Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = modified nanocrystalline cellulose

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 9471 KiB  
Article
Engineering to Improve Mechanical Properties of Nanocellulose Hydrogels from Aloe Vera Bagasse and Banana Pseudostem for Biomedical Applications
by Rocío Hernández-Leal, Ángeles Iveth Licona-Aguilar, Miguel Antonio Domínguez-Crespo, Esther Ramírez-Meneses, Adela Eugenia Rodríguez-Salazar, Carlos Juárez-Balderas, Silvia Beatriz Brachetti-Sibaja and Aidé Minerva Torres-Huerta
Polymers 2025, 17(12), 1642; https://doi.org/10.3390/polym17121642 - 13 Jun 2025
Cited by 1 | Viewed by 685
Abstract
This work explores the synthesis of biomass-waste-derived cellulose nanocrystal hydrogel from aloe vera bagasse (AVB) and banana pseudostem (BPS). A wide variety of synthesis parameters such as acid concentration (45 wt.% and 55 wt.%), temperatures in the process of 25, 40, 45 and [...] Read more.
This work explores the synthesis of biomass-waste-derived cellulose nanocrystal hydrogel from aloe vera bagasse (AVB) and banana pseudostem (BPS). A wide variety of synthesis parameters such as acid concentration (45 wt.% and 55 wt.%), temperatures in the process of 25, 40, 45 and 50 °C, and reaction times of 30 and 60 min were analyzed during the acid hydrolysis to evaluate changes in the morphology, crystallinity, swelling, degradation temperature, and mechanical properties. The parameters that most influenced the crystallinity were the temperature and reaction time, showing good characteristics such as percentage crystallinity (89.66% for nanocellulose from C45t30T50 up to 97.58% for CNC-BPS C55t30T50), and crystal size (from 23.40 to 68.31 nm), which was worth considering for hydrogel synthesis. Cellulose nanocrystalline hydrogels from both biomass wastes can modify the crystallinity for tailored high-end engineering and biomedical applications, although using BPS obtained the best overall performance; also, properties such as swelling capability at pH = 4 of 225.39% for hydrogel C55t30T25 (H7), porosity (60.77 ± 2.60%) for C45t60T40 (H6), and gel % (86.60 ± 2.62%) for C55t60T50 (H8) were found. The mechanical test revealed a tensile strength at maximum load of 707.67 kPa (hydrogel H6) and 644.17 kPa (hydrogel H8), which are properties conferred by the CNC from BPS. Overall, CNC from BPS is recommended as a reinforcement for hydrogel synthesis due to its good mechanical properties and functionals, making it a promising material for biomedical applications. Full article
(This article belongs to the Special Issue Advanced Study on Polymer-Based Hydrogels)
Show Figures

Figure 1

20 pages, 2249 KiB  
Article
Mechanical Properties, Thermal Stability, and Formaldehyde Emission Analysis of Nanocellulose-Reinforced Urea–Formaldehyde Resin and Its Mechanism
by Xue Deng, Zhu Liu, Zhongwei Wang, Zhigang Wu, Dan Li, Shoulu Yang, Shiqiang He and Ning Ji
Polymers 2025, 17(10), 1402; https://doi.org/10.3390/polym17101402 - 20 May 2025
Viewed by 639
Abstract
In this research, a urea–formaldehyde (UF) resin was modified with nanocrystalline cellulose (NCC) and nanofibrillated cellulose (CNF), and the properties of the modified resin were comprehensively evaluated by combining the techniques of infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric [...] Read more.
In this research, a urea–formaldehyde (UF) resin was modified with nanocrystalline cellulose (NCC) and nanofibrillated cellulose (CNF), and the properties of the modified resin were comprehensively evaluated by combining the techniques of infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The results showed that (1) the introduction of NCC and CNF significantly changed the hydrogen bonding network of the UF resin, in which CNF enhanced the internal hydrogen bonding of the resin through its long-chain structure and elevated the cross-linking density. NCC increased the crystallinity of the resin, while CNF enhanced the overall performance of the resin by improving its dispersion. (2) The composite curing agent system significantly reduced the curing temperature of the resin, resulting in a more homogeneous and efficient curing reaction, and the CNF-modified UF exhibited better thermal stability. (3) The addition of NCC and CNF significantly improved the dry and water-resistant bonding strengths of the resins. In addition, the use of complex curing agent further enhanced the bonding strength, especially in the CNF-modified system; the addition of complex curing agent increased the dry bonding strength to 1.60 MPa, and the water-resistant bonding strength reached 1.13 MPa, which showed a stronger cross-linking network and structural stability. (4) The addition of NCC and CNF led to a significant reduction in the free formaldehyde content of UF resins, resulting in respective levels of 0.17% and 0.14%. For plywood bonded with the CNF-modified UF resin, formaldehyde emissions were measured at 0.35 mg/L, which were markedly lower than the 0.54 mg/L of the unmodified sample. This further highlights CNF’s effectiveness in minimizing formaldehyde release. (5) Overall, CNF is superior to NCC in improving the thermal stability, bonding strength, water resistance, formaldehyde release, and overall performance of the resin. The use of complex curing agents not only optimizes the curing process of the resin but also further enhances the modification effect, especially for CNF-modified resins, which show more significant performance advantages. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

16 pages, 15607 KiB  
Article
Vibration Welding of PLA/PHBV Blend Composites with Nanocrystalline Cellulose
by Patrycja Bazan, Barbara Kozub, Arif Rochman, Mykola Melnychuk, Paulina Majewska and Krzysztof Mroczka
Polymers 2024, 16(24), 3495; https://doi.org/10.3390/polym16243495 - 15 Dec 2024
Viewed by 1217
Abstract
Thermoplastic composites have garnered significant attention in various industries due to their exceptional properties, such as recyclability and ease of molding. In particular, biocomposites, which combine biopolymers with natural fibers, represent a promising alternative to petroleum-based materials, offering biodegradability and reduced environmental impact. [...] Read more.
Thermoplastic composites have garnered significant attention in various industries due to their exceptional properties, such as recyclability and ease of molding. In particular, biocomposites, which combine biopolymers with natural fibers, represent a promising alternative to petroleum-based materials, offering biodegradability and reduced environmental impact. However, there is limited knowledge regarding the efficacy of joining PLA/PHBV-based biocomposites modified with nanocrystalline cellulose (NCC) using vibration welding, which restricts their potential applications. This study demonstrates that vibration welding enables efficient bonding of PLA/PHBV composites with NCC, resulting in strong, biodegradable, and environmentally friendly materials. The investigation revealed that the addition of nanocrystalline cellulose (NCC) at 5, 10, and 15 wt.% significantly enhanced the strength of welded joints, with the highest strength achieved at 15% NCC content. Microstructural analysis using scanning electron microscopy (SEM) and deformation studies with digital image correlation (DIC) indicated that a higher NCC content led to greater local deformation, reducing the risk of brittle fracture. Mechanical hysteresis tests confirmed the composites’ favorable resistance to variable loads, highlighting their stability and energy dissipation capabilities. Optimization of welding parameters, such as vibration amplitude, welding time, and pressure, is crucial for achieving optimal mechanical performance. These findings suggest that PLA/PHBV composites modified with NCC can be utilized as durable and eco-friendly materials in various industries, including automotive and packaging. This research presents new opportunities for the development of biodegradable high-strength materials that can serve as alternatives to traditional plastics. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

31 pages, 24312 KiB  
Article
Composites Based on PLA/PHBV Blends with Nanocrystalline Cellulose NCC: Mechanical and Thermal Investigation
by Patrycja Bazan, Arif Rochman, Krzysztof Mroczka, Kamil Badura, Mykola Melnychuk, Przemysław Nosal and Aleksandra Węglowska
Materials 2024, 17(24), 6036; https://doi.org/10.3390/ma17246036 - 10 Dec 2024
Cited by 6 | Viewed by 1291
Abstract
This study investigates the physical and mechanical properties of biodegradable composites based on PLA/PHBV blends modified with different content of nanocrystalline cellulose (NCC) of 5, 10, and 15 wt.%. Density measurements reveal that the density of the composite increases with increasing NCC content. [...] Read more.
This study investigates the physical and mechanical properties of biodegradable composites based on PLA/PHBV blends modified with different content of nanocrystalline cellulose (NCC) of 5, 10, and 15 wt.%. Density measurements reveal that the density of the composite increases with increasing NCC content. Water absorption tests demonstrate a gradual increase in the composite water content with increasing incubation time, reaching stabilization after approximately 30 days. Mechanical testing was also carried out on both on conditioned samples after the process of hydrolytic degradation and accelerated thermal aging. The conditioned composites show an increase in the stiffness of the materials with increasing content of nanocrystalline cellulose. The ability to deform and the ability to absorb energy when the sample is dynamically loaded decrease. The repeated strength tests, after the process of incubation of samples in water and after the process of accelerated thermal aging, show the degradation of composite materials; however, it is noticed that the introduction of cellulose addition reduces the impact of the applied artificial environment in aging tests. The findings of this study indicate promising applications for these types of materials, characterized by high strength and biodegradability under appropriate conditions. Household items such as various containers or reusable packaging represent potential applications of these composites. Full article
Show Figures

Graphical abstract

17 pages, 7448 KiB  
Article
Nanocrystalline Cellulose to Reduce Superplasticizer Demand in 3D Printing of Cementitious Materials
by Rocío Jarabo, Elena Fuente, José Luis García Calvo, Pedro Carballosa and Carlos Negro
Materials 2024, 17(17), 4247; https://doi.org/10.3390/ma17174247 - 28 Aug 2024
Cited by 1 | Viewed by 897
Abstract
One challenge for 3D printing is that the mortar must flow easily through the printer nozzle, and after printing, it must develop compressive strength fast and high enough to support the layers on it. This requires an exact and difficult control of the [...] Read more.
One challenge for 3D printing is that the mortar must flow easily through the printer nozzle, and after printing, it must develop compressive strength fast and high enough to support the layers on it. This requires an exact and difficult control of the superplasticizer (SP) dosing. Nanocrystalline cellulose (CNC) has gained significant interest as a rheological modifier of mortar by interacting with the various cement components. This research studied the potential of nanocrystalline cellulose (CNC) as a mortar aid for 3D printing and its interactions with SPs. Interactions of a CNC and SP with cement suspensions were investigated by means of monitoring the effect on cement dispersion (by monitoring the particle chord length distributions in real time) and their impact on mortar mechanical properties. Although cement dispersion was increased by both CNC and SP, only CNC prevented cement agglomeration when shearing was reduced. Furthermore, combining SP and CNC led to faster development of compressive strength and increased compressive strength up to 30% compared to mortar that had undergone a one-day curing process. Full article
Show Figures

Figure 1

23 pages, 6509 KiB  
Article
Chemical Modification of Nanocrystalline Cellulose for Manufacturing of Osteoconductive Composite Materials
by Olga Solomakha, Mariia Stepanova, Anatoliy Dobrodumov, Iosif Gofman, Yulia Nashchekina, Alexey Nashchekin and Evgenia Korzhikova-Vlakh
Polymers 2024, 16(13), 1936; https://doi.org/10.3390/polym16131936 - 6 Jul 2024
Cited by 4 | Viewed by 1862
Abstract
Cellulose is one of the main renewable polymers whose properties are very attractive in many fields, including biomedical applications. The modification of nanocrystalline cellulose (NCC) opens up the possibility of creating nanomaterials with properties of interest as well as combining them with other [...] Read more.
Cellulose is one of the main renewable polymers whose properties are very attractive in many fields, including biomedical applications. The modification of nanocrystalline cellulose (NCC) opens up the possibility of creating nanomaterials with properties of interest as well as combining them with other biomedical polymers. In this work, we proposed the covalent modification of NCC with amphiphilic polyanions such as modified heparin (Hep) and poly(αL-glutamic acid) (PGlu). The modification of NCC should overcome two drawbacks in the production of composite materials based on poly(ε-caprolactone) (PCL), namely, (1) to improve the distribution of modified NCC in the PCL matrix, and (2) to provide the composite material with osteoconductive properties. The obtained specimens of modified NCC were characterized by Fourier-transform infrared spectroscopy and solid-state 13C nuclear magnetic resonance spectroscopy, dynamic and electrophoretic light scattering, as well as thermogravimetric analysis. The morphology of PCL-based composites containing neat or modified NCC as filler was studied by optical and scanning electron microscopy. The mechanical properties of the obtained composites were examined in tensile tests. The homogeneity of filler distribution as well as the mechanical properties of the composites depended on the method of NCC modification and the amount of attached polyanion. In vitro biological evaluation showed improved adhesion of human fetal mesenchymal stem cells (FetMSCs) and human osteoblast-like cells (MG-63 osteosarcoma cell line) to PCL-based composites filled with NCC bearing Hep or PGlu derivatives compared to pure PCL. Furthermore, these composites demonstrated the osteoconductive properties in the experiment on the osteogenic differentiation of FetMSCs. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

20 pages, 5210 KiB  
Article
Preparation and Properties of Reversible Emulsion Drilling Fluid Stabilized by Modified Nanocrystalline Cellulose
by Fei Liu, Yongfei Li, Xuewu Wang and Zhizeng Xia
Molecules 2024, 29(6), 1269; https://doi.org/10.3390/molecules29061269 - 13 Mar 2024
Cited by 7 | Viewed by 1732
Abstract
Reversible emulsion drilling fluids can concentrate the advantages of water-based drilling fluids and oil-based drilling fluids. Most of the existing reversible emulsion drilling fluid systems are surfactant-based emulsifier systems, which have the disadvantage of poor stability. However, the use of modified nanoparticles as [...] Read more.
Reversible emulsion drilling fluids can concentrate the advantages of water-based drilling fluids and oil-based drilling fluids. Most of the existing reversible emulsion drilling fluid systems are surfactant-based emulsifier systems, which have the disadvantage of poor stability. However, the use of modified nanoparticles as emulsifiers can significantly enhance the stability of reversible emulsion drilling fluids, but ordinary nanoparticles have the disadvantages of high cost and easily causing environmental pollution. In order to solve the shortcomings of the existing reversible emulsion drilling fluid system, the modified nanocrystalline cellulose was considered to be used as an emulsifier to prepare reversible emulsion drilling fluid. After research, the modified nanocrystalline cellulose NWX-3 can be used to prepare reversible emulsions, and on this basis, reversible emulsion drilling fluids can be constructed. Compared with the reversible emulsion drilling fluid stabilized by HRW-DMOB (1.3 vol.% emulsifier), the reversible emulsion drilling fluid stabilized by the emulsifier NWX-3 maintained a good reversible phase performance, filter cake removal, and oily drill cuttings treatment performance with less reuse of emulsifier (0.8 vol.%). In terms of temperature resistance (150 °C) and stability (1000 V < W/O emulsion demulsification voltage), it is significantly better than that of the surfactant system (temperature resistance 120 °C, 600 V < W/O emulsion demulsification voltage < 650 V). The damage of reservoir permeability of different types of drilling fluids was compared by physical simulation, and the damage order of core gas permeability was clarified: water-based drilling fluid > reversible emulsion drilling fluid > oil-based drilling fluid. Furthermore, the NMR states of different types of drilling fluids were compared as working fluids, and the main cause of core permeability damage was the retention of intrusive fluids in the core. Full article
Show Figures

Figure 1

17 pages, 4500 KiB  
Article
Cementitious Composites with Cellulose Nanomaterials and Basalt Fiber Pellets: Experimental and Statistical Modeling
by O. M. Hosny, A. M. Yasien, M. T. Bassuoni, K. Gourlay and A. Ghazy
Fibers 2024, 12(1), 12; https://doi.org/10.3390/fib12010012 - 17 Jan 2024
Cited by 2 | Viewed by 2416
Abstract
The production of high-performance fiber-reinforced cementitious composites (HPFRCCs) as a durable construction material using different types of fibers and nanomaterials critically relies on the synergic effects of the two materials as well as the cementitious composite mixes. In this study, novel HPFRCCs were [...] Read more.
The production of high-performance fiber-reinforced cementitious composites (HPFRCCs) as a durable construction material using different types of fibers and nanomaterials critically relies on the synergic effects of the two materials as well as the cementitious composite mixes. In this study, novel HPFRCCs were developed, which comprised high content (50%) slag by mass of the base binder as well as nano-silica (NS) or nano-crystalline cellulose (NCC). In addition, nano-fibrillated cellulose (NFC), and basalt fiber pellets (BFP), representing nano-/micro- and macro-fibers, respectively, were incorporated into the composites. The response surface method was used in this study’s statistical modeling part to evaluate the impact of key factors (NS, NCC, NFC, BFP) on the performance of 15 mixtures. The composites were assessed in terms of setting times, early- and late-age compressive strength, flexural performance, and resistance to freezing-thawing cycles, and the bulk trends were corroborated by fluid absorption, thermogravimetry, and microscopy tests. Incorporating NS/NCC in the slag-based binders catalyzed the reactivity of cement and slag with time, thus maintaining the setting times within an acceptable range (maximum 9 h), achieving high early- (above 33 MPa at 3 days) and later-age (above 70 MPa at 28 days) strength, and resistance to fluid absorption (less than 2.5%) and frost action (DF above 90%) of the composites. In addition, all nano-modified composites with multi-scale fibers showed notable improvement in terms of post-cracking flexural performance (Residual Strength Index above 40%), which qualify them for multiple infrastructure applications (i.e., shear key bridge joints) requiring a balance between high-strength properties, ductility, and durability. Full article
Show Figures

Figure 1

28 pages, 13284 KiB  
Article
Comparison of Autografts and Biodegradable 3D-Printed Composite Scaffolds with Osteoconductive Properties for Tissue Regeneration in Bone Tuberculosis
by Tatiana I. Vinogradova, Mikhail S. Serdobintsev, Evgenia G. Korzhikova-Vlakh, Viktor A. Korzhikov-Vlakh, Alexander S. Kaftyrev, Natalya M. Blum, Natalya Yu. Semenova, Dilyara S. Esmedlyaeva, Marina E. Dyakova, Yulia A. Nashchekina, Marine Z. Dogonadze, Natalia V. Zabolotnykh and Petr K. Yablonsky
Biomedicines 2023, 11(8), 2229; https://doi.org/10.3390/biomedicines11082229 - 8 Aug 2023
Cited by 4 | Viewed by 2615
Abstract
Tuberculosis remains one of the major health problems worldwide. Besides the lungs, tuberculosis affects other organs, including bones and joints. In the case of bone tuberculosis, current treatment protocols include necrectomy in combination with conventional anti-tuberculosis therapy, followed by reconstruction of the resulting [...] Read more.
Tuberculosis remains one of the major health problems worldwide. Besides the lungs, tuberculosis affects other organs, including bones and joints. In the case of bone tuberculosis, current treatment protocols include necrectomy in combination with conventional anti-tuberculosis therapy, followed by reconstruction of the resulting bone defects. In this study, we compared autografting and implantation with a biodegradable composite scaffold for bone-defect regeneration in a tuberculosis rabbit model. Porous three-dimensional composite materials were prepared by 3D printing and consisted of poly(ε-caprolactone) filled with nanocrystalline cellulose modified with poly(glutamic acid). In addition, rabbit mesenchymal stem cells were adhered to the surface of the composite scaffolds. The developed tuberculosis model was verified by immunological subcutaneous test, real-time polymerase chain reaction, biochemical markers and histomorphological study. Infected animals were randomly divided into three groups, representing the infection control and two experimental groups subjected to necrectomy, anti-tuberculosis treatment, and plastic surgery using autografts or 3D-composite scaffolds. The lifetime observation of the experimental animals and analysis of various biochemical markers at different time periods allowed the comparison of the state of the animals between the groups. Micro-computed tomography and histomorphological analysis enabled the evaluation of osteogenesis, inflammation and cellular changes between the groups, respectively. Full article
Show Figures

Graphical abstract

21 pages, 8014 KiB  
Article
Poly(lactic acid) and Nanocrystalline Cellulose Methacrylated Particles for Preparation of Cryogelated and 3D-Printed Scaffolds for Tissue Engineering
by Mariia Leonovich, Viktor Korzhikov-Vlakh, Antonina Lavrentieva, Iliyana Pepelanova, Evgenia Korzhikova-Vlakh and Tatiana Tennikova
Polymers 2023, 15(3), 651; https://doi.org/10.3390/polym15030651 - 27 Jan 2023
Cited by 8 | Viewed by 2803
Abstract
Different parts of bones possess different properties, such as the capacity for remodeling cell content, porosity, and protein composition. For various traumatic or surgical tissue defects, the application of tissue-engineered constructs seems to be a promising strategy. Despite significant research efforts, such constructs [...] Read more.
Different parts of bones possess different properties, such as the capacity for remodeling cell content, porosity, and protein composition. For various traumatic or surgical tissue defects, the application of tissue-engineered constructs seems to be a promising strategy. Despite significant research efforts, such constructs are still rarely available in the clinic. One of the reasons is the lack of resorbable materials, whose properties can be adjusted according to the intended tissue or tissue contacts. Here, we present our first results on the development of a toolbox, by which the scaffolds with easily tunable mechanical and biological properties could be prepared. Biodegradable poly(lactic acid) and nanocrystalline cellulose methacrylated particles were obtained, characterized, and used for preparation of three-dimensional scaffolds via cryogelation and 3D printing approaches. The composition of particles-based ink for 3D printing was optimized in order to allow formation of stable materials. Both the modified-particle cytotoxicity and the matrix-supported cell adhesion were evaluated and visualized in order to confirm the perspectives of materials application. Full article
(This article belongs to the Special Issue Biodegradable Polymers to Biomedical and Packaging Applications)
Show Figures

Graphical abstract

14 pages, 2622 KiB  
Article
Block Copolymer and Cellulose Templated Mesoporous TiO2-SiO2 Nanocomposite as Superior Photocatalyst
by Sudipto Pal, Antonietta Taurino, Massimo Catalano and Antonio Licciulli
Catalysts 2022, 12(7), 770; https://doi.org/10.3390/catal12070770 - 12 Jul 2022
Cited by 12 | Viewed by 2469
Abstract
A dual soft-templating method was developed to produce highly crystalline and mesoporous TiO2-SiO2 nanocomposites. Pluronic F127 as the structure-directing agent and pure cellulose as the surface area modifier were used as the templating media. While Pluronic F127 served as the [...] Read more.
A dual soft-templating method was developed to produce highly crystalline and mesoporous TiO2-SiO2 nanocomposites. Pluronic F127 as the structure-directing agent and pure cellulose as the surface area modifier were used as the templating media. While Pluronic F127 served as the sacrificing media for generating a mesoporous structure in an acidic pH, cellulose templating helped to increase the specific surface area without affecting the mesoporosity of the TiO2-SiO2 nanostructures. Calcination at elevated temperature removed all the organics and formed pure inorganic TiO2-SiO2 composites as revealed by TGA and FTIR analyses. An optimum amount of SiO2 insertion in the TiO2 matrix increased the thermal stability of the crystalline anatase phase. BET surface area measurement along with low angle XRD revealed the formation of a mesoporous structure in the composites. The photocatalytic activity was evaluated by the degradation of Rhodamine B, Methylene Blue, and 4-Nitrophenol as the model pollutants under solar light irradiation, where the superior photo-degradation activity of Pluronic F127/cellulose templated TiO2-SiO2 was observed compared to pure Pluronic templated composite and commercial Evonik P25 TiO2. The higher photocatalytic activity was achieved due to the higher thermal stability of the nanocrystalline anatase phase, the mesoporosity, and the higher specific surface area. Full article
Show Figures

Figure 1

21 pages, 3871 KiB  
Article
The Use of Surface-Modified Nanocrystalline Cellulose Integrated Membranes to Remove Drugs from Waste Water and as Polymers to Clean Oil Sands Tailings Ponds
by John Jackson, Ali Moallemi, Mu Chiao and David Plackett
Polymers 2021, 13(22), 3899; https://doi.org/10.3390/polym13223899 - 11 Nov 2021
Cited by 5 | Viewed by 2668
Abstract
There is an urgent environmental need to remediate waste water. In this study, the use of surface-modified nanocrystalline cellulose (CNC) to remove polluting drugs or chemicals from waste water and oil sands tailing ponds has been investigated. CNC was modified by either surface [...] Read more.
There is an urgent environmental need to remediate waste water. In this study, the use of surface-modified nanocrystalline cellulose (CNC) to remove polluting drugs or chemicals from waste water and oil sands tailing ponds has been investigated. CNC was modified by either surface adsorbing cationic or hydrophobic species or by covalent methods and integrated into membrane water filters. The removal of either diclofenac or estradiol from water was studied. Similar non-covalently modified CNC materials were used to flocculate clays from water or to bind naphthenic acids which are contaminants in tailing ponds. Estradiol bound well to hydrophobically modified CNC membrane filter systems. Similarly, diclofenac (anionic drug) bound well to covalently cationically modified CNC membranes. Non-covalent modified CNC effectively flocculated clay particles in water and bound two naphthenic acid chemicals (negatively charged and hydrophobic). Modified CNC integrated into water filter membranes may remove drugs from waste or drinking water and contaminants from tailing ponds water. Furthermore, the ability of modified CNC to flocculate clays particles and bind naphthenic acids may allow for the addition of modified CNC directly to tailing ponds to remove both contaminants. CNC offers an environmentally friendly, easily transportable and disposable novel material for water remediation purposes. Full article
(This article belongs to the Special Issue Advanced Polymeric Membranes Suitable for Water Treatment)
Show Figures

Figure 1

14 pages, 2135 KiB  
Article
Comparative Study on Different Modified Preparation Methods of Cellulose Nanocrystalline
by Xinhui Wang, Na Wang, Baoming Xu, Yili Wang, Jinyan Lang, Junliang Lu, Guorong Chen and Heng Zhang
Polymers 2021, 13(19), 3417; https://doi.org/10.3390/polym13193417 - 5 Oct 2021
Cited by 14 | Viewed by 3010
Abstract
Different modification process routes are used to improve the modified cellulose nanocrystalline (MCNC) with higher fatty acid by esterification reaction and graft polymerization to obtain certain hydrophobic properties. Two preparation methods, product structure and surface activity, are compared and explored. Experimental results show [...] Read more.
Different modification process routes are used to improve the modified cellulose nanocrystalline (MCNC) with higher fatty acid by esterification reaction and graft polymerization to obtain certain hydrophobic properties. Two preparation methods, product structure and surface activity, are compared and explored. Experimental results show that the modified product is still at the nanometer level and basically retains the crystal structure of the raw cellulose nanocrystalline (CNC). The energy consumption of the two preparation methods is low; however, the esterification method with co-reactant requires short reaction time, and the degree of substitution of the product is high. The modified product prepared by grafting polymerization method has a high HLB value and amphiphilicity, which can effectively reduce the surface tension of water. Therefore, it can be used as a green and environmentally friendly surface-active substance. Full article
(This article belongs to the Special Issue Functional Natural-Based Polymers)
Show Figures

Graphical abstract

12 pages, 2085 KiB  
Article
Cationically Modified Nanocrystalline Cellulose/Carboxyl-Functionalized Graphene Quantum Dots Nanocomposite Thin Film: Characterization and Potential Sensing Application
by Najwa Norimanina Muhammad Rosddi, Yap Wing Fen, Nur Ain Asyiqin Anas, Nur Alia Sheh Omar, Nur Syahira Md Ramdzan and Wan Mohd Ebtisyam Mustaqim Mohd Daniyal
Crystals 2020, 10(10), 875; https://doi.org/10.3390/cryst10100875 - 27 Sep 2020
Cited by 15 | Viewed by 3494
Abstract
In this study, highly functional cationically modified nanocrystalline cellulose (NCC)/carboxyl-functionalized graphene quantum dots (CGQD) has been described. The surface of NCC was first modified with hexadecyltrimethylammonium bromide (CTA) before combining with CGQD. The CGQD, CTA-NCC and CTA-NCC/CGQD nanocomposites thin films were prepared using [...] Read more.
In this study, highly functional cationically modified nanocrystalline cellulose (NCC)/carboxyl-functionalized graphene quantum dots (CGQD) has been described. The surface of NCC was first modified with hexadecyltrimethylammonium bromide (CTA) before combining with CGQD. The CGQD, CTA-NCC and CTA-NCC/CGQD nanocomposites thin films were prepared using spin coating technique. The obtained nanocomposite thin films were then characterized by using the Fourier transform infrared spectroscopy (FTIR) which confirmed the existence of hydroxyl groups, carboxyl groups and alkyl groups in CTA-NCC/CGQD. The optical properties of the thin films were characterized using UV–Vis spectroscopy. The absorption of CTA-NCC/CGQD was high with an optical band gap of 4.127 eV. On the other hand, the CTA-NCC/CGQD nanocomposite thin film showed positive responses towards glucose solution of different concentration using an optical method based on surface plasmon resonance phenomenon. This work suggests that the novel nanocomposite thin film has potential for a sensing application in glucose detection. Full article
Show Figures

Figure 1

14 pages, 5208 KiB  
Article
Properties of Graphene-Thermoplastic Polyurethane Flexible Conductive Film
by Yuehui Wang, Zhimin Zhou, Jiahao Zhang, Jinyuan Tang, Peiyu Wu, Ke Wang and Yuzhen Zhao
Coatings 2020, 10(4), 400; https://doi.org/10.3390/coatings10040400 - 18 Apr 2020
Cited by 22 | Viewed by 5922
Abstract
Flexible conductive films were prepared via a convenient blending method with thermoplastic polyurethane (TPU) as matrix and nanocrystalline cellulose (NCC) modified chemically reduced graphene oxide (RGO/NCC) as the conductive fillers. The relationships between the electrical and thermal properties as well as the tensile [...] Read more.
Flexible conductive films were prepared via a convenient blending method with thermoplastic polyurethane (TPU) as matrix and nanocrystalline cellulose (NCC) modified chemically reduced graphene oxide (RGO/NCC) as the conductive fillers. The relationships between the electrical and thermal properties as well as the tensile strength and electrothermal response performance of the composite film and the mass content of reduced graphene oxide (RGO) and the initial TPU concentration were systematically investigated. The experimental results show that the resistivity of the composite film with the mass content of RGO/NCC of 7 wt% and an initial TPU concentration of 20 wt% is the minimum of 8.1 Ω·mm. However, the thermal conductivity of composite film with mass content of RGO/NCC of 5 wt% and the initial TPU concentration of 30 wt% reaches a maximum of 0.3464 W·m−1·K−1, which is an increase of 56% compared with pure TPU. The tensile strength of the composite films with mass contents of RGO of 3 wt% prepared with the initial TPU concentrations of 20 wt% reaches the maximum of 43.2 MPa, which increases by a factor of 1.5 (the tensile strength of the pure TPU is 28.9 MPa). The composite conductive film has a fast electrothermal response. Furthermore, superhydrophobic composite conductive films were prepared by immersing the composite conductive film into fluorinated decyl polyhedral oligomeric silsesquioxane (F-POSS) ethanol solution. The water contact angle of the superhydrophobic composite conductive film reaches 158.19° and the resistivity of the superhydrophobic composite film slightly increases and still has good conductivity. Full article
Show Figures

Figure 1

Back to TopTop