Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (957)

Search Parameters:
Keywords = mission critical

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2345 KiB  
Article
Towards Intelligent 5G Infrastructures: Performance Evaluation of a Novel SDN-Enabled VANET Framework
by Abiola Ifaloye, Haifa Takruri and Rabab Al-Zaidi
Network 2025, 5(3), 28; https://doi.org/10.3390/network5030028 - 5 Aug 2025
Abstract
Critical Internet of Things (IoT) data in Fifth Generation Vehicular Ad Hoc Networks (5G VANETs) demands Ultra-Reliable Low-Latency Communication (URLLC) to support mission-critical vehicular applications such as autonomous driving and collision avoidance. Achieving the stringent Quality of Service (QoS) requirements for these applications [...] Read more.
Critical Internet of Things (IoT) data in Fifth Generation Vehicular Ad Hoc Networks (5G VANETs) demands Ultra-Reliable Low-Latency Communication (URLLC) to support mission-critical vehicular applications such as autonomous driving and collision avoidance. Achieving the stringent Quality of Service (QoS) requirements for these applications remains a significant challenge. This paper proposes a novel framework integrating Software-Defined Networking (SDN) and Network Functions Virtualisation (NFV) as embedded functionalities in connected vehicles. A lightweight SDN Controller model, implemented via vehicle on-board computing resources, optimised QoS for communications between connected vehicles and the Next-Generation Node B (gNB), achieving a consistent packet delivery rate of 100%, compared to 81–96% for existing solutions leveraging SDN. Furthermore, a Software-Defined Wide-Area Network (SD-WAN) model deployed at the gNB enabled the efficient management of data, network, identity, and server access. Performance evaluations indicate that SDN and NFV are reliable and scalable technologies for virtualised and distributed 5G VANET infrastructures. Our SDN-based in-vehicle traffic classification model for dynamic resource allocation achieved 100% accuracy, outperforming existing Artificial Intelligence (AI)-based methods with 88–99% accuracy. In addition, a significant increase of 187% in flow rates over time highlights the framework’s decreasing latency, adaptability, and scalability in supporting URLLC class guarantees for critical vehicular services. Full article
28 pages, 15022 KiB  
Review
Development and Core Technologies of Long-Range Underwater Gliders: A Review
by Xu Wang, Changyu Wang, Ke Zhang, Kai Ren and Jiancheng Yu
J. Mar. Sci. Eng. 2025, 13(8), 1509; https://doi.org/10.3390/jmse13081509 - 5 Aug 2025
Abstract
Long-range underwater gliders (LRUGs) have emerged as essential platforms for sustained and autonomous observation in deep and remote marine environments. This paper provides a comprehensive review of their developmental status, performance characteristics, and application progress. Emphasis is placed on two critical enabling technologies [...] Read more.
Long-range underwater gliders (LRUGs) have emerged as essential platforms for sustained and autonomous observation in deep and remote marine environments. This paper provides a comprehensive review of their developmental status, performance characteristics, and application progress. Emphasis is placed on two critical enabling technologies that fundamentally determine endurance: lightweight, pressure-resistant hull structures and high-efficiency buoyancy-driven propulsion systems. First, the role of carbon fiber composite pressure hulls in enhancing energy capacity and structural integrity is examined, with attention to material selection, fabrication methods, compressibility compatibility, and antifouling resistance. Second, the evolution of buoyancy control systems is analyzed, covering the transition to hybrid active–passive architectures, rapid-response actuators based on smart materials, thermohaline energy harvesting, and energy recovery mechanisms. Based on this analysis, the paper identifies four key technical challenges and proposes strategic research directions, including the development of ultralight, high-strength structural materials; integrated multi-mechanism antifouling technologies; energy-optimized coordinated buoyancy systems; and thermally adaptive glider platforms. Achieving a system architecture with ultra-long endurance, enhanced energy efficiency, and robust environmental adaptability is anticipated to be a foundational enabler for future long-duration missions and globally distributed underwater glider networks. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 3217 KiB  
Article
A Deep Reinforcement Learning Approach for Energy Management in Low Earth Orbit Satellite Electrical Power Systems
by Silvio Baccari, Elisa Mostacciuolo, Massimo Tipaldi and Valerio Mariani
Electronics 2025, 14(15), 3110; https://doi.org/10.3390/electronics14153110 - 5 Aug 2025
Abstract
Effective energy management in Low Earth Orbit satellites is critical, as inefficient energy management can significantly affect mission objectives. The dynamic and harsh space environment further complicates the development of effective energy management strategies. To address these challenges, we propose a Deep Reinforcement [...] Read more.
Effective energy management in Low Earth Orbit satellites is critical, as inefficient energy management can significantly affect mission objectives. The dynamic and harsh space environment further complicates the development of effective energy management strategies. To address these challenges, we propose a Deep Reinforcement Learning approach using Deep-Q Network to develop an adaptive energy management framework for Low Earth Orbit satellites. Compared to traditional techniques, the proposed solution autonomously learns from environmental interaction, offering robustness to uncertainty and online adaptability. It adjusts to changing conditions without manual retraining, making it well-suited for handling modeling uncertainties and non-stationary dynamics typical of space operations. Training is conducted using a realistic satellite electric power system model with accurate component parameters and single-orbit power profiles derived from real space missions. Numerical simulations validate the controller performance across diverse scenarios, including multi-orbit settings, demonstrating superior adaptability and efficiency compared to conventional Maximum Power Point Tracking methods. Full article
Show Figures

Figure 1

14 pages, 18722 KiB  
Article
Safe Autonomous UAV Target-Tracking Under External Disturbance, Through Learned Control Barrier Functions
by Promit Panja, Madan Mohan Rayguru and Sabur Baidya
Robotics 2025, 14(8), 108; https://doi.org/10.3390/robotics14080108 - 3 Aug 2025
Viewed by 123
Abstract
Ensuring the safe operation of Unmanned Aerial Vehicles (UAVs) is crucial for both mission-critical and safety-critical tasks. In scenarios where UAVs must track airborne targets, they need to follow the target’s path while maintaining a safe distance, even in the presence of unmodeled [...] Read more.
Ensuring the safe operation of Unmanned Aerial Vehicles (UAVs) is crucial for both mission-critical and safety-critical tasks. In scenarios where UAVs must track airborne targets, they need to follow the target’s path while maintaining a safe distance, even in the presence of unmodeled dynamics and environmental disturbances. This paper presents a novel collision avoidance strategy for dynamic quadrotor UAVs during target-tracking missions. We propose a safety controller that combines a learning-based Control Barrier Function (CBF) with standard sliding mode feedback. Our approach employs a neural network that learns the true CBF constraint, accounting for wind disturbances, while the sliding mode controller addresses unmodeled dynamics. This unified control law ensures safe leader-following behavior and precise trajectory tracking. By leveraging a learned CBF, the controller offers improved adaptability to complex and unpredictable environments, enhancing both the safety and robustness of the system. The effectiveness of our proposed method is demonstrated through the AirSim platform using the PX4 flight controller. Full article
(This article belongs to the Special Issue Applications of Neural Networks in Robot Control)
23 pages, 386 KiB  
Article
Balancing Tradition, Reform, and Constraints: A Study of Principal Leadership Practices in Chinese Primary Schools
by Chenzhi Li, Edmond Hau-Fai Law, Yunyun Huang and Ke Ding
Educ. Sci. 2025, 15(8), 988; https://doi.org/10.3390/educsci15080988 (registering DOI) - 3 Aug 2025
Viewed by 139
Abstract
It is well-established that principal leadership significantly influences student learning in developed countries, yet much less is known about how leadership practices manifest in complex systems like China’s, where rapid modernization intersects with deep-rooted educational traditions. In particular, Chinese principals face multiple challenges [...] Read more.
It is well-established that principal leadership significantly influences student learning in developed countries, yet much less is known about how leadership practices manifest in complex systems like China’s, where rapid modernization intersects with deep-rooted educational traditions. In particular, Chinese principals face multiple challenges in balancing the implementation of educational reform policies, high parental expectations, and their own educational ideology, all within limited resources. The current study examines these challenges in Shenzhen, a city which typically manifests them through its rapid development. Specifically, we took a phenomenographic approach and interviewed the principals and staff from five prestigious primary schools to extract the key components behind the diverse school leaders’ styles and practices. Results showed that, the Chinese leadership practice model consists of five key components: mission setting, infrastructure reconstruction, teacher development, learning improvement, and educators’ networking. Although the first four components in this model align with established theories in developed countries, networking was identified as a distinctive and critical element for securing resources and fostering collaboration. These findings may broaden the scope of leadership theories and underscore the need to contextualize leadership practices based on local challenges and dynamics. It also offers practical insights for school leaders on navigating challenges to improve teacher and student outcomes. Full article
(This article belongs to the Special Issue School Leadership and School Improvement)
Show Figures

Figure 1

20 pages, 413 KiB  
Article
Spectral Graph Compression in Deploying Recommender Algorithms on Quantum Simulators
by Chenxi Liu, W. Bernard Lee and Anthony G. Constantinides
Computers 2025, 14(8), 310; https://doi.org/10.3390/computers14080310 - 1 Aug 2025
Viewed by 182
Abstract
This follow-up scientific case study builds on prior research to explore the computational challenges of applying quantum algorithms to financial asset management, focusing specifically on solving the graph-cut problem for investment recommendation. Unlike our prior study, which focused on idealized QAOA performance, this [...] Read more.
This follow-up scientific case study builds on prior research to explore the computational challenges of applying quantum algorithms to financial asset management, focusing specifically on solving the graph-cut problem for investment recommendation. Unlike our prior study, which focused on idealized QAOA performance, this work introduces a graph compression pipeline that enables QAOA deployment under real quantum hardware constraints. This study investigates quantum-accelerated spectral graph compression for financial asset recommendations, addressing scalability and regulatory constraints in portfolio management. We propose a hybrid framework combining the Quantum Approximate Optimization Algorithm (QAOA) with spectral graph theory to solve the Max-Cut problem for investor clustering. Our methodology leverages quantum simulators (cuQuantum and Cirq-GPU) to evaluate performance against classical brute-force enumeration, with graph compression techniques enabling deployment on resource-constrained quantum hardware. The results underscore that efficient graph compression is crucial for successful implementation. The framework bridges theoretical quantum advantage with practical financial use cases, though hardware limitations (qubit counts, coherence times) necessitate hybrid quantum-classical implementations. These findings advance the deployment of quantum algorithms in mission-critical financial systems, particularly for high-dimensional investor profiling under regulatory constraints. Full article
(This article belongs to the Section AI-Driven Innovations)
Show Figures

Figure 1

59 pages, 2417 KiB  
Review
A Critical Review on the Battery System Reliability of Drone Systems
by Tianren Zhao, Yanhui Zhang, Minghao Wang, Wei Feng, Shengxian Cao and Gong Wang
Drones 2025, 9(8), 539; https://doi.org/10.3390/drones9080539 - 31 Jul 2025
Viewed by 417
Abstract
The reliability of unmanned aerial vehicle (UAV) energy storage battery systems is critical for ensuring their safe operation and efficient mission execution, and has the potential to significantly advance applications in logistics, monitoring, and emergency response. This paper reviews theoretical and technical advancements [...] Read more.
The reliability of unmanned aerial vehicle (UAV) energy storage battery systems is critical for ensuring their safe operation and efficient mission execution, and has the potential to significantly advance applications in logistics, monitoring, and emergency response. This paper reviews theoretical and technical advancements in UAV battery reliability, covering definitions and metrics, modeling approaches, state estimation, fault diagnosis, and battery management system (BMS) technologies. Based on international standards, reliability encompasses performance stability, environmental adaptability, and safety redundancy, encompassing metrics such as the capacity retention rate, mean time between failures (MTBF), and thermal runaway warning time. Modeling methods for reliability include mathematical, data-driven, and hybrid models, which are evaluated for accuracy and efficiency under dynamic conditions. State estimation focuses on five key battery parameters and compares neural network, regression, and optimization algorithms in complex flight scenarios. Fault diagnosis involves feature extraction, time-series modeling, and probabilistic inference, with multimodal fusion strategies being proposed for faults like overcharge and thermal runaway. BMS technologies include state monitoring, protection, and optimization, and balancing strategies and the potential of intelligent algorithms are being explored. Challenges in this field include non-unified standards, limited model generalization, and complexity in diagnosing concurrent faults. Future research should prioritize multi-physics-coupled modeling, AI-driven predictive techniques, and cybersecurity to enhance the reliability and intelligence of battery systems in order to support the sustainable development of unmanned systems. Full article
Show Figures

Figure 1

40 pages, 7941 KiB  
Article
Synergistic Hierarchical AI Framework for USV Navigation: Closing the Loop Between Swin-Transformer Perception, T-ASTAR Planning, and Energy-Aware TD3 Control
by Haonan Ye, Hongjun Tian, Qingyun Wu, Yihong Xue, Jiayu Xiao, Guijie Liu and Yang Xiong
Sensors 2025, 25(15), 4699; https://doi.org/10.3390/s25154699 - 30 Jul 2025
Viewed by 402
Abstract
Autonomous Unmanned Surface Vehicle (USV) operations in complex ocean engineering scenarios necessitate robust navigation, guidance, and control technologies. These systems require reliable sensor-based object detection and efficient, safe, and energy-aware path planning. To address these multifaceted challenges, this paper proposes a novel synergistic [...] Read more.
Autonomous Unmanned Surface Vehicle (USV) operations in complex ocean engineering scenarios necessitate robust navigation, guidance, and control technologies. These systems require reliable sensor-based object detection and efficient, safe, and energy-aware path planning. To address these multifaceted challenges, this paper proposes a novel synergistic AI framework. The framework integrates (1) a novel adaptation of the Swin-Transformer to generate a dense, semantic risk map from raw visual data, enabling the system to interpret ambiguous marine conditions like sun glare and choppy water, enabling real-time environmental understanding crucial for guidance; (2) a Transformer-enhanced A-star (T-ASTAR) algorithm with spatio-temporal attentional guidance to generate globally near-optimal and energy-aware static paths; (3) a domain-adapted TD3 agent featuring a novel energy-aware reward function that optimizes for USV hydrodynamic constraints, making it suitable for long-endurance missions tailored for USVs to perform dynamic local path optimization and real-time obstacle avoidance, forming a key control element; and (4) CUDA acceleration to meet the computational demands of real-time ocean engineering applications. Simulations and real-world data verify the framework’s superiority over benchmarks like A* and RRT, achieving 30% shorter routes, 70% fewer turns, 64.7% fewer dynamic collisions, and a 215-fold speed improvement in map generation via CUDA acceleration. This research underscores the importance of integrating powerful AI components within a hierarchical synergy, encompassing AI-based perception, hierarchical decision planning for guidance, and multi-stage optimal search algorithms for control. The proposed solution significantly advances USV autonomy, addressing critical ocean engineering challenges such as navigation in dynamic environments, object avoidance, and energy-constrained operations for unmanned maritime systems. Full article
Show Figures

Figure 1

17 pages, 3393 KiB  
Article
Research on Distributed Collaborative Task Planning and Countermeasure Strategies for Satellites Based on Game Theory Driven Approach
by Huayu Gao, Junqi Wang, Xusheng Xu, Qiufan Yuan, Pei Wang and Daming Zhou
Remote Sens. 2025, 17(15), 2640; https://doi.org/10.3390/rs17152640 - 30 Jul 2025
Viewed by 257
Abstract
With the rapid advancement of space technology, satellites are playing an increasingly vital role in fields such as Earth observation, communication and navigation, space exploration, and military applications. Efficiently deploying satellite missions under multi-objective, multi-constraint, and dynamic environments has become a critical challenge [...] Read more.
With the rapid advancement of space technology, satellites are playing an increasingly vital role in fields such as Earth observation, communication and navigation, space exploration, and military applications. Efficiently deploying satellite missions under multi-objective, multi-constraint, and dynamic environments has become a critical challenge in the current aerospace domain. This paper integrates the concepts of game theory and proposes a distributed collaborative task model suitable for on-orbit satellite mission planning. A two-player impulsive maneuver game model is constructed using differential game theory. Based on the ideas of Nash equilibrium and distributed collaboration, multi-agent technology is applied to the distributed collaborative task planning, achieving collaborative allocation and countermeasure strategies for multi-objective and multi-satellite scenarios. Experimental results demonstrate that the method proposed in this paper exhibits good adaptability and robustness in multiple impulse scheduling, maneuver strategy iteration, and heterogeneous resource utilization, providing a feasible technical approach for mission planning and game confrontation in satellite clusters. Full article
(This article belongs to the Section Satellite Missions for Earth and Planetary Exploration)
Show Figures

Figure 1

22 pages, 2875 KiB  
Article
Optimization of Test Mass Motion State for Enhancing Stiffness Identification Performance in Space Gravitational Wave Detection
by Ningbiao Tang, Ziruo Fang, Zhongguang Yang, Zhiming Cai, Haiying Hu and Huawang Li
Aerospace 2025, 12(8), 673; https://doi.org/10.3390/aerospace12080673 - 28 Jul 2025
Viewed by 166
Abstract
In space gravitational wave detection, various physical effects in the spacecraft, such as self-gravity, electricity, and magnetism, will introduce undesirable parasitic stiffness. The coupling noise between stiffness and the motion states of the test mass critically affects the performance of scientific detection, making [...] Read more.
In space gravitational wave detection, various physical effects in the spacecraft, such as self-gravity, electricity, and magnetism, will introduce undesirable parasitic stiffness. The coupling noise between stiffness and the motion states of the test mass critically affects the performance of scientific detection, making accurate stiffness identification crucial. In response to the question, this paper proposes a method to optimize the test mass motion state for enhancing stiffness identification performance. First, the dynamics of the test mass are studied and a recursive least squares algorithm is applied for the implementation of on-orbit stiffness identification. Then, the motion state of the test mass is parametrically characterized by multi-frequency sinusoidal signals as the variable to be optimized, with the optimization objectives and constraints of stiffness identification defined based on convergence time, convergence accuracy, and engineering requirements. To tackle the dual-objective, computationally expensive nature of the problem, a multigranularity surrogate-assisted evolutionary algorithm with individual progressive constraints (MGSAEA-IPC) is proposed. A fuzzy radial basis function neural network PID (FRBF-PID) controller is also designed to address complex control needs under varying motion states. Numerical simulations demonstrate that the convergence time after optimization is less than 2 min, and the convergence accuracy is less than 1.5 × 10−10 s−2. This study can provide ideas and design references for subsequent related identification and control missions. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

25 pages, 1343 KiB  
Article
Low-Latency Edge-Enabled Digital Twin System for Multi-Robot Collision Avoidance and Remote Control
by Daniel Poul Mtowe, Lika Long and Dong Min Kim
Sensors 2025, 25(15), 4666; https://doi.org/10.3390/s25154666 - 28 Jul 2025
Viewed by 369
Abstract
This paper proposes a low-latency and scalable architecture for Edge-Enabled Digital Twin networked control systems (E-DTNCS) aimed at multi-robot collision avoidance and remote control in dynamic and latency-sensitive environments. Traditional approaches, which rely on centralized cloud processing or direct sensor-to-controller communication, are inherently [...] Read more.
This paper proposes a low-latency and scalable architecture for Edge-Enabled Digital Twin networked control systems (E-DTNCS) aimed at multi-robot collision avoidance and remote control in dynamic and latency-sensitive environments. Traditional approaches, which rely on centralized cloud processing or direct sensor-to-controller communication, are inherently limited by excessive network latency, bandwidth bottlenecks, and a lack of predictive decision-making, thus constraining their effectiveness in real-time multi-agent systems. To overcome these limitations, we propose a novel framework that seamlessly integrates edge computing with digital twin (DT) technology. By performing localized preprocessing at the edge, the system extracts semantically rich features from raw sensor data streams, reducing the transmission overhead of the original data. This shift from raw data to feature-based communication significantly alleviates network congestion and enhances system responsiveness. The DT layer leverages these extracted features to maintain high-fidelity synchronization with physical robots and to execute predictive models for proactive collision avoidance. To empirically validate the framework, a real-world testbed was developed, and extensive experiments were conducted with multiple mobile robots. The results revealed a substantial reduction in collision rates when DT was deployed, and further improvements were observed with E-DTNCS integration due to significantly reduced latency. These findings confirm the system’s enhanced responsiveness and its effectiveness in handling real-time control tasks. The proposed framework demonstrates the potential of combining edge intelligence with DT-driven control in advancing the reliability, scalability, and real-time performance of multi-robot systems for industrial automation and mission-critical cyber-physical applications. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

17 pages, 3138 KiB  
Article
Addressing Energy Performance Challenges in a 24-h Fire Station Through Green Remodeling
by June Hae Lee, Jae-Sik Kang and Byonghu Sohn
Buildings 2025, 15(15), 2658; https://doi.org/10.3390/buildings15152658 - 28 Jul 2025
Viewed by 185
Abstract
This study presents a comprehensive case of green remodeling applied to a local fire station in Seoul, South Korea. The project aimed to improve energy performance through an integrated upgrade of passive systems (exterior insulation, high-performance windows, and airtightness) and active systems (electric [...] Read more.
This study presents a comprehensive case of green remodeling applied to a local fire station in Seoul, South Korea. The project aimed to improve energy performance through an integrated upgrade of passive systems (exterior insulation, high-performance windows, and airtightness) and active systems (electric heat pumps, energy recovery ventilation, and rooftop photovoltaic systems), while maintaining uninterrupted emergency operations. A detailed analysis of annual energy use before and after the remodeling shows a 44% reduction in total energy consumption, significantly exceeding the initial reduction target of 20%. While electricity use increased modestly during winter due to the electrification of heating systems, gas consumption dropped sharply by 63%, indicating a shift in energy source and improved efficiency. The building’s airtightness also improved significantly, with a reduction in the air change rate. The project further addressed unique challenges associated with continuously operated public facilities, such as insulating the fire apparatus garage and executing phased construction to avoid operational disruption. This study contributes valuable insights into green remodeling strategies for mission-critical public buildings, emphasizing the importance of integrating technical upgrades with operational constraints to achieve verified energy performance improvements. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

29 pages, 3661 KiB  
Article
Segmented Analysis for the Performance Optimization of a Tilt-Rotor RPAS: ProVANT-EMERGENTIa Project
by Álvaro Martínez-Blanco, Antonio Franco and Sergio Esteban
Aerospace 2025, 12(8), 666; https://doi.org/10.3390/aerospace12080666 - 26 Jul 2025
Viewed by 271
Abstract
This paper aims to analyze the performance of a tilt-rotor fixed-wing RPAS (Remotely Piloted Aircraft System) using a segmented approach, focusing on a nominal mission for SAR (Search and Rescue) applications. The study employs optimization techniques tailored to each segment to meet power [...] Read more.
This paper aims to analyze the performance of a tilt-rotor fixed-wing RPAS (Remotely Piloted Aircraft System) using a segmented approach, focusing on a nominal mission for SAR (Search and Rescue) applications. The study employs optimization techniques tailored to each segment to meet power consumption requirements, and the results highlight the accuracy of the physical characterization, which incorporates nonlinear propulsive and aerodynamic models derived from wind tunnel test campaigns. Critical segments for this nominal mission, such as the vertical take off or the transition from vertical to horizontal flight regimes, are addressed to fully understand the performance response of the aircraft. The proposed framework integrates experimental models into trajectory optimization procedures for each segment, enabling a realistic and modular analysis of energy use and aerodynamic performance. This approach provides valuable insights for both flight control design and future sizing iterations of convertible UAVs (Uncrewed Aerial Vehicles). Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

21 pages, 454 KiB  
Article
Modelling Cascading Failure in Complex CPSS to Inform Resilient Mission Assurance: An Intelligent Transport System Case Study
by Theresa Sobb and Benjamin Turnbull
Entropy 2025, 27(8), 793; https://doi.org/10.3390/e27080793 - 25 Jul 2025
Viewed by 327
Abstract
Intelligent transport systems are revolutionising all aspects of modern life, increasing the efficiency of commerce, modern living, and international travel. Intelligent transport systems are systems of systems comprised of cyber, physical, and social nodes. They represent unique opportunities but also have potential threats [...] Read more.
Intelligent transport systems are revolutionising all aspects of modern life, increasing the efficiency of commerce, modern living, and international travel. Intelligent transport systems are systems of systems comprised of cyber, physical, and social nodes. They represent unique opportunities but also have potential threats to system operation and correctness. The emergent behaviour in Complex Cyber–Physical–Social Systems (C-CPSSs), caused by events such as cyber-attacks and network outages, have the potential to have devastating effects to critical services across society. It is therefore imperative that the risk of cascading failure is minimised through the fortifying of these systems of systems to achieve resilient mission assurance. This work designs and implements a programmatic model to validate the value of cascading failure simulation and analysis, which is then tested against a C-CPSS intelligent transport system scenario. Results from the model and its implementations highlight the value in identifying both critical nodes and percolation of consequences during a cyber failure, in addition to the importance of including social nodes in models for accurate simulation results. Understanding the relationships between cyber, physical, and social nodes is key to understanding systems’ failures that occur because of or that involve cyber systems, in order to achieve cyber and system resilience. Full article
Show Figures

Figure 1

13 pages, 1012 KiB  
Article
Hippocampal Volumetric Changes in Astronauts Following a Mission in the International Space Station
by Shafaq Batool, Tejdeep Jaswal, Ford Burles and Giuseppe Iaria
NeuroSci 2025, 6(3), 70; https://doi.org/10.3390/neurosci6030070 - 25 Jul 2025
Viewed by 262
Abstract
(1) Background: Evidence from non-human animal and spaceflight analog studies have suggested that traveling to outer space could have a significant impact on the structural properties of the hippocampus, a brain region within the medial temporal lobe that is critical for learning and [...] Read more.
(1) Background: Evidence from non-human animal and spaceflight analog studies have suggested that traveling to outer space could have a significant impact on the structural properties of the hippocampus, a brain region within the medial temporal lobe that is critical for learning and memory. Here, we tested this hypothesis in a group of astronauts who participated in a six-month mission in the International Space Station (ISS). (2) Methods: We collected magnetic resonance imaging (MRI) scans from a sample of 17 (9 males, 8 females) astronauts before and after the ISS mission, and calculated percent gray matter volume changes in the whole hippocampus and its (anterior, body, and posterior) subregions in both hemispheres. (3) Following the six-month mission in the ISS, we found a significantly decreased volume in the whole left hippocampus; in addition, when looking at subregions separately, we detected a significantly decreased volume in the anterior subregion of the left hippocampus and the body subregion of the right hippocampus. We also found a significantly decreased volume in the whole right hippocampus of male astronauts as compared to female astronauts. (4) Conclusions: This study, providing the very first evidence of hippocampal volumetric changes in astronauts following a six-month mission to the ISS, could have significant implications for cognitive performance during future long-duration spaceflights. Full article
Show Figures

Figure 1

Back to TopTop