Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (90)

Search Parameters:
Keywords = mitochondrial respiratory chain disorder

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6628 KB  
Article
Ammonia Stress Disrupts Intestinal Health in Litopenaeus vannamei Under Seawater and Low-Salinity Environments by Impairing Mucosal Integrity, Antioxidant Capability, Immunity, Energy Metabolism, and Microbial Community
by Yafei Duan, Yuxiu Nan, Jitao Li, Meng Xiao, Yun Wang and Ruijie Zhu
Antioxidants 2025, 14(11), 1383; https://doi.org/10.3390/antiox14111383 - 20 Nov 2025
Viewed by 384
Abstract
Ammonia is a key water quality factor limiting shrimp aquaculture. Intestinal health is closely associated with the nutrition, metabolism and immunity of shrimp. However, the response characteristics of the shrimp intestine to ammonia stress under seawater and low-salinity environments remain unclear. In this [...] Read more.
Ammonia is a key water quality factor limiting shrimp aquaculture. Intestinal health is closely associated with the nutrition, metabolism and immunity of shrimp. However, the response characteristics of the shrimp intestine to ammonia stress under seawater and low-salinity environments remain unclear. In this study, the shrimp Litopenaeus vannamei reared in seawater (salinity 30) or low-salinity (salinity 3) water were subjected to ammonia stress for 14 days, respectively. The changes in intestinal morphology, antioxidant capacity, immune response, energy metabolism, and microbial community were systematically investigated. The results showed that ammonia stress induced intestinal tissue damage in both seawater and low-salinity cultured shrimp, characterized by epithelial cell detachment and mucosal structural disruption. At the molecular level, ammonia stress triggered intestinal stress responses by interfering with key physiological processes such as antioxidant defense and endoplasmic reticulum stress. This process further led to varying degrees of disorders in physiological functions, including immune regulation, inflammatory response, and autophagic activity. In addition, ammonia stress disrupted the homeostatic balance of intestinal energy metabolism by affecting the expression of genes related to glucose metabolism, the tricarboxylic acid (TCA) cycle, and mitochondrial respiratory chain. In addition, ammonia stress increased the diversity of intestinal microbiota and caused microbial dysbiosis by increasing harmful bacteria (e.g., Vibrio) and decreasing beneficial bacterial groups (e.g., Bacillus). Ammonia stress generally enhanced intestinal microbiota chemotaxis. Specifically, predicted functions of microbiota in seawater-cultured shrimp showed increased carbohydrate, linoleic acid, and cofactor/vitamin metabolism; in low-salinity-cultured shrimp, functions including protein digestion/absorption, flavonoid/steroid hormone biosynthesis, and glycosaminoglycan degradation were reduced. These results revealed that ammonia stress compromised shrimp intestinal health by disrupting mucosal structure, triggering stress responses, and disturbing immune function, energy metabolism, and microbial homeostasis. Notably, low-salinity cultured shrimp exhibited more pronounced intestinal stress responses and greater physiological vulnerability than seawater-cultured counterparts. Full article
(This article belongs to the Special Issue Antioxidant Defenses and Oxidative Stress Management in Aquaculture)
Show Figures

Figure 1

19 pages, 1866 KB  
Article
Altered Co-Expression Patterns of Mitochondrial NADH-Dehydrogenase Genes in the Prefrontal Cortex of Rodent ADHD Models
by Polina A. Sylko, Arina A. Gromova, Zoia S. Fesenko, Evgeny V. Kanov, Anna B. Volnova, Raul R. Gainetdinov and Anastasia N. Vaganova
Int. J. Mol. Sci. 2025, 26(22), 11079; https://doi.org/10.3390/ijms262211079 - 16 Nov 2025
Viewed by 274
Abstract
Altered mitochondrial function is implicated in disorders characterized by prefrontal cortex activation deficits, including attention deficit hyperactivity disorder (ADHD). The expression of mitochondrial DNA-coded respiratory chain complex I genes (ND1–ND6) in the prefrontal cortex of ADHD animal models was estimated in [...] Read more.
Altered mitochondrial function is implicated in disorders characterized by prefrontal cortex activation deficits, including attention deficit hyperactivity disorder (ADHD). The expression of mitochondrial DNA-coded respiratory chain complex I genes (ND1–ND6) in the prefrontal cortex of ADHD animal models was estimated in the present study. ND gene expression was assessed in two publicly available datasets: GSE117357 (Adgrl3 knockout mice) and GSE173926 (MYT1L heterozygous knockout mice). Additionally, we measured NDs gene expression via qPCR in dopamine transporter knockout (DAT-KO) rats and their heterozygous (DAT-Het) littermates. Transcriptomic analysis revealed consistent ND1–ND6 expression profiles across both datasets, and co-expression among ND genes was significantly enhanced in ADHD models compared to wild-type controls. Whole-transcriptome analysis identified associations between ND3 and ND4L expression and genes involved in neural tissue-specific processes, exclusively in ADHD models. In DAT-KO and DAT-Het rats, NDs gene co-expression increased. Furthermore, in DAT-Het rats, which do not exhibit hyperactivity, the upregulation of ND4L expression relative to wild-type littermates was demonstrated. The observed changes in mitochondrial complex I gene co-expression in ADHD models suggest mitochondria may serve as a prospective target for adjuvant therapy. These findings highlight the need for further investigation into mitochondrial contributions to ADHD pathophysiology. Full article
(This article belongs to the Special Issue New Insights in Translational Bioinformatics: Second Edition)
Show Figures

Figure 1

17 pages, 1063 KB  
Review
Secondary Mitochondrial Dysfunction in Gaucher Disease Type I, II and III—Review of the Experimental and Clinical Evidence
by Mollie Dewsbury, Tyler Purcell, Derralynn Hughes, Aimee Donald, Iain P. Hargreaves and Karolina M. Stepien
Genes 2025, 16(11), 1269; https://doi.org/10.3390/genes16111269 - 28 Oct 2025
Viewed by 579
Abstract
Gaucher disease (GD) is an autosomal recessive metabolic disorder caused by pathogenic variants in the GBA1 gene, which encodes the lysosomal hydrolase β-glucocerebrosidase (GCase). The pathogenic defects result in a misfolded protein, which can trigger endoplasmic reticulum stress and an unfolded protein response [...] Read more.
Gaucher disease (GD) is an autosomal recessive metabolic disorder caused by pathogenic variants in the GBA1 gene, which encodes the lysosomal hydrolase β-glucocerebrosidase (GCase). The pathogenic defects result in a misfolded protein, which can trigger endoplasmic reticulum stress and an unfolded protein response within the affected cells. The reduced enzyme activity leads to accumulation of its substrates, glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph), within lysosomes or macrophages and with prominent disease manifestations in reticuloendothelial tissues such as liver, spleen and bone marrow. GCase defects alter both the mitochondria and the lysosome. In the lysosome, reduced GCase activity leads to glycosphingolipid build-up, disrupting lysosomal function and autophagy, thereby activating α-synuclein accumulation. GCase can also be imported into the mitochondria, where it fosters the integrity and function of mitochondrial respiratory chain (MRC) complex I. Thus, the reduced GCase activity impairs the normal mitochondrial function and increases oxidative stress in this organelle, which may contribute to cell death. However, further studies are required to confirm this mechanism of MRC dysfunction. In this review we have systematically evaluated the evidence for oxidative stress in individuals affected by GD, as well as the currently available therapies and adjunctive therapies. Therapies targeting oxidative stress may prove useful as adjuvant treatments for GD. Full article
Show Figures

Figure 1

31 pages, 1306 KB  
Review
Redox Control in Platelet Activity and Therapy
by Laura M. Dionisio, Yi Zheng and Jose A. Cancelas
Antioxidants 2025, 14(11), 1286; https://doi.org/10.3390/antiox14111286 - 27 Oct 2025
Viewed by 929
Abstract
Maintaining redox balance is essential for platelet physiology and overall cellular homeostasis. Upon activation, platelets generate reactive oxygen species (ROS), which act as signaling mediators in responses to collagen and are required for collagen-dependent thrombus formation. Multiple enzymatic systems contribute to platelet ROS [...] Read more.
Maintaining redox balance is essential for platelet physiology and overall cellular homeostasis. Upon activation, platelets generate reactive oxygen species (ROS), which act as signaling mediators in responses to collagen and are required for collagen-dependent thrombus formation. Multiple enzymatic systems contribute to platelet ROS production, with nicotinamide adenine dinucleotide (phosphate) oxidases (NOX isoforms) serving as the primary source, complemented by cyclooxygenase (COX), xanthine oxidase (XO), and the mitochondrial respiratory chain. Both oxidative and reductive stress disrupt this equilibrium and have been implicated in the pathophysiology of diverse diseases, including bleeding disorders, thrombosis, cardiovascular disorders, diabetes and cancer. In transfusion medicine, mitochondrial dysfunction and the resulting oxidative stress are key drivers of platelet lesion resulting in clearance defects and the progressive loss of hemostatic activity during storage. Targeting platelet-specific redox regulatory pathways represents a promising strategy to better define platelet contributions to human health and to develop interventions that may alter disease outcomes in which platelets play a central role. Full article
(This article belongs to the Special Issue Blood Cells and Redox Homeostasis in Health and Disease, 2nd Edition)
Show Figures

Graphical abstract

36 pages, 1854 KB  
Review
Molecular Signatures of Schizophrenia and Insights into Potential Biological Convergence
by Malak Saada and Shani Stern
Int. J. Mol. Sci. 2025, 26(19), 9830; https://doi.org/10.3390/ijms26199830 - 9 Oct 2025
Viewed by 1440
Abstract
Schizophrenia is a highly polygenic and clinically heterogeneous disorder. In this paper, we first review layer-specific evidence across genetics, epigenetics, transcriptomics, proteomics, and patient-derived induced pluripotent stem cell (iPSC) models, then integrate cross-layer findings. Genetics research identifies widespread risk architecture. Hundreds of loci [...] Read more.
Schizophrenia is a highly polygenic and clinically heterogeneous disorder. In this paper, we first review layer-specific evidence across genetics, epigenetics, transcriptomics, proteomics, and patient-derived induced pluripotent stem cell (iPSC) models, then integrate cross-layer findings. Genetics research identifies widespread risk architecture. Hundreds of loci from common, rare, and CNV analyses. Epigenetics reveals disease-associated DNA methylation and histone-mark changes. These occur at neuronally active enhancers and promoters, together with chromatin contacts that link non-coding risk to target genes. Transcriptomics show broad differential expression, isoform-level dysregulation, and disrupted co-expression modules. These alterations span synaptic signaling, mitochondrial bioenergetics, and immune programs. Proteomics demonstrates coordinated decreases in postsynaptic scaffold and mitochondrial respiratory-chain proteins in cortex, with complementary inflammatory signatures in serum/plasma. iPSC models recapitulate disease-relevant phenotypes: including fewer synaptic puncta and excitatory postsynaptic currents, electrophysiological immaturity, oxidative stress, and progenitor vulnerability. These same models show partial rescue under targeted perturbations. Integration across layers highlights convergent pathways repeatedly supported by ≥3 independent data types: synaptic signaling, immune/complement regulation, mitochondrial/energetic function, neurodevelopmental programs and cell-adhesion complexes. Within these axes, several cross-layer convergence genes/proteins (e.g., DLG4/PSD-95, C4A, RELN, NRXN1/NLGN1, OXPHOS subunits, POU3F2/BRN2, PTN) recur across cohorts and modalities. Framing results through cross-layer and shared-pathway convergence organizes heterogeneous evidence and prioritizes targets for mechanistic dissection, biomarker development, and translational follow-up. Full article
Show Figures

Figure 1

19 pages, 1479 KB  
Article
Blue Light (λ = 453 nm) Significantly Reduces TGF-β-Induced Fibroblast Differentiation Through Reversible Disruption of Mitochondrial Respiration, Glycolysis, and ATP Production Rate
by Pia Steentjes, Julia Krassovka, Christoph V. Suschek, Uwe Maus and Lisa Oezel
Biomedicines 2025, 13(9), 2231; https://doi.org/10.3390/biomedicines13092231 - 10 Sep 2025
Viewed by 716
Abstract
Background/Objectives: Abnormal differentiation of human skin fibroblasts into myofibroblasts contributes to fibrotic skin disorders such as hypertrophic scars, keloids, and Dupuytren’s disease. This process is characterized by increased fibroblast proliferation, enhanced differentiation into myofibroblasts, and reduced programmed cell death (apoptosis). We previously [...] Read more.
Background/Objectives: Abnormal differentiation of human skin fibroblasts into myofibroblasts contributes to fibrotic skin disorders such as hypertrophic scars, keloids, and Dupuytren’s disease. This process is characterized by increased fibroblast proliferation, enhanced differentiation into myofibroblasts, and reduced programmed cell death (apoptosis). We previously demonstrated that blue light irradiation (λ = 453 nm) significantly and dose-dependently inhibits both spontaneous and TGF-β-induced fibroblast differentiation. Methods: Because fibroblast differentiation depends on cellular energy metabolism, we investigated whether the inhibitory effect of blue light is linked to changes in the cells’ energy balance. Results: We found that blue light reduced TGF-β-induced differentiation, as shown by decreased levels of α-SMA and EDA-fibronectin, key markers of myofibroblast formation. This effect was strongly associated with almost complete inhibition of mitochondrial respiration, reduced glycolysis, a lower NAD+/NADH ratio, and decreased ATP production. ATP-dependent processes, including endocytosis and lysosomal activity, both essential parameters of fibroblast differentiation, were also strongly suppressed. Importantly, all these changes were fully reversible within 24 h after the last irradiation. Conclusions: Mechanistically, we propose that blue light triggers photochemical reduction in flavins in proteins of the respiratory chain and possibly the Krebs cycle, which temporarily alters cellular energy metabolism. These findings suggest that non-toxic blue light therapy (80 J/cm2) can effectively prevent factor-induced fibroblast differentiation and may serve as a standalone or supportive treatment to reduce fibrotic events such as scarring and keloid formation. Furthermore, our results indicate that targeting cellular energy metabolism, whether physically or pharmacologically, could be a promising strategy to prevent sclerotic skin disorders. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

26 pages, 7167 KB  
Article
Transcriptomic Analysis Reveals the Molecular Relationship Between Common Respiratory Infections and Parkinson’s Disease
by Abdulaziz Albeshri, Ahmed Bahieldin and Hani Mohammed Ali
Curr. Issues Mol. Biol. 2025, 47(9), 727; https://doi.org/10.3390/cimb47090727 - 7 Sep 2025
Viewed by 1072
Abstract
Parkinson’s disease (PD) is one of the most rapidly growing neurological disorders globally. The molecular relationship between common respiratory infections (RIs) and idiopathic Parkinson’s disease (iPD) remains a controversial issue. Multiple studies have linked acute respiratory infections to PD, but the molecular mechanism [...] Read more.
Parkinson’s disease (PD) is one of the most rapidly growing neurological disorders globally. The molecular relationship between common respiratory infections (RIs) and idiopathic Parkinson’s disease (iPD) remains a controversial issue. Multiple studies have linked acute respiratory infections to PD, but the molecular mechanism behind this connection is not significantly defined. Therefore, the aim of our study was to investigate potential molecular interactions between RIs and PD. We retrieved eight publicly available RNA-seq datasets from the NCBI Gene Expression Omnibus (NCBI GEO) and performed extensive bioinformatics analysis, including differential gene expression (DGE) analysis, the identification of overlapped differentially expressed genes (DEGs), weighted gene co-expression network analysis (WGCNA), pathway and functional enrichment analysis, the construction of protein–protein networks, and the identification of hub genes. Additionally, we applied a machine learning method, a Random Forest model (RF), to external RIs datasets to identify the most important genes. We found that ribosomal subunits, mitochondrial complex proteins, proteasome subunits, and proteins encoding ubiquitin are simultaneously downregulated and co-expressed in RIs and PD. Dysregulation of these proteins may disturb multiple pathways, such as those responsible for ribosome biogenesis, protein synthesis, autophagy, and apoptosis; the ubiquitin–proteasome system (UPS); and the mitochondrial respiratory chain. These processes have been implicated in PD’s pathology, namely in the aggregation of α-synuclein, mitochondrial dysfunction, and the death of dopaminergic neuron cells. Our findings suggest that there are significant similarities in transcriptional responses and dysfunctional molecular mechanisms between RIs, PD, and aging. RIs may modulate PD-relevant pathways in an age- or immune-dependent manner; longitudinal studies are needed to examine the RIs risk factor. Therefore, future studies should experimentally investigate the influence of age, vaccination status, infection type, and severity to clarify the role of RIs in PD’s pathogenesis. Full article
(This article belongs to the Special Issue Omics Analysis for Personalized Medicine)
Show Figures

Figure 1

72 pages, 1538 KB  
Review
Blueprint of Collapse: Precision Biomarkers, Molecular Cascades, and the Engineered Decline of Fast-Progressing ALS
by Matei Șerban, Corneliu Toader and Răzvan-Adrian Covache-Busuioc
Int. J. Mol. Sci. 2025, 26(16), 8072; https://doi.org/10.3390/ijms26168072 - 21 Aug 2025
Cited by 4 | Viewed by 2074
Abstract
Amyotrophic lateral sclerosis (ALS) is still a heterogeneous neurodegenerative disorder that can be identified clinically and biologically, without a strong set of biomarkers that can adequately measure its fast rate of progression and molecular heterogeneity. In this review, we intend to consolidate the [...] Read more.
Amyotrophic lateral sclerosis (ALS) is still a heterogeneous neurodegenerative disorder that can be identified clinically and biologically, without a strong set of biomarkers that can adequately measure its fast rate of progression and molecular heterogeneity. In this review, we intend to consolidate the most relevant and timely advances in ALS biomarker discovery, in order to begin to bring molecular, imaging, genetic, and digital areas together for potential integration into a precision medicine approach to ALS. Our goal is to begin to display how several biomarkers in development (e.g., neurofilament light chain (NfL), phosphorylated neurofilament heavy chain (pNfH), TDP-43 aggregates, mitochondrial stress markers, inflammatory markers, etc.) are changing our understanding of ALS and ALS dynamics. We will attempt to provide a framework for thinking about biomarkers in a systematic way where our candidates are not signals alone but part of a tethered pathophysiological cascade. We are particularly interested in the fast progressor phenotype, a devastating and under-characterized subset of ALS due to a rapid axonal degeneration, early respiratory failure, and very short life span. We will try to highlight the salient molecular features of this ALS subtype, including SOD1 A5V toxicity, C9orf72 repeats, FUS variants, mitochondrial collapse, and impaired autophagy mechanisms, and relate these features to measurable blood and CSF (biomarkers) and imaging platforms. We will elaborate on several interesting tools, for example, single-cell transcriptomics, CSF exosomal cargo analysis, MRI techniques, and wearable sensor outputs that are developing into high-resolution windows of disease progression and onset. Instead of providing a static catalog, we plan on providing a conceptual roadmap to integrate biomarker panels that will allow for earlier diagnosis, real-time disease monitoring, and adaptive therapeutic trial design. We hope this synthesis will make a meaningful contribution to the shift from observational neurology to proactive biologically informed clinical care in ALS. Although there are still considerable obstacles to overcome, the intersection of a precise molecular or genetic association approach, digital phenotyping, and systems-level understandings may ultimately redefine how we monitor, care for, and treat this challenging neurodegenerative disease. Full article
(This article belongs to the Special Issue Amyotrophic Lateral Sclerosis (ALS): Pathogenesis and Treatments)
Show Figures

Figure 1

15 pages, 1684 KB  
Article
Dysfunctional Electron Transport Chain Assembly in COXPD8
by Gisela Beutner, Heidie L. Huyck, Gail Deutsch, Gloria S. Pryhuber and George A. Porter Jr.
J. Cardiovasc. Dev. Dis. 2025, 12(8), 318; https://doi.org/10.3390/jcdd12080318 - 20 Aug 2025
Viewed by 851
Abstract
Combined oxidative phosphorylation deficiency type 8 (COXPD8) is an autosomal recessive mitochondrial disorder caused by a mutation of the nuclear encoded mitochondrial alanyl-tRNA synthetase gene (AARS2). Clinical manifestations of COXPD8 include lethal infantile hypertrophic cardiomyopathy, pulmonary hypoplasia, generalized muscle weakness, and neurological involvement. [...] Read more.
Combined oxidative phosphorylation deficiency type 8 (COXPD8) is an autosomal recessive mitochondrial disorder caused by a mutation of the nuclear encoded mitochondrial alanyl-tRNA synthetase gene (AARS2). Clinical manifestations of COXPD8 include lethal infantile hypertrophic cardiomyopathy, pulmonary hypoplasia, generalized muscle weakness, and neurological involvement. We report a patient with COXPD8 caused by two mutations in the AARS2 gene. The c.1738 C>G mutation has not been previously reported, while the c.2872 C>T mutation has been associated with pulmonary hypoplasia and hypertrophic cardiomyopathy. Cardiac tissue, obtained through the LungMAP program, showed that, compared to other patients of similar ages, these two mutations affect not only the assembly of functional monomeric complexes (Cx) I and IV of the electron transport chain (ETC) but also limit the formation of respiratory supercomplexes. This patient had altered expression of some ETC proteins but normal expression of several enzymes of the tricarboxylic acid cycle. We also show that one of the control/comparison patients had an undiagnosed ETC Cx IV deficiency. In conclusion, our data demonstrate that the two mutations of the AARS2 gene are associated with failed assembly of Cx I and Cx IV and reduced formation of respiratory supercomplexes of the ETC, likely leading to acute bioenergetic stress. Full article
(This article belongs to the Section Cardiac Development and Regeneration)
Show Figures

Graphical abstract

24 pages, 1028 KB  
Review
Molecular Links Between Metabolism and Mental Health: Integrative Pathways from GDF15-Mediated Stress Signaling to Brain Energy Homeostasis
by Minju Seo, Seung Yeon Pyeon and Man S. Kim
Int. J. Mol. Sci. 2025, 26(15), 7611; https://doi.org/10.3390/ijms26157611 - 6 Aug 2025
Viewed by 2366
Abstract
The relationship between metabolic dysfunction and mental health disorders is complex and has received increasing attention. This review integrates current research to explore how stress-related growth differentiation factor 15 (GDF15) signaling, ceramides derived from gut microbiota, and mitochondrial dysfunction in the brain interact [...] Read more.
The relationship between metabolic dysfunction and mental health disorders is complex and has received increasing attention. This review integrates current research to explore how stress-related growth differentiation factor 15 (GDF15) signaling, ceramides derived from gut microbiota, and mitochondrial dysfunction in the brain interact to influence both metabolic and psychiatric conditions. Evidence suggests that these pathways converge to regulate brain energy homeostasis through feedback mechanisms involving the autonomic nervous system and the hypothalamic–pituitary–adrenal axis. GDF15 emerges as a key stress-responsive biomarker that links peripheral metabolism with brainstem GDNF family receptor alpha-like (GFRAL)-mediated anxiety circuits. Meanwhile, ceramides impair hippocampal mitochondrial function via membrane incorporation and disruption of the respiratory chain. These disruptions may contribute to sustained pathological states such as depression, anxiety, and cognitive dysfunction. Although direct mechanistic data are limited, integrating these pathways provides a conceptual framework for understanding metabolic–psychiatric comorbidities. Furthermore, differences in age, sex, and genetics may influence these systems, highlighting the need for personalized interventions. Targeting mitochondrial function, GDF15-GFRAL signaling, and gut microbiota composition may offer new therapeutic strategies. This integrative perspective helps conceptualize how metabolic and psychiatric mechanisms interact for understanding the pathophysiology of metabolic and psychiatric comorbidities and highlights therapeutic targets for precision medicine. Full article
Show Figures

Figure 1

22 pages, 2565 KB  
Article
Efficacy and Safety of 5-Aminolevulinic Acid Hydrochloride Combined with Sodium Ferrous Citrate in Pediatric Patients with Leigh Syndrome and Central Nervous System Disorders: An Initial Exploratory Trial with a Double-Blind Placebo-Controlled Period, Followed by an Open-Label Period and a Subsequent Long-Term Administration Study
by Yuichi Abe, Toshimitsu Hamasaki, Jun Natsume, Yukiko Mogami, Kei Murayama, Hideaki Shiraishi, Yuki Abe, Satoko Kumada, Ryuta Tanaka, Kenji Ihara, Takafumi Sakakibara, Yasushi Okazaki, Hitoshi Nakagawa, Kiwamu Takahashi, Mitsugu Yamauchi, Motowo Nakajima and Akira Ohtake
Life 2025, 15(8), 1168; https://doi.org/10.3390/life15081168 - 23 Jul 2025
Viewed by 1626
Abstract
An explorative study was conducted to evaluate the efficacy and safety of 5-aminolevulinic acid hydrochloride combined with sodium ferrous citrate (SPP-004) in 10 pediatric patients with Leigh syndrome (LS) aged 3–24 months in 10 institutions between December 2014 and July 2019. The patients [...] Read more.
An explorative study was conducted to evaluate the efficacy and safety of 5-aminolevulinic acid hydrochloride combined with sodium ferrous citrate (SPP-004) in 10 pediatric patients with Leigh syndrome (LS) aged 3–24 months in 10 institutions between December 2014 and July 2019. The patients were randomized and allocated to the SPP-004 or placebo group for a 12-week double-blind period, followed by a 12-week open-label period with SPP-004 and then a long-term study of up to 180 weeks. The efficacy and safety were evaluated using the Newcastle Pediatric Mitochondrial Disease Scale (NPMDS) and adverse events (AEs), respectively. No significant differences were found between groups in NPMDS scores, but prolonged SPP-004 treatment stabilized or improved scores. During the initial double-blind phase, the serum lactate levels increased in the placebo group but not in the SPP-004 group. Over the period of prolonged treatment with SPP-004, the average serum lactate level gradually decreased to a normal level. One patient died due to heart failure, presumably due to an underlying disease. Overall, 7 out of 10 patients received SPP-004 without developing severe AEs until the termination of the long-term study. Given the severe symptoms and poor prognosis of pediatric LS, NPMDS scores were indicative of stabilization in pediatric LS patients treated with SPP-004. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

19 pages, 3308 KB  
Article
Transcriptomic Changes in the Frontal Cortex of Juvenile Pigs with Diet-Induced Metabolic Dysfunction-Associated Liver Disease
by Kyle Mahon, Mohammed Abo-Ismail, Emily Auten, Rodrigo Manjarin and Magdalena Maj
Biomedicines 2025, 13(7), 1567; https://doi.org/10.3390/biomedicines13071567 - 26 Jun 2025
Viewed by 1094
Abstract
Background/Objectives: Neurodegenerative disorders have a complex multifactorial pathogenesis that develop decades before the initial symptoms occur. One of the crucial factors in the development of neurodegenerative disorders is an unbalanced diet. A pediatric animal model of diet-induced metabolic dysfunction-associated steatotic liver disease [...] Read more.
Background/Objectives: Neurodegenerative disorders have a complex multifactorial pathogenesis that develop decades before the initial symptoms occur. One of the crucial factors in the development of neurodegenerative disorders is an unbalanced diet. A pediatric animal model of diet-induced metabolic dysfunction-associated steatotic liver disease (MASLD) was established by feeding juvenile Iberian pigs a diet high in fat and fructose for 10 weeks. The aim of this study was to investigate the initial molecular imbalances in the frontal cortex (FC) of diet-induced juvenile MASLD pig model and determine whether these changes are associated with neuronal loss. Methods: Eighteen 15-day-old Iberian pigs were randomly assigned to either a standard diet (SD) or a Western diet (WD) for 10 weeks. A short-term recognition memory test and animal activity was recorded during the study. Animals were euthanized in week 10, and the FC and hippocampus (HIP) tissue samples were collected for immunohistochemistry and transcriptomics analyses. Results: WD-fed pigs developed MASLD. There were no significant differences in animals’ activity or recognition memory between WD and SD. To identify and quantify mature neurons, NeuN immunostaining intensity was measured, which was significantly lower in the FC of WD than SD (p ≤ 0.05), but it did not change in HIP (p ≥ 0.05). The Wnt/β-catenin pathway, which promotes neuronal survival and neurogenesis, was downregulated in FC of WD-fed pigs (p ≤ 0.05). Similarly, cytoskeleton organization and extracellular matrix biological processes were downregulated in FC of WD-fed pigs (p ≤ 0.05), whereas the mitochondrial respiratory chain complex and mitochondrion increased in FC of WD compared with SD (p ≤ 0.01). There were several other significantly modulated pathways including signal transduction, cell migration, axon guidance, and calcium ion binding. Conclusions: The high-fructose, high-fat diet led to neuronal loss in the frontal cortex of MASLD pigs and dysregulated gene expression of the Wnt/β-catenin signaling pathway, cytoskeleton organization, extracellular matrix, and mitochondrial respiratory chain—all pathways that are found deregulated in neurodegnerative diseases. Full article
(This article belongs to the Special Issue Cellular and Molecular Biology of Neurodegenerative Disorders)
Show Figures

Figure 1

29 pages, 3549 KB  
Article
Physiological Muscle Function Is Controlled by the Skeletal Endocannabinoid System in Murine Skeletal Muscles
by Nyamkhuu Ganbat, Zoltán Singlár, Péter Szentesi, Elena Lilliu, Zoltán Márton Kohler, László Juhász, Anikó Keller-Pintér, Xaver Koenig, Fabio Arturo Iannotti, László Csernoch and Mónika Sztretye
Int. J. Mol. Sci. 2025, 26(11), 5291; https://doi.org/10.3390/ijms26115291 - 30 May 2025
Cited by 1 | Viewed by 1548
Abstract
The endocannabinoid system (ECS) is known to regulate crucial bodily functions, including healthy muscle activity. However, its precise roles in normal skeletal muscle function and the development of muscle disorders remain unclear. Previously, we developed a tamoxifen-inducible, skeletal muscle-specific CB1 receptor knockdown [...] Read more.
The endocannabinoid system (ECS) is known to regulate crucial bodily functions, including healthy muscle activity. However, its precise roles in normal skeletal muscle function and the development of muscle disorders remain unclear. Previously, we developed a tamoxifen-inducible, skeletal muscle-specific CB1 receptor knockdown (skmCB1-KD) mouse model using the Cre/LoxP system. In this study, we aimed to clarify the mechanisms behind the observed reduction in muscle force generation in these mice. To investigate this, we analyzed calcium dynamics following electrical stimulation-induced muscle fatigue, assessed store-operated calcium entry (SOCE), and performed functional analysis of mitochondrial respiration. Our findings suggest that the reduced muscle performance observed in vivo likely arises from interconnected alterations in ATP production by mitochondria. Moreover, in skmCB1-KD mice, we detected a significant decrease in a component of the respiratory chain (complex IV) and a slowed dissipation of mitochondrial membrane potential upon the addition of an un-coupler (FCCP). Full article
(This article belongs to the Special Issue Calcium Homeostasis of Cells in Health and Disease: Third Edition)
Show Figures

Graphical abstract

9 pages, 514 KB  
Case Report
Cellular Metabolic Disorders in a Cohort of Patients with Sjogren’s Disease
by Julian L. Ambrus, Alexander Jacob and Abhay A. Shukla
Int. J. Mol. Sci. 2025, 26(10), 4668; https://doi.org/10.3390/ijms26104668 - 13 May 2025
Viewed by 2030
Abstract
Metabolism disorders have been seen in multiple autoimmune diseases, including SLE and Sjogren’s disease. The current studies were designed to evaluate mutations in genes involved in metabolism in a cohort of patients with Sjogren’s disease, diagnosed from clinical criteria and the presence of [...] Read more.
Metabolism disorders have been seen in multiple autoimmune diseases, including SLE and Sjogren’s disease. The current studies were designed to evaluate mutations in genes involved in metabolism in a cohort of patients with Sjogren’s disease, diagnosed from clinical criteria and the presence of antibodies to salivary gland antigens. Patients were from an Immunology clinic that follows a large population of patients with autoimmune and metabolic disorders. The patients included in these studies were patients who met the criteria for Sjogren’s disease and for whom we were able to obtain genetic studies, sequencing of the mitochondrial DNA, and whole exome sequencing. There were 194 of these patients, and 192 had mutations in one or more gene involved in metabolism: 188 patients had mutations in mitochondrial respiratory chain genes, 17 patients had mutations in mitochondrial tRNA genes, 10 patients had mutations in mitochondrial DLOOP regions, 6 patients had mutations involved in carnitine transport, 6 patients had mutations in genes causing mitochondrial depletion, and 7 patients had glycogen storage diseases. In all cases, the treatment of the metabolic disorder led to symptomatic improvement in energy, exercise tolerance, gastrointestinal dysmotility, and the management of infections. In conclusion, metabolic disorders are common in patients with Sjogren’s disease and may be one of the factors leading to the initiation of the disease. The treatment of patients with Sjogren’s disease should include the treatment of the underlying/associated metabolic disorder. Full article
Show Figures

Figure 1

23 pages, 3111 KB  
Article
HIV-1 Tat Impairment of Mitochondrial Respiration via Complexes I and II Can Be Ameliorated by Allopregnanolone in Opioid-Exposed or Opioid-Naïve Cells and Mice
by Fakhri Mahdi, Zia Shariat-Madar and Jason J. Paris
Antioxidants 2025, 14(4), 420; https://doi.org/10.3390/antiox14040420 - 31 Mar 2025
Cited by 1 | Viewed by 925
Abstract
HIV-associated neurocognitive disorders are prevalent despite antiretroviral intervention. Some HIV virotoxins, such as the trans-activator of transcription (Tat), are not targeted by antiretrovirals, and their neurotoxic actions may be exacerbated by opioids. Both Tat and morphine disrupt mitochondrial function, which may promote neurotoxicity, [...] Read more.
HIV-associated neurocognitive disorders are prevalent despite antiretroviral intervention. Some HIV virotoxins, such as the trans-activator of transcription (Tat), are not targeted by antiretrovirals, and their neurotoxic actions may be exacerbated by opioids. Both Tat and morphine disrupt mitochondrial function, which may promote neurotoxicity, but the mechanisms are poorly understood. Herein, we assess the capacity of HIV Tat and morphine to alter the fundamental ability of mitochondria to generate and transfer energy along the electron transport chain (ETC). We find that exposure to Tat inhibits mitochondrial respiration driven by ETC complexes I or II in a concentration-dependent manner. Findings were consistent across models of permeabilized neuroblastoma cells, murine-derived mitoplasts, and mitochondria derived from mice exposed to Tat in vivo. In cell culture models, Tat promoted Ca2+ influx and the generation of cytosolic reactive oxygen species (ROS). Acute exposure to morphine exerted no effect on mitochondrial respiration, but morphine modestly offset Tat-mediated effects on complex I and some effects for the generation of ROS. Morphine did not exert any protective effects when acutely administered in vivo. The mitoprotective steroid, allopregnanolone (AlloP), increased mitochondrial respiration in neuroblastoma cells (complex I) or mitoplasts (complex II) and attenuated Tat-mediated impairment of complexes I and II in neuroblastoma cells or mice exposed to Tat in vivo. AlloP further attenuated Tat-mediated intracellular Ca2+ influx and cytosolic ROS production. Taken together, these results suggest that HIV Tat compromises mitochondrial function through the impairment of respiratory complexes I and II and that physiological AlloP may exert protective effects. Full article
Show Figures

Figure 1

Back to TopTop