Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = miracidia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5977 KiB  
Review
Chemical Control of Snail Vectors as an Integrated Part of a Strategy for the Elimination of Schistosomiasis—A Review of the State of Knowledge and Future Needs
by Amadou Garba Djirmay, Rajpal Singh Yadav, Jiagang Guo, David Rollinson and Henry Madsen
Trop. Med. Infect. Dis. 2024, 9(9), 222; https://doi.org/10.3390/tropicalmed9090222 - 20 Sep 2024
Cited by 7 | Viewed by 4325
Abstract
WHO promotes the implementation of a comprehensive strategy to control and eliminate schistosomiasis through preventive chemotherapy, snail control, clean water supply, improved sanitation, behaviour change interventions, and environmental management. The transmission of schistosomiasis involves infected definitive hosts (humans or animals) excreting eggs that [...] Read more.
WHO promotes the implementation of a comprehensive strategy to control and eliminate schistosomiasis through preventive chemotherapy, snail control, clean water supply, improved sanitation, behaviour change interventions, and environmental management. The transmission of schistosomiasis involves infected definitive hosts (humans or animals) excreting eggs that hatch (miracidia), which infect freshwater snail vectors (also referred to as intermediate snail hosts) living in marshlands, ponds, lakes, rivers, or irrigation canals. Infective larvae (cercariae) develop within the snail, which, when released, may infect humans and/or animals in contact with the water. Snail control aims to interrupt the transmission cycle of the disease by removing the vector snails and, by so doing, indirectly improves the impact of the preventive chemotherapy by reducing reinfection. Snail control was, for many years, the only strategy for the prevention of schistosomiasis before preventive chemotherapy became the primary intervention. Snails can be controlled through various methods: environmental control, biological control, and chemical control. The chemical control of snails has proven to be the most effective method to interrupt the transmission of schistosomiasis. The current review aims to describe the vector snails of human schistosomiasis, present the chemicals and strategies for the control of snails, the challenges with the implementation, and the future needs. Snail control can play a key role in reducing schistosomiasis transmission and, thus, complements other interventions for disease control. There is a need to develop new molluscicide products or new formulations and methods of applications for existing molluscicides that would target snail vectors more specifically. Full article
(This article belongs to the Section Vector-Borne Diseases)
Show Figures

Figure 1

27 pages, 5317 KiB  
Article
ARGONAUTE2 Localizes to Sites of Sporocysts in the Schistosome-Infected Snail, Biomphalaria glabrata
by Phong Phan, Conor E. Fogarty, Andrew L. Eamens, Mary G. Duke, Donald P. McManus, Tianfang Wang and Scott F. Cummins
Genes 2024, 15(8), 1023; https://doi.org/10.3390/genes15081023 - 3 Aug 2024
Cited by 3 | Viewed by 2018
Abstract
MicroRNAs (miRNAs) are a class of small regulatory RNA that are generated via core protein machinery. The miRNAs direct gene-silencing mechanisms to mediate an essential role in gene expression regulation. In mollusks, miRNAs have been demonstrated to be required to regulate gene expression [...] Read more.
MicroRNAs (miRNAs) are a class of small regulatory RNA that are generated via core protein machinery. The miRNAs direct gene-silencing mechanisms to mediate an essential role in gene expression regulation. In mollusks, miRNAs have been demonstrated to be required to regulate gene expression in various biological processes, including normal development, immune responses, reproduction, and stress adaptation. In this study, we aimed to establishment the requirement of the miRNA pathway as part of the molecular response of exposure of Biomphalaria glabrata (snail host) to Schistosoma mansoni (trematode parasite). Initially, the core pieces of miRNA pathway protein machinery, i.e., Drosha, DGCR8, Exportin-5, Ran, and Dicer, together with the central RNA-induced silencing complex (RISC) effector protein Argonaute2 (Ago2) were elucidated from the B. glabrata genome. Following exposure of B. glabrata to S. mansoni miracidia, we identified significant expression up-regulation of all identified pieces of miRNA pathway protein machinery, except for Exportin-5, at 16 h post exposure. For Ago2, we went on to show that the Bgl-Ago2 protein was localized to regions surrounding the sporocysts in the digestive gland of infected snails 20 days post parasite exposure. In addition to documenting elevated miRNA pathway protein machinery expression at the early post-exposure time point, a total of 13 known B. glabrata miRNAs were significantly differentially expressed. Of these thirteen B. glabrata miRNAs responsive to S. mansoni miracidia exposure, five were significantly reduced in their abundance, and correspondingly, these five miRNAs were determined to putatively target six genes with significantly elevated expression and that have been previously associated with immune responses in other animal species, including humans. In conclusion, this study demonstrates the central importance of a functional miRNA pathway in snails, which potentially forms a critical component of the immune response of snails to parasite exposure. Further, the data reported in this study provide additional evidence of the complexity of the molecular response of B. glabrata to S. mansoni infection: a molecular response that could be targeted in the future to overcome parasite infection and, in turn, human schistosomiasis. Full article
(This article belongs to the Special Issue Evolution of Non-coding Elements in Genome Biology)
Show Figures

Figure 1

18 pages, 3078 KiB  
Article
Adapting Strategies for Effective Schistosomiasis Prevention: A Mathematical Modeling Approach
by Zadoki Tabo, Chester Kalinda, Lutz Breuer and Christian Albrecht
Mathematics 2023, 11(12), 2609; https://doi.org/10.3390/math11122609 - 7 Jun 2023
Cited by 5 | Viewed by 2460
Abstract
One of the most deadly neglected tropical diseases known to man is schistosomiasis. Understanding how the disease spreads and evaluating the relevant control strategies are key steps in predicting its spread. We propose a mathematical model to evaluate the potential impact of four [...] Read more.
One of the most deadly neglected tropical diseases known to man is schistosomiasis. Understanding how the disease spreads and evaluating the relevant control strategies are key steps in predicting its spread. We propose a mathematical model to evaluate the potential impact of four strategies: chemotherapy, awareness programs, the mechanical removal of snails and molluscicides, and the impact of a change in temperature on different molluscicide performances based on their half-lives and the length of time they persist in contact with target species. The results show that the recruitment rate of humans and the presence of cercaria and miracidia parasites are crucial factors in disease transmission. However, schistosomiasis can be entirely eradicated by combining all of the four strategies. In the face of climate change and molluscicide degradation, the results show that increasing the temperatures and the number of days a molluscicide persists in the environment before it completely degrades decreases the chemically induced mortality rate of snails while increasing the half-life of different molluscicides increases the death rate of snails. Therefore, eradicating schistosomiasis effectively necessitates a comprehensive integration of all preventative measures. Moreover, regions with different weather patterns and seasonal climates need strategies that have been adapted in terms of the appropriate molluscicide and time intervals for reapplication and effective schistosomiasis control. Full article
Show Figures

Graphical abstract

19 pages, 4058 KiB  
Article
Molluscicidal and Larvicidal Potency of N-Heterocylic Analogs against Biomophalaria alexandrina Snails and Schistosoma mansoni Larval Stages
by Sherin K. Sheir, Elshaymaa I. Elmongy, Azza H. Mohamad, Gamalat Y. Osman, Shimaa E. Bendary, Abdullah A. S. Ahmed, Reem Binsuwaidan and Ibrahim El-Tantawy El-Sayed
Pharmaceutics 2023, 15(4), 1200; https://doi.org/10.3390/pharmaceutics15041200 - 10 Apr 2023
Cited by 1 | Viewed by 2344
Abstract
This work describes the synthesis of quinoline-based N--heterocyclic arenes and their biological evaluation as molluscicides against adult Biomophalaria alexandrina snails as well as larvicides against Schistosoma mansoni larvae (miracidia and cercariae). Molecular docking studies were demonstrated to investigate their affinity for cysteine [...] Read more.
This work describes the synthesis of quinoline-based N--heterocyclic arenes and their biological evaluation as molluscicides against adult Biomophalaria alexandrina snails as well as larvicides against Schistosoma mansoni larvae (miracidia and cercariae). Molecular docking studies were demonstrated to investigate their affinity for cysteine protease protein as an interesting target for antiparasitics. Compound AEAN showed the best docking results followed by APAN in comparison to the co-crystallized ligand D1R reflected by their binding affinities and RMSD values. The egg production, hatchability of B. alexandrina snails and ultrastructural topography of S. mansoni cercariae using SEM were assessed. Biological evaluations (hatchability and egg-laying capacity) revealed that the quinoline hydrochloride salt CAAQ was the most effective compound against adult B. alexandrina snails, whereas the indolo-quinoline derivative APAN had the most efficiency against miracidia, and the acridinyl derivative AEAA was the most effective against cercariae and caused 100% mortality. CAAQ and AEAA were found to modulate the biological responses of B. alexandrina snails with/without S. mansoni infection and larval stages that will affect S. mansoni infection. AEAA caused deleterious morphological effects on cercariae. CAAQ caused inhibition in the number of eggs/snail/week and reduced reproductive rate to 43.8% in all the experimental groups. CAAQ and AEAA can be recommended as an effective molluscicide of plant origin for the control program of schistosomiasis. Full article
(This article belongs to the Special Issue Recent Advances in Prevention and Treatment of Infectious Diseases)
Show Figures

Figure 1

11 pages, 2135 KiB  
Communication
Biomphalaria pfeifferi (Gastropoda: Planorbidae) in Lake Malawi and Upper Shire River, Mangochi District, Malawi: Distribution, Genetic Diversity and Pre-Patent Schistosome Infections
by Mohammad H. Alharbi, Charlotte Condemine, Josie Hesketh, Sekeleghe A. Kayuni, Thomas M. Arme, John Archer, Sam Jones, E. James LaCourse, Peter Makaula, Janelisa Musaya and J. Russell Stothard
Trop. Med. Infect. Dis. 2023, 8(2), 126; https://doi.org/10.3390/tropicalmed8020126 - 18 Feb 2023
Cited by 9 | Viewed by 3294
Abstract
In November 2017, Biomphalaria pfeifferi, the key intermediate host for Schistosoma mansoni in Africa, was first reported in Lake Malawi, Mangochi District. Two subsequent malacological surveys in 2018 and 2019 confirmed its lacustrine presence, as well as its presence along the Upper [...] Read more.
In November 2017, Biomphalaria pfeifferi, the key intermediate host for Schistosoma mansoni in Africa, was first reported in Lake Malawi, Mangochi District. Two subsequent malacological surveys in 2018 and 2019 confirmed its lacustrine presence, as well as its presence along the Upper Shire River. These surveys provided sufficient specimens for analyses of the genetic structure and a transmission assessment for intestinal schistosomiasis. A total of 76 collected snails were characterized by a DNA sequence analysis of a 650 bp fragment of the mitochondrial cytochrome oxidase subunit 1 (cox1); by size fractionation of six fluorescently labelled microsatellite loci (Bgμl16, Bgμl, Bpf8, rg6, U-7, and rg9);by denaturing PAGE; and by detection of pre-patent Schistosoma infection by real-time PCR with a TaqMan® probe. Five closely related cox1 haplotypes were identified, all present within a single location, with only one haplotype common across all the other locations sampled. No allelic size variation was detected with the microsatellites and all loci were monomorphic. Overall, the pre-patent prevalence of Schistosoma spp. was 31%, with infected snails found at several sampling locations. In this part of Lake Malawi, Bi. pfeifferi exhibits low genetic diversity and is clearly being exposed to the miracidia of S. mansoni, which is likely facilitating the autochthonous transmission of this parasite. Full article
Show Figures

Figure 1

10 pages, 302 KiB  
Article
Mating Interactions between Schistosoma bovis and S. mansoni and Compatibility of Their F1 Progeny with Biomphalaria glabrata and Bulinus truncatus
by Amos Mathias Onyekwere, Alejandra De Elias-Escribano, Julien Kincaid-Smith, Sarah Dametto, Jean-François Allienne, Anne Rognon, Maria Dolores Bargues and Jérôme Boissier
Microorganisms 2022, 10(6), 1251; https://doi.org/10.3390/microorganisms10061251 - 19 Jun 2022
Cited by 4 | Viewed by 3590
Abstract
Contrary to the majority of other Trematoda, Schistosoma species are gonochoric. Consequently, in endemic areas where several schistosome species overlap and can co-infect the same definitive host, there may be frequent opportunities for interspecific pairing. Our experimental study provides novel insight on the [...] Read more.
Contrary to the majority of other Trematoda, Schistosoma species are gonochoric. Consequently, in endemic areas where several schistosome species overlap and can co-infect the same definitive host, there may be frequent opportunities for interspecific pairing. Our experimental study provides novel insight on the pairing behavior between Schistosoma bovis and S. mansoni in mixed infections in mice. We used six mate choice experiments to assess mating interactions between the two schistosome species. We show that mating between the two Schistosoma species is not random and that S. mansoni exhibits greater mate recognition compared to S. bovis. We also performed reciprocal crosses (male S. mansoni × female S. bovis) and (female S. mansoni × male S. bovis) that produce active swimming miracidia. These miracidia were genotyped by ITS2 sequencing and proposed for mollusc infection. Molecular analyses show that all the miracidia are parthenogenetically produced (i.e., their harbor the mother ITS2 genotype) and as a consequence can only infect the mollusc of the maternal species. Offspring produced by male S. mansoni × female S. bovis pairing can only infect Bulinus truncatus whereas offspring produced by female S. mansoni × male S. bovis can only infect Biomphalaria glabrata snails. Evolutionary and epidemiological consequences are discussed. Full article
(This article belongs to the Section Parasitology)
15 pages, 7421 KiB  
Article
Population Genetic Structure and Hybridization of Schistosoma haematobium in Nigeria
by Amos Mathias Onyekwere, Olivier Rey, Jean-François Allienne, Monday Chukwu Nwanchor, Moses Alo, Clementina Uwa and Jerome Boissier
Pathogens 2022, 11(4), 425; https://doi.org/10.3390/pathogens11040425 - 31 Mar 2022
Cited by 21 | Viewed by 3642
Abstract
Background: Schistosomiasis is a major poverty-related disease caused by dioecious parasitic flatworms of the genus Schistosoma with a health impact on both humans and animals. Hybrids of human urogenital schistosome and bovine intestinal schistosome have been reported in humans in several of Nigeria’s [...] Read more.
Background: Schistosomiasis is a major poverty-related disease caused by dioecious parasitic flatworms of the genus Schistosoma with a health impact on both humans and animals. Hybrids of human urogenital schistosome and bovine intestinal schistosome have been reported in humans in several of Nigeria’s neighboring West African countries. No empirical studies have been carried out on the genomic diversity of Schistosoma haematobium in Nigeria. Here, we present novel data on the presence and prevalence of hybrids and the population genetic structure of S. haematobium. Methods: 165 Schistosoma-positive urine samples were obtained from 12 sampling sites in Nigeria. Schistosoma haematobium eggs from each sample were hatched and each individual miracidium was picked and preserved in Whatman® FTA cards for genomic analysis. Approximately 1364 parasites were molecularly characterized by rapid diagnostic multiplex polymerase chain reaction (RD-PCR) for mitochondrial DNA gene (Cox1 mtDNA) and a subset of 1136 miracidia were genotyped using a panel of 18 microsatellite markers. Results: No significant difference was observed in the population genetic diversity (p > 0.05), though a significant difference was observed in the allelic richness of the sites except sites 7, 8, and 9 (p < 0.05). Moreover, we observed two clusters of populations: west (populations 1–4) and east (populations 7–12). Of the 1364 miracidia genotyped, 1212 (89%) showed an S. bovis Cox1 profile and 152 (11%) showed an S. haematobium cox1 profile. All parasites showed an S. bovis Cox1 profile except for some at sites 3 and 4. Schistosoma miracidia full genotyping showed 59.3% of the S. bovis ITS2 allele. Conclusions: This study provides novel insight into hybridization and population genetic structure of S. haematobium in Nigeria. Our findings suggest that S. haematobium x S. bovis hybrids are common in Nigeria. More genomic studies on both human- and animal-infecting parasites are needed to ascertain the role of animals in schistosome transmission. Full article
(This article belongs to the Special Issue Schistosomiasis: Host-Pathogen Biology)
Show Figures

Figure 1

14 pages, 5895 KiB  
Article
Inactivation of Schistosoma Using Low-Temperature Plasma
by Silvie Hejzlarová, Marta Chanová, Josef Khun, Jaroslav Julák and Vladimír Scholtz
Microorganisms 2021, 9(1), 32; https://doi.org/10.3390/microorganisms9010032 - 24 Dec 2020
Cited by 3 | Viewed by 3085
Abstract
The inactivation of Schistosoma mansoni cercariae and miracidia was achieved by exposure to plasma produced by the positive, negative, and axial negative corona discharges. The positive discharge appeared as the most effective, causing the death of cercariae and miracidia within 2–3 min of [...] Read more.
The inactivation of Schistosoma mansoni cercariae and miracidia was achieved by exposure to plasma produced by the positive, negative, and axial negative corona discharges. The positive discharge appeared as the most effective, causing the death of cercariae and miracidia within 2–3 min of exposure. The negative discharge was less effective, and the axial discharge was ineffective. The water pre-activated (PAW) by the discharges showed similar efficiency, with the exception of the significantly effective PAW activated with axial discharge. These facts, together with the observation of various reactions among plasma-damaged schistosomes, suggest that the mechanisms of inactivation by different types of discharges are different. Full article
(This article belongs to the Special Issue Epidemiology of Vector-Borne Diseases)
Show Figures

Figure 1

18 pages, 4101 KiB  
Article
A Biological and Immunological Characterization of Schistosoma Japonicum Heat Shock Proteins 40 and 90α
by Zhipeng Xu, Minjun Ji, Chen Li, Xiaofeng Du, Wei Hu, Donald Peter McManus and Hong You
Int. J. Mol. Sci. 2020, 21(11), 4034; https://doi.org/10.3390/ijms21114034 - 4 Jun 2020
Cited by 11 | Viewed by 2923
Abstract
We characterized Schistosoma japonicum HSP40 (Sjp40) and HSP90α (Sjp90α) in this study. Western blot analysis revealed both are present in soluble egg antigens and egg secretory proteins, implicating them in triggering the host immune response after secretion from eggs into host tissues. These [...] Read more.
We characterized Schistosoma japonicum HSP40 (Sjp40) and HSP90α (Sjp90α) in this study. Western blot analysis revealed both are present in soluble egg antigens and egg secretory proteins, implicating them in triggering the host immune response after secretion from eggs into host tissues. These observations were confirmed by immunolocalization showing both HSPs are located in the Reynolds’ layer within mature eggs, suggesting they are secreted by miracidia and accumulate between the envelope and the eggshell. Both HSPs are present in the musculature and parenchyma of adult males and in the vitelline cells of females; only Sjp90α is present on the tegument of adults. Sjp40 was able to enhance the expression of macrophages, dendritic cells, and eosinophilic cells in mouse liver non-parenchymal cells, whereas rSjp90α only stimulated the expression of dendritic cells. T helper 1 (Th1), Th2, and Th17 responses were increased upon rSjp40 stimulation in vitro, but rSjp90 only stimulated an increased Th17 response. Sjp40 has an important role in reducing the expression of fibrogenic gene markers in hepatic stellate cells in vitro. Overall, these findings provide new information on HSPs in S. japonicum, improving our understanding of the pathological roles they play in their interaction with host immune cells. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

15 pages, 2725 KiB  
Article
Gene Expression in Developmental Stages of Schistosoma japonicum Provides Further Insight into the Importance of the Schistosome Insulin-Like Peptide
by Xiaofeng Du, Malcolm K. Jones, Sujeevi S. K. Nawaratna, Shiwanthi Ranasinghe, Chunrong Xiong, Pengfei Cai, Donald P. McManus and Hong You
Int. J. Mol. Sci. 2019, 20(7), 1565; https://doi.org/10.3390/ijms20071565 - 28 Mar 2019
Cited by 12 | Viewed by 3291
Abstract
We showed previously that the Schistosoma japonicum insulin-like peptide (SjILP) binds the worm insulin receptors, thereby, activating the parasite’s insulin pathway and emphasizing its important role in regulating uptake of glucose, a nutrient essential for parasite survival. Here we show that SjILP is [...] Read more.
We showed previously that the Schistosoma japonicum insulin-like peptide (SjILP) binds the worm insulin receptors, thereby, activating the parasite’s insulin pathway and emphasizing its important role in regulating uptake of glucose, a nutrient essential for parasite survival. Here we show that SjILP is differentially expressed in the schistosome life cycle and is especially highly transcribed in eggs, miracidia, and adult female worms. RNA inference was employed to knockdown SjILP in adults in vitro, with suppression confirmed by significantly reduced protein production, declined adenosine diphosphate levels, and reduction in glucose consumption. Immunolocalization showed that SjILP is located to lateral gland cells of mature intra-ovular miracidia in the schistosome egg, and is distributed on the ciliated epithelium and internal cell masses of newly transformed miracidia. In schistosomula, SjILP is present on the tegument in two antero-lateral points, indicating highly polarized expression during cercarial transformation. Analysis of serum from S. japonicum-infected mice by ELISA using a recombinant form of SjILP as an antigen revealed IgG immunoreactivity to this molecule at 7 weeks post-infection indicating it is likely secreted from mature eggs into the host circulation. These findings provide further insights on ILP function in schistosomes and its essential roles in parasite survival and growth in different development stages. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

22 pages, 6117 KiB  
Article
Mobile Diagnostics Based on Motion? A Close Look at Motility Patterns in the Schistosome Life Cycle
by Ewert Linder, Sami Varjo and Cecilia Thors
Diagnostics 2016, 6(2), 24; https://doi.org/10.3390/diagnostics6020024 - 17 Jun 2016
Cited by 3 | Viewed by 10601
Abstract
Imaging at high resolution and subsequent image analysis with modified mobile phones have the potential to solve problems related to microscopy-based diagnostics of parasitic infections in many endemic regions. Diagnostics using the computing power of “smartphones” is not restricted by limited expertise or [...] Read more.
Imaging at high resolution and subsequent image analysis with modified mobile phones have the potential to solve problems related to microscopy-based diagnostics of parasitic infections in many endemic regions. Diagnostics using the computing power of “smartphones” is not restricted by limited expertise or limitations set by visual perception of a microscopist. Thus diagnostics currently almost exclusively dependent on recognition of morphological features of pathogenic organisms could be based on additional properties, such as motility characteristics recognizable by computer vision. Of special interest are infectious larval stages and “micro swimmers” of e.g., the schistosome life cycle, which infect the intermediate and definitive hosts, respectively. The ciliated miracidium, emerges from the excreted egg upon its contact with water. This means that for diagnostics, recognition of a swimming miracidium is equivalent to recognition of an egg. The motility pattern of miracidia could be defined by computer vision and used as a diagnostic criterion. To develop motility pattern-based diagnostics of schistosomiasis using simple imaging devices, we analyzed Paramecium as a model for the schistosome miracidium. As a model for invasive nematodes, such as strongyloids and filaria, we examined a different type of motility in the apathogenic nematode Turbatrix, the “vinegar eel.” The results of motion time and frequency analysis suggest that target motility may be expressed as specific spectrograms serving as “diagnostic fingerprints.” Full article
(This article belongs to the Special Issue Mobile Diagnosis)
Show Figures

Figure 1

7 pages, 664 KiB  
Article
Effects of Different Levels of Echinostoma caproni Miracidial Dose on Glucose and Maltose Composition of Biomphalaria glabrata Snails as Determined by High Performance Thin-Layer Chromatography-Densitometry
by Dolcie DeGrandchamp, Sage Hartlaub, Bernard Fried and Joseph Sherma
Chromatography 2015, 2(2), 188-194; https://doi.org/10.3390/chromatography2020188 - 9 Apr 2015
Viewed by 5630
Abstract
The effects of 5, 25, and 40 Echinostoma caproni miracidia on the sugar content of young adult and mature adult Biomphalaria glabrata were studied using high performance thin layer chromatography (HPTLC)-densitometry. Analysis was done on the snail’s digestive gland gonad complex (DGG) at [...] Read more.
The effects of 5, 25, and 40 Echinostoma caproni miracidia on the sugar content of young adult and mature adult Biomphalaria glabrata were studied using high performance thin layer chromatography (HPTLC)-densitometry. Analysis was done on the snail’s digestive gland gonad complex (DGG) at two and four weeks postmiracidial exposure. The sugars were extracted from the DGG using 70% ethanol and analyzed on silica gel HPTLC plates with a preadsorbent zone using 1-butanol-glacial acetic acid-diethyl ether-deionized water (27:18:5:3) mobile phase. The separated bands were then detected using alpha-naphthol-sulfuric reagent and quantified by densitometry at 515 nm. Significant differences were found in the maltose content between two and four weeks post exposure for both age groups. Additionally, significantly lower maltose and glucose levels were observed in the high exposure groups of both ages. Full article
(This article belongs to the Special Issue New Trends in Thin-Layer Chromatography)
7 pages, 633 KiB  
Review
Recent High Performance Thin Layer Chromatographic Studies on Biomphalaria glabrata (Gastropoda)
by Bernard Fried and Aditya Reddy
Chromatography 2015, 2(1), 118-124; https://doi.org/10.3390/chromatography2010118 - 10 Mar 2015
Cited by 2 | Viewed by 4518
Abstract
This review examines the recent high performance thin layer chromatography (HPTLC) literature on the effects of biotic and abiotic factors on certain analytes in the medically important freshwater snail, Biomphalaria glabrata. The analytes studied were lipids, lipophilic pigments, amino acids, and carbohydrates. [...] Read more.
This review examines the recent high performance thin layer chromatography (HPTLC) literature on the effects of biotic and abiotic factors on certain analytes in the medically important freshwater snail, Biomphalaria glabrata. The analytes studied were lipids, lipophilic pigments, amino acids, and carbohydrates. As determined by HPTLC, various factors, such as larval parasitism, estivation, temperature changes, and others, alter the metabolism of the snail and cause significant changes in the chemical contents of the analytes under study. Full article
(This article belongs to the Special Issue New Trends in Thin-Layer Chromatography)
Back to TopTop