Full article
(This article belongs to the Special Issue Electronics for Energy Conversion and Renewables)
Show Figures

Figure 1

14 pages, 2299 KiB  
Article
Ergodicity Breaking and Ageing in a Vibrational Motor
by Yaqin Yang, Hongda Shi, Luchun Du and Wei Guo
Entropy 2025, 27(8), 802; https://doi.org/10.3390/e27080802 - 28 Jul 2025
Viewed by 198
Abstract
The ergodicity and ageing phenomena in a vibrational motor system driven by a periodic external force are investigated. Within the tailored parameter regime, the amplitude and frequency demonstrate contrasting effects on ergodicity. An increase of amplitude induces a transition from non-ergodic to ergodic [...] Read more.
The ergodicity and ageing phenomena in a vibrational motor system driven by a periodic external force are investigated. Within the tailored parameter regime, the amplitude and frequency demonstrate contrasting effects on ergodicity. An increase of amplitude induces a transition from non-ergodic to ergodic behavior, whereas a higher driving frequency leads to a transition from ergodic to non-ergodic dynamics. These transitions are attributed to the enhanced ability of larger amplitudes to overcome potential energy barriers and the improved responsiveness of the system to external variations at lower frequencies. Moreover, pronounced ageing effects are observed at low amplitudes or high frequencies. These findings offer new insights into the intrinsic dynamical mechanisms of vibrational motor systems and provide a theoretical foundation for predicting their long-term operational performance. Full article
(This article belongs to the Special Issue Non-Equilibrium Dynamics in Ultra-Cold Quantum Gases)
Show Figures

Figure 1

26 pages, 9128 KiB  
Article
Torque Ripple Reduction in BLDC Motors Using Phase Current Integration and Enhanced Zero Vector DTC
by Xingwei Sa, Han Wu, Guoqing Zhao and Zhenjun Zhao
Electronics 2025, 14(15), 2999; https://doi.org/10.3390/electronics14152999 - 28 Jul 2025
Viewed by 340
Abstract
To improve commutation accuracy and effectively suppress torque ripple in brushless DC motors (BLDCMs), this paper presents a novel commutation correction strategy integrated into an enhanced direct torque control (DTC) framework. The proposed method estimates the commutation angle error in real time by [...] Read more.
To improve commutation accuracy and effectively suppress torque ripple in brushless DC motors (BLDCMs), this paper presents a novel commutation correction strategy integrated into an enhanced direct torque control (DTC) framework. The proposed method estimates the commutation angle error in real time by analyzing the integral difference in phase currents across adjacent 30° conduction intervals, enabling dynamic and accurate commutation correction. This correction mechanism is seamlessly embedded into a modified DTC algorithm that employs a three-level torque hysteresis comparator and introduces a novel zero-voltage vector selection strategy to minimize torque ripple. Compared with conventional DTC approaches employing dual-loop control and standard zero vectors, the proposed method achieves up to a 58% reduction in torque ripple along with improved commutation precision, as demonstrated through both simulation and experimental validation. These results confirm the method’s effectiveness and its potential for application in high-performance BLDCMs drive systems. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

8 pages, 1122 KiB  
Proceeding Paper
Recent Developments in Four-In-Wheel Electronic Differential Systems in Electrical Vehicles
by Anouar El Mourabit and Ibrahim Hadj Baraka
Comput. Sci. Math. Forum 2025, 10(1), 17; https://doi.org/10.3390/cmsf2025010017 - 25 Jul 2025
Viewed by 114
Abstract
This manuscript investigates the feasibility of Four-In-Wheel Electronic Differential Systems (4 IW-EDSs) within contemporary electric vehicles (EVs), emphasizing their benefits for stability regulation predicated on steering angles. Through an extensive literature review, we conduct a comparative analysis of various in-wheel-motor models in terms [...] Read more.
This manuscript investigates the feasibility of Four-In-Wheel Electronic Differential Systems (4 IW-EDSs) within contemporary electric vehicles (EVs), emphasizing their benefits for stability regulation predicated on steering angles. Through an extensive literature review, we conduct a comparative analysis of various in-wheel-motor models in terms of power output, efficiency, and torque characteristics. Furthermore, we explore the distinctions between IW-EDSs and steer-by-wire systems, as well as conventional systems, while evaluating recent research findings to determine their implications for the evolution of electric mobility. Moreover, this paper addresses the necessity for fault-tolerant methodologies to boost reliability in practical applications. The findings yield valuable insights into the challenges and impacts associated with the implementation of differential steering control in four-wheel independent-drive electric vehicles. This study aims to explore the interaction between these systems, optimize torque distribution, and discover the most ideal control strategy that will improve maneuverability, stability, and energy efficiency, thereby opening up new frontiers in the development of next-generation electric vehicles with unparalleled performance and safety features. Full article
Show Figures

Figure 1

24 pages, 5256 KiB  
Article
In-Wheel Motor Fault Diagnosis Method Based on Two-Stream 2DCNNs with DCBA Module
by Junwei Zhu, Xupeng Ouyang, Zongkang Jiang, Yanlong Xu, Hongtao Xue, Huiyu Yue and Huayuan Feng
Sensors 2025, 25(15), 4617; https://doi.org/10.3390/s25154617 - 25 Jul 2025
Viewed by 207
Abstract
To address the challenge of fault diagnosis for in-wheel motors in four-wheel independent driving systems under variable driving conditions and harsh environments, this paper proposes a novel method based on two-stream 2DCNNs (two-dimensional convolutional neural networks) with a DCBA (depthwise convolution block attention) [...] Read more.
To address the challenge of fault diagnosis for in-wheel motors in four-wheel independent driving systems under variable driving conditions and harsh environments, this paper proposes a novel method based on two-stream 2DCNNs (two-dimensional convolutional neural networks) with a DCBA (depthwise convolution block attention) module. The main contributions are twofold: (1) A DCBA module is introduced to extract multi-scale features—including prominent, local, and average information—from grayscale images reconstructed from vibration signals across different domains; and (2) a two-stream network architecture is designed to learn complementary feature representations from time-domain and time–frequency-domain signals, which are fused through fully connected layers to improve diagnostic accuracy. Experimental results demonstrate that the proposed method achieves high recognition accuracy under various working speeds, loads, and road surfaces. Comparative studies with SENet, ECANet, CBAM, and single-stream 2DCNN models confirm its superior performance and robustness. The integration of DCBA with dual-domain feature learning effectively enhances fault feature extraction under complex operating conditions. Full article
(This article belongs to the Special Issue Intelligent Maintenance and Fault Diagnosis of Mobility Equipment)
Show Figures

Figure 1

19 pages, 736 KiB  
Article
Improved Adaptive Practical Tracking Control for Nonlinear Systems with Nontriangular Structured Uncertain Terms
by Liang Liu, Gang Sun and Rulan Bai
Actuators 2025, 14(8), 367; https://doi.org/10.3390/act14080367 - 24 Jul 2025
Viewed by 156
Abstract
This paper studies the adaptive practical tracking control (PTC) problem for a class of uncertain nonlinear systems (UNSs) with nontriangular structured uncertain terms and unknown parameters, where the boundary of nontriangular structured uncertain terms depends on all state variables. Based on the improved [...] Read more.
This paper studies the adaptive practical tracking control (PTC) problem for a class of uncertain nonlinear systems (UNSs) with nontriangular structured uncertain terms and unknown parameters, where the boundary of nontriangular structured uncertain terms depends on all state variables. Based on the improved adaptive backstepping technique, the state feedback tracking controller and update laws are first constructed. Then, by seeking the linear relationship between the state vector and the error vector, and by utilizing the comparison principle, it is verified that the developed adaptive PTC scheme can ensure that all signals of the closed-loop system are bounded and the tracking error converges to a bounded region. Finally, two examples, including a numerical example and the dual-motor drive servo system, are provided to show the effectiveness of this control method. Full article
(This article belongs to the Special Issue Analysis and Design of Linear/Nonlinear Control System)
Show Figures

Figure 1

Back to TopTop