Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = mono(ADP-ribosyl) transferase (MART)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1772 KiB  
Perspective
ADP-Ribosylation and Antiviral Resistance in Plants
by Nadezhda Spechenkova, Natalya O. Kalinina, Sergey K. Zavriev, Andrew J. Love and Michael Taliansky
Viruses 2023, 15(1), 241; https://doi.org/10.3390/v15010241 - 14 Jan 2023
Cited by 9 | Viewed by 3020
Abstract
ADP-ribosylation (ADPRylation) is a versatile posttranslational modification in eukaryotic cells which is involved in the regulation of a wide range of key biological processes, including DNA repair, cell signalling, programmed cell death, growth and development and responses to biotic and abiotic stresses. Members [...] Read more.
ADP-ribosylation (ADPRylation) is a versatile posttranslational modification in eukaryotic cells which is involved in the regulation of a wide range of key biological processes, including DNA repair, cell signalling, programmed cell death, growth and development and responses to biotic and abiotic stresses. Members of the poly(ADP-ribosyl) polymerase (PARP) family play a central role in the process of ADPRylation. Protein targets can be modified by adding either a single ADP-ribose moiety (mono(ADP-ribosyl)ation; MARylation), which is catalysed by mono(ADP-ribosyl) transferases (MARTs or PARP “monoenzymes”), or targets may be decorated with chains of multiple ADP-ribose moieties (PARylation), via the activities of PARP “polyenzymes”. Studies have revealed crosstalk between PARylation (and to a lesser extent, MARylation) processes in plants and plant–virus interactions, suggesting that these tight links may represent a novel factor regulating plant antiviral immunity. From this perspective, we go through the literature linking PARylation-associated processes with other plant regulation pathways controlling virus resistance. Once unraveled, these links may serve as the basis of innovative strategies to improve crop resistance to viruses under challenging environmental conditions which could mitigate yield losses. Full article
(This article belongs to the Special Issue Plant Viruses: Pirates of Cellular Pathways)
Show Figures

Figure 1

21 pages, 2876 KiB  
Review
MARTs and MARylation in the Cytosol: Biological Functions, Mechanisms of Action, and Therapeutic Potential
by Sridevi Challa, MiKayla S. Stokes and W. Lee Kraus
Cells 2021, 10(2), 313; https://doi.org/10.3390/cells10020313 - 3 Feb 2021
Cited by 48 | Viewed by 6663
Abstract
Mono(ADP-ribosyl)ation (MARylation) is a regulatory post-translational modification of proteins that controls their functions through a variety of mechanisms. MARylation is catalyzed by mono(ADP-ribosyl) transferase (MART) enzymes, a subclass of the poly(ADP-ribosyl) polymerase (PARP) family of enzymes. Although the role of PARPs and poly(ADP-ribosyl)ation [...] Read more.
Mono(ADP-ribosyl)ation (MARylation) is a regulatory post-translational modification of proteins that controls their functions through a variety of mechanisms. MARylation is catalyzed by mono(ADP-ribosyl) transferase (MART) enzymes, a subclass of the poly(ADP-ribosyl) polymerase (PARP) family of enzymes. Although the role of PARPs and poly(ADP-ribosyl)ation (PARylation) in cellular pathways, such as DNA repair and transcription, is well studied, the role of MARylation and MARTs (i.e., the PARP ‘monoenzymes’) are not well understood. Moreover, compared to PARPs, the development of MART-targeted therapeutics is in its infancy. Recent studies are beginning to shed light on the structural features, catalytic targets, and biological functions of MARTs. The development of new technologies to study MARTs have uncovered essential roles for these enzymes in the regulation of cellular processes, such as RNA metabolism, cellular transport, focal adhesion, and stress responses. These insights have increased our understanding of the biological functions of MARTs in cancers, neuronal development, and immune responses. Furthermore, several novel inhibitors of MARTs have been developed and are nearing clinical utility. In this review, we summarize the biological functions and molecular mechanisms of MARTs and MARylation, as well as recent advances in technology that have enabled detection and inhibition of their activity. We emphasize PARP-7, which is at the forefront of the MART subfamily with respect to understanding its biological roles and the development of therapeutically useful inhibitors. Collectively, the available studies reveal a growing understanding of the biochemistry, chemical biology, physiology, and pathology of MARTs. Full article
(This article belongs to the Special Issue Protein Mono-ADP-Ribosylation in the Control of Cell Functions)
Show Figures

Figure 1

25 pages, 1269 KiB  
Review
Mono(ADP-ribosyl)ation Enzymes and NAD+ Metabolism: A Focus on Diseases and Therapeutic Perspectives
by Palmiro Poltronieri, Angela Celetti and Luca Palazzo
Cells 2021, 10(1), 128; https://doi.org/10.3390/cells10010128 - 11 Jan 2021
Cited by 18 | Viewed by 6279
Abstract
Mono(ADP-ribose) transferases and mono(ADP-ribosyl)ating sirtuins use NAD+ to perform the mono(ADP-ribosyl)ation, a simple form of post-translational modification of proteins and, in some cases, of nucleic acids. The availability of NAD+ is a limiting step and an essential requisite for NAD+ [...] Read more.
Mono(ADP-ribose) transferases and mono(ADP-ribosyl)ating sirtuins use NAD+ to perform the mono(ADP-ribosyl)ation, a simple form of post-translational modification of proteins and, in some cases, of nucleic acids. The availability of NAD+ is a limiting step and an essential requisite for NAD+ consuming enzymes. The synthesis and degradation of NAD+, as well as the transport of its key intermediates among cell compartments, play a vital role in the maintenance of optimal NAD+ levels, which are essential for the regulation of NAD+-utilizing enzymes. In this review, we provide an overview of the current knowledge of NAD+ metabolism, highlighting the functional liaison with mono(ADP-ribosyl)ating enzymes, such as the well-known ARTD10 (also named PARP10), SIRT6, and SIRT7. To this aim, we discuss the link of these enzymes with NAD+ metabolism and chronic diseases, such as cancer, degenerative disorders and aging. Full article
(This article belongs to the Special Issue Protein Mono-ADP-Ribosylation in the Control of Cell Functions)
Show Figures

Figure 1

24 pages, 6694 KiB  
Article
An In-Silico Sequence-Structure-Function Analysis of the N-Terminal Lobe in CT Group Bacterial ADP-Ribosyltransferase Toxins
by Miguel R. Lugo and A. Rod Merrill
Toxins 2019, 11(6), 365; https://doi.org/10.3390/toxins11060365 - 21 Jun 2019
Cited by 6 | Viewed by 4143
Abstract
The C3-like toxins are single-domain proteins that represent a minimal mono-ADP-ribosyl transferase (mART) enzyme with a simple model scaffold for the entire cholera toxin (CT)-group. These proteins possess a single (A-domain) that modifies Rho proteins. In contrast, C2-like toxins require a binding/translocation partner [...] Read more.
The C3-like toxins are single-domain proteins that represent a minimal mono-ADP-ribosyl transferase (mART) enzyme with a simple model scaffold for the entire cholera toxin (CT)-group. These proteins possess a single (A-domain) that modifies Rho proteins. In contrast, C2-like toxins require a binding/translocation partner (B-component) for intoxication. These are A-only toxins that contain the E-x-E motif, modify G-actin, but are two-domains with a C-domain possessing enzymatic activity. The N-domain of the C2-like toxins is unstructured, and its function is currently unknown. A sequence-structure-function comparison was performed on the N-terminal region of the mART domain of the enzymatic component of the CT toxin group in the CATCH fold (3.90.210.10). Special consideration was given to the N-domain distal segment, the α-lobe (α1–α4), and its different roles in these toxin sub-groups. These results show that the role of the N-terminal α-lobe is to provide a suitable configuration (i) of the α2–α3 helices to feature the α3-motif that has a role in NAD+ substrate binding and possibly in the interaction with the protein target; (ii) the α3–α4 helices to provide the α3/4-loop with protein-protein interaction capability; and (iii) the α1-Ntail that features specialized motif(s) according to the toxin type (A-only or A-B toxins) exhibiting an effect on the catalytic activity via the ARTT-loop, with a role in the inter-domain stability, and with a function in the binding and/or translocation steps during the internalization process. Full article
(This article belongs to the Special Issue ADP-Ribosylating Toxin)
Show Figures

Figure 1

Back to TopTop