Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = mip-gene sequencing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 379 KiB  
Article
Discovery of RNA Biomarkers for Prostate Cancer Using Cross-Platform Transcriptomics
by Wieke C. H. Visser, Hans de Jong, Frank P. Smit, Jolly Shrivastava, Jason C. Poole, William P. J. Leenders, Willem J. G. Melchers, Peter F. A. Mulders and Jack A. Schalken
Int. J. Mol. Sci. 2024, 25(22), 11907; https://doi.org/10.3390/ijms252211907 - 6 Nov 2024
Cited by 1 | Viewed by 1298
Abstract
Microarray and Single-Molecule Molecular Inversion Probe (smMIP)-based targeted RNA sequencing are two RNA profiling platforms for identifying disease-associated biomarkers. The microarray uses a GeneChip array with oligonucleotide probes to measure expression levels across thousands of genes, while smMIPs capture and quantify RNA transcripts [...] Read more.
Microarray and Single-Molecule Molecular Inversion Probe (smMIP)-based targeted RNA sequencing are two RNA profiling platforms for identifying disease-associated biomarkers. The microarray uses a GeneChip array with oligonucleotide probes to measure expression levels across thousands of genes, while smMIPs capture and quantify RNA transcripts and transcript variants via next-generation sequencing. To evaluate the strengths and weaknesses of both platforms, a comparative gene expression profiling study was conducted using RNA samples from 52 prostate tissues (normal, benign prostatic hyperplasia (BPH) and various prostate cancer (PCa) grades). Of all genes covered by both platforms, only 35% of the expression levels aligned, with 45% showing discrepancies. Both platforms identified the same 17 genes as potential PCa biomarkers. Microarray analysis identified an additional 253 genes that were not covered or not identified by smMIP technology, while smMIP technology identified eight markers not covered or not identified in the microarray core gene analysis, including fusion genes and splice variants. For high-grade prostate cancer (HG-PCa), the smMIP-method identified 8 markers, and the microarray identified 17 markers, with FOLH1, FAP and CLDN3 being common across both platforms. The choice of RNA expression analysis technology depends on research objectives; microarray technology is useful for the evaluation of a wide range of genes but has low throughput. In contrast, smMIP-based RNA sequencing enables sensitive analysis with minimal RNA in a medium- to high-throughput setting. Full article
Show Figures

Figure 1

17 pages, 1995 KiB  
Article
A Case–Control Study Supports Genetic Contribution of the PON Gene Family in Obesity and Metabolic Dysfunction Associated Steatotic Liver Disease
by Evelien Van Dijck, Sara Diels, Erik Fransen, Tycho Canter Cremers, An Verrijken, Eveline Dirinck, Alexander Hoischen, Geert Vandeweyer, Wim Vanden Berghe, Luc Van Gaal, Sven Francque and Wim Van Hul
Antioxidants 2024, 13(9), 1051; https://doi.org/10.3390/antiox13091051 - 29 Aug 2024
Viewed by 1460
Abstract
The paraoxonase (PON) gene family (including PON1, PON2, and PON3), is known for its anti-oxidative and anti-inflammatory properties, protecting against metabolic diseases such as obesity and metabolic dysfunction-associated steatotic liver disease (MASLD). In this study, the influence of common and rare [...] Read more.
The paraoxonase (PON) gene family (including PON1, PON2, and PON3), is known for its anti-oxidative and anti-inflammatory properties, protecting against metabolic diseases such as obesity and metabolic dysfunction-associated steatotic liver disease (MASLD). In this study, the influence of common and rare PON variants on both conditions was investigated. A total of 507 healthy weight individuals and 744 patients with obesity including 433 with histological liver assessment, were sequenced with single-molecule molecular inversion probes (smMIPs), allowing the identification of genetic contributions to obesity and MASLD-related liver features. Polymorphisms rs705379 and rs854552 in the PON1 gene displayed significant association with MASLD stage and fibrosis, respectively. Additionally, rare PON1 variants were strongly associated with obesity. This study thereby reinforces the genetic foundation of PON1 in obesity and various MASLD-related liver features, by extending previous findings from common variants to include rare variants. Additionally, rare and very rare variants in PON2 were discovered to be associated with MASLD-related hepatic fibrosis. Notably, we are the first to report an association between naturally occurring rare PON2 variants and MASLD-related liver fibrosis. Considering the critical role of liver fibrosis in MASLD outcome, PON2 emerges as a possible candidate for future research endeavors including exploration of biomarker potential. Full article
(This article belongs to the Special Issue Oxidative Stress and Liver Disease)
Show Figures

Graphical abstract

16 pages, 4254 KiB  
Article
An In Vitro System Mimics the Intestinal Microbiota of Striped Beakfish (Oplegnathus fasciatus) and Inhibits Vibrio alginolyticus by Limosilactobacillus reuteri-Derived Extracellular Vesicles
by Bao-Hong Lee, Yeh-Fang Hu, Sofia Priyadarsani Das, Yu-Ting Chu, Wei-Hsuan Hsu and Fan-Hua Nan
Animals 2024, 14(12), 1792; https://doi.org/10.3390/ani14121792 - 14 Jun 2024
Cited by 4 | Viewed by 1761
Abstract
Extracellular vesicles (EVs) are functional substances secreted by microbes and host cells, and it has been discovered that they participate in the interactions between different microorganisms. Our recent findings indicate that Limosilactobacillus reuteri-derived EVs have the potential to improve the intestinal microbiota [...] Read more.
Extracellular vesicles (EVs) are functional substances secreted by microbes and host cells, and it has been discovered that they participate in the interactions between different microorganisms. Our recent findings indicate that Limosilactobacillus reuteri-derived EVs have the potential to improve the intestinal microbiota of Oplegnathus fasciatus fish and inhibit pathogenic bacteria. Previous research has reported that the host intestinal cells play a regulatory role in the intestinal microbiota. This suggested that to investigate the mechanisms through which L. reuteri-derived EVs regulate the intestinal microbiota, a system that excludes interference from host intestinal cells should be established. In this study, an in vitro cultured intestinal bacteria system, without host factors, was used to simulate the intestinal microbiota of O. fasciatus fish. After adding L. reuteri-derived EVs to the system, the changes in the microbiota were analyzed. The results showed that L. reuteri-derived EVs effectively reduced the abundance of Vibrio spp. In the results of the in vitro experiments, it was also observed that L. reuteri-derived EVs have the ability to inhibit Vibrio alginolyticus. We further sequenced the small RNA contained in L. reuteri-derived EVs and found that these small RNAs can interfere with genes (LysR, pirin, MIpA/OmpV, CatB, and aspartate-semialdehyde dehydrogenase) related to the growth of V. alginolyticus. Taken together, the results indicate that in the absence of host involvement, the small RNAs present in L. reuteri-derived EVs have the function of inhibiting pathogenic bacteria and exhibit the potential to regulate the intestinal microbiota. Full article
Show Figures

Figure 1

14 pages, 1256 KiB  
Article
Novel and Recurrent Copy Number Variants in ABCA4-Associated Retinopathy
by Zelia Corradi, Claire-Marie Dhaenens, Olivier Grunewald, Ipek Selen Kocabaş, Isabelle Meunier, Sandro Banfi, Marianthi Karali, Frans P. M. Cremers and Rebekkah J. Hitti-Malin
Int. J. Mol. Sci. 2024, 25(11), 5940; https://doi.org/10.3390/ijms25115940 - 29 May 2024
Viewed by 1528
Abstract
ABCA4 is the most frequently mutated gene leading to inherited retinal disease (IRD) with over 2200 pathogenic variants reported to date. Of these, ~1% are copy number variants (CNVs) involving the deletion or duplication of genomic regions, typically >50 nucleotides in length. An [...] Read more.
ABCA4 is the most frequently mutated gene leading to inherited retinal disease (IRD) with over 2200 pathogenic variants reported to date. Of these, ~1% are copy number variants (CNVs) involving the deletion or duplication of genomic regions, typically >50 nucleotides in length. An in-depth assessment of the current literature based on the public database LOVD, regarding the presence of known CNVs and structural variants in ABCA4, and additional sequencing analysis of ABCA4 using single-molecule Molecular Inversion Probes (smMIPs) for 148 probands highlighted recurrent and novel CNVs associated with ABCA4-associated retinopathies. An analysis of the coverage depth in the sequencing data led to the identification of eleven deletions (six novel and five recurrent), three duplications (one novel and two recurrent) and one complex CNV. Of particular interest was the identification of a complex defect, i.e., a 15.3 kb duplicated segment encompassing exon 31 through intron 41 that was inserted at the junction of a downstream 2.7 kb deletion encompassing intron 44 through intron 47. In addition, we identified a 7.0 kb tandem duplication of intron 1 in three cases. The identification of CNVs in ABCA4 can provide patients and their families with a genetic diagnosis whilst expanding our understanding of the complexity of diseases caused by ABCA4 variants. Full article
(This article belongs to the Special Issue Genetics and Epigenetics of Eye Diseases: 2nd Edition)
Show Figures

Figure 1

13 pages, 2504 KiB  
Article
Comprehensive Analysis of Clinically Relevant Copy Number Alterations (CNAs) Using a 523-Gene Next-Generation Sequencing Panel and NxClinical Software in Solid Tumors
by Vivek Gupta, Vishakha Vashisht, Ashutosh Vashisht, Ashis K. Mondal, Ahmet Alptekin, Harmanpreet Singh and Ravindra Kolhe
Genes 2024, 15(4), 396; https://doi.org/10.3390/genes15040396 - 23 Mar 2024
Cited by 2 | Viewed by 2880
Abstract
Copy number alterations (CNAs) are significant in tumor initiation and progression. Identifying these aberrations is crucial for targeted therapies and personalized cancer diagnostics. Next-generation sequencing (NGS) methods present advantages in scalability and cost-effectiveness, surpassing limitations associated with reference assemblies and probe capacities in [...] Read more.
Copy number alterations (CNAs) are significant in tumor initiation and progression. Identifying these aberrations is crucial for targeted therapies and personalized cancer diagnostics. Next-generation sequencing (NGS) methods present advantages in scalability and cost-effectiveness, surpassing limitations associated with reference assemblies and probe capacities in traditional laboratory approaches. This retrospective study evaluated CNAs in 50 FFPE tumor samples (breast cancer, ovarian carcinoma, pancreatic cancer, melanoma, and prostate carcinoma) using Illumina’s TruSight Oncology 500 (TSO500) and the Affymetrix Oncoscan Molecular Inversion Probe (OS-MIP) (ThermoFisher Scientific, Waltham, MA, USA). NGS analysis with the NxClinical 6.2 software demonstrated a high sensitivity and specificity (100%) for CNA detection, with a complete concordance rate as compared to the OS-MIP. All 54 known CNAs were identified by NGS, with gains being the most prevalent (63%). Notable CNAs were observed in MYC (18%), TP53 (12%), BRAF (8%), PIK3CA, EGFR, and FGFR1 (6%) genes. The diagnostic parameters exhibited high accuracy, including a positive predictive value, negative predictive value, and overall diagnostic accuracy. This study underscores NxClinical as a reliable software for identifying clinically relevant gene alterations using NGS TSO500, offering valuable insights for personalized cancer treatment strategies based on CNA analysis. Full article
(This article belongs to the Special Issue Commemorating the Launch of the Section "Cytogenomics")
Show Figures

Figure 1

24 pages, 15946 KiB  
Article
Characterization of a Novel Species of Legionella Isolated from a Healthcare Facility: Legionella resiliens sp. nov
by Sandra Cristino, Maria Rosaria Pascale, Federica Marino, Carlo Derelitto, Silvano Salaris, Massimiliano Orsini, Stefano Squarzoni, Antonella Grottola and Luna Girolamini
Pathogens 2024, 13(3), 250; https://doi.org/10.3390/pathogens13030250 - 14 Mar 2024
Cited by 4 | Viewed by 3285
Abstract
Two Legionella-like isolates, 8cVS16T and 9fVS26, were isolated from a water distribution system (WDS) in a healthcare facility. Cells were Gram- and Ziehl Neelsen-stain-negative, rod-shaped, motile, and exhibited a blue-white fluorescence under Wood’s lamp at 365 nm. The strains grew in [...] Read more.
Two Legionella-like isolates, 8cVS16T and 9fVS26, were isolated from a water distribution system (WDS) in a healthcare facility. Cells were Gram- and Ziehl Neelsen-stain-negative, rod-shaped, motile, and exhibited a blue-white fluorescence under Wood’s lamp at 365 nm. The strains grew in a range of 32–37 °C on BCYE with L-cysteine (Cys+), GVPC, and MWY agar medium, with a positive reaction for oxidase, catalase, and gelatinase. The dominant fatty acids were summed features 3 (C16:1ω7c/C16:1ω6c) (27.7%), C16:0 iso (17.5%), and C16:0 (16.3%), and Q13 as the major ubiquinone. The mip and rpoB gene sequences showed a similarity of 96.7% and 92.4%, with L. anisa (ATCC 35292T). The whole genomes sequencing (WGS) performed displayed a GC content of 38.21 mol% for both. The digital DNA-DNA hybridization (dDDH) analysis demonstrated the separation of the two strains from the phylogenetically most related L. anisa (ATCC 35292T), with ≤43% DNA-DNA relatedness. The Average Nucleotide Identity (ANI) between the two strains and L. anisa (ATCC 35292T) was 90.74%, confirming that the two isolates represent a novel species of the genus Legionella. The name proposed for this species is Legionella resiliens sp. nov., with 8cVS16T (=DSM 114356T = CCUG 76627T) as the type strain. Full article
(This article belongs to the Special Issue Bacterial Biofilm, Genomics and Virulence)
Show Figures

Graphical abstract

12 pages, 1350 KiB  
Article
Biomarker Analysis from a Phase I/Ib Study of Regorafenib and Nivolumab in Mismatch Repair-Proficient Advanced Refractory Colorectal Cancer
by Dae Won Kim, Young-Chul Kim, Bence P. Kovari, Maria Martinez, Ruoyu Miao, James Yu, Rutika Mehta, Jonathan Strosberg, Iman Imanirad and Richard D. Kim
Cancers 2024, 16(3), 556; https://doi.org/10.3390/cancers16030556 - 28 Jan 2024
Cited by 2 | Viewed by 2470
Abstract
Previously, we reported the modest but durable anticancer activity of regorafenib/nivolumab in mismatch repair-proficient (pMMR) refractory colorectal cancer in our I/Ib study. Our finding suggests the necessity of biomarkers for better selection of patients. Baseline clinical and pathological characteristics, blood and tumor samples [...] Read more.
Previously, we reported the modest but durable anticancer activity of regorafenib/nivolumab in mismatch repair-proficient (pMMR) refractory colorectal cancer in our I/Ib study. Our finding suggests the necessity of biomarkers for better selection of patients. Baseline clinical and pathological characteristics, blood and tumor samples from the patients in the trial were collected and evaluated to discover potential biomarkers. The obtained samples were assessed for immunohistochemistry, ELISA and RNA sequencing. Their correlations with clinical outcome were analyzed. A high albumin level was significantly associated with improved progression-free survival (PFS), overall survival (OS) and disease control. Non-liver metastatic disease showed prolonged PFS and OS. Low regulatory T-cell (Treg) infiltration correlated with prolonged PFS. Low MIP-1β was associated with durable response and improved OS significantly. Upregulation of 23 genes, including CAPN9, NAPSA and ROS1, was observed in the durable disease control group, and upregulation of 10 genes, including MRPS18A, MAIP1 and CMTR2, was associated with a statistically significant improvement of PFS. This study suggests that pretreatment albumin, MIP-1β, non-liver metastatic disease and Treg infiltration may be potential predictive biomarkers of regorafenib/nivolumab in pMMR colorectal cancer. Further studies are needed to confirm these findings. Full article
(This article belongs to the Special Issue New Biomarkers in Cancers 2nd Edition)
Show Figures

Figure 1

17 pages, 2715 KiB  
Article
Genetic and Molecular Evidence of a Tetrapolar Mating System in the Edible Mushroom Grifola frondosa
by Shuang-Shuang Zhang, Xiao Li, Guo-Jie Li, Qi Huang, Jing-Hua Tian, Jun-Ling Wang, Ming Li and Shou-Mian Li
J. Fungi 2023, 9(10), 959; https://doi.org/10.3390/jof9100959 - 23 Sep 2023
Cited by 4 | Viewed by 2655
Abstract
Grifola frondosa is a valuable edible fungus with high nutritional and medicinal values. The mating systems of fungi not only offer practical strategies for breeding, but also have far-reaching effects on genetic variability. Grifola frondosa has been considered as a sexual species with [...] Read more.
Grifola frondosa is a valuable edible fungus with high nutritional and medicinal values. The mating systems of fungi not only offer practical strategies for breeding, but also have far-reaching effects on genetic variability. Grifola frondosa has been considered as a sexual species with a tetrapolar mating system based on little experimental data. In the present study, one group of test crosses and six groups of three-round mating experiments from two parental strains were conducted to determine the mating system in G. frondosa. A chi-squared test of the results of the test-cross mating experiments indicated that they satisfied Mendelian segregation, while a series of three-round mating experiments showed that Mendelian segregation was not satisfied, implying a segregation distortion phenomenon in G. frondosa. A genomic map of the G. frondosa strain, y59, grown from an LMCZ basidiospore, with 40.54 Mb and 12 chromosomes, was generated using genome, transcriptome and Hi-C sequencing technology. Based on the genomic annotation of G. frondosa, the mating-type loci A and B were located on chromosomes 1 and 11, respectively. The mating-type locus A coded for the β-fg protein, HD1, HD2 and MIP, in that order. The mating-type locus B consisted of six pheromone receptors (PRs) and five pheromone precursors (PPs) in a crossed order. Moreover, both HD and PR loci may have only one sublocus that determines the mating type in G. frondosa. The nonsynonymous SNP and indel mutations between the A1B1 and A2B2 mating-type strains and the reference genome of y59 only occurred on genes HD2 and PR1/2, preliminarily confirming that the mating type of the y59 strain was A1B2 and not A1B1. Based on the genetic evidence and the more reliable molecular evidence, the results reveal that the mating system of G. frondosa is tetrapolar. This study has important implications for the genetics and hybrid breeding of G. frondosa. Full article
(This article belongs to the Special Issue Edible and Medicinal Macrofungi, 2nd Edition)
Show Figures

Figure 1

15 pages, 1005 KiB  
Article
Evaluation of Genetic Diversity and Virulence Potential of Legionella pneumophila Isolated from Water Supply Systems of Residential Buildings in Latvia
by Olga Valciņa, Daina Pūle, Juris Ķibilds, Linda Labecka, Margarita Terentjeva, Angelika Krūmiņa and Aivars Bērziņš
Pathogens 2023, 12(7), 884; https://doi.org/10.3390/pathogens12070884 - 28 Jun 2023
Cited by 4 | Viewed by 1810
Abstract
Legionella is an opportunistic pathogen with a biphasic life cycle that occasionally infects humans. The aim of the study was to assess the distribution of virulence genes and genetic diversity among L. pneumophila isolated from water supply systems of residential buildings in Latvia. [...] Read more.
Legionella is an opportunistic pathogen with a biphasic life cycle that occasionally infects humans. The aim of the study was to assess the distribution of virulence genes and genetic diversity among L. pneumophila isolated from water supply systems of residential buildings in Latvia. In total, 492 water samples from 200 residential buildings were collected. Identification of Legionella spp. was performed according to ISO 11731, and 58 isolates were subjected to whole-genome sequencing. At least one Legionella-positive sample was found in 112 out of 200 apartment buildings (56.0%). The study revealed extensive sequence-type diversity, where 58 L. pneumophila isolates fell into 36 different sequence types. A total of 420 virulence genes were identified, of which 260 genes were found in all sequenced L. pneumophila isolates. The virulence genes enhC, htpB, omp28, and mip were detected in all isolates, suggesting that adhesion, attachment, and entry into host cells are enabled for all isolates. The relative frequency of virulence genes among L. pneumophila isolates was high. The high prevalence, extensive genetic diversity, and the wide range of virulence genes indicated that the virulence potential of environmental Legionella is high, and proper risk management is of key importance to public health. Full article
Show Figures

Figure 1

13 pages, 887 KiB  
Article
Whole Exome Sequencing to Find Candidate Variants for the Prediction of Kidney Transplantation Efficacy
by Seyed Mohammad Kazem Aghamir, Hassan Roudgari, Hassan Heidari, Mohammad Salimi Asl, Yousef Jafari Abarghan, Venous Soleimani, Rahil Mashhadi and Fatemeh Khatami
Genes 2023, 14(6), 1251; https://doi.org/10.3390/genes14061251 - 11 Jun 2023
Cited by 3 | Viewed by 2426
Abstract
Introduction: Kidney transplantation is the optimal treatment strategy for some end-stage renal disease (ESRD); however, graft survival and the success of the transplantation depend on several elements, including the genetics of recipients. In this study, we evaluated exon loci variants based on a [...] Read more.
Introduction: Kidney transplantation is the optimal treatment strategy for some end-stage renal disease (ESRD); however, graft survival and the success of the transplantation depend on several elements, including the genetics of recipients. In this study, we evaluated exon loci variants based on a high-resolution Next Generation Sequencing (NGS) method. Methods: We evaluated whole-exome sequencing (WES) of transplanted kidney recipients in a prospective study. The study involved a total of 10 patients (5 without a history of rejection and 5 with). About five milliliters of blood were collected for DNA extraction, followed by whole-exome sequencing based on molecular inversion probes (MIPs). Results: Sequencing and variant filtering identified nine pathogenic variants in rejecting patients (low survival). Interestingly, in five patients with successful kidney transplantation, we found 86 SNPs in 63 genes 61 were variants of uncertain significance (VUS), 5 were likely pathogenic, and five were likely benign/benign. The only overlap between rejecting and non-rejecting patients was SNPs rs529922492 in rejecting and rs773542127 in non-rejecting patients’ MUC4 gene. Conclusions: Nine variants of rs779232502, rs3831942, rs564955632, rs529922492, rs762675930, rs569593251, rs192347509, rs548514380, and rs72648913 have roles in short graft survival. Full article
(This article belongs to the Special Issue Cancer Systems Biology and Genomics)
Show Figures

Figure 1

16 pages, 3158 KiB  
Article
Identification of Aspergillus niger Aquaporins Involved in Hydrogen Peroxide Signaling
by Thanaporn Laothanachareon, Enrique Asin-Garcia, Rita J. M. Volkers, Juan Antonio Tamayo-Ramos, Vitor A. P. Martins dos Santos and Peter J. Schaap
J. Fungi 2023, 9(4), 499; https://doi.org/10.3390/jof9040499 - 21 Apr 2023
Cited by 4 | Viewed by 2750
Abstract
Aspergillus niger is a robust microbial cell factory for organic acid production. However, the regulation of many industrially important pathways is still poorly understood. The regulation of the glucose oxidase (Gox) expression system, involved in the biosynthesis of gluconic acid, has recently been [...] Read more.
Aspergillus niger is a robust microbial cell factory for organic acid production. However, the regulation of many industrially important pathways is still poorly understood. The regulation of the glucose oxidase (Gox) expression system, involved in the biosynthesis of gluconic acid, has recently been uncovered. The results of that study show hydrogen peroxide, a by-product of the extracellular conversion of glucose to gluconate, has a pivotal role as a signaling molecule in the induction of this system. In this study, the facilitated diffusion of hydrogen peroxide via aquaporin water channels (AQPs) was studied. AQPs are transmembrane proteins of the major intrinsic proteins (MIPs) superfamily. In addition to water and glycerol, they may also transport small solutes such as hydrogen peroxide. The genome sequence of A. niger N402 was screened for putative AQPs. Seven AQPs were found and could be classified into three main groups. One protein (AQPA) belonged to orthodox AQP, three (AQPB, AQPD, and AQPE) were grouped in aquaglyceroporins (AQGP), two (AQPC and AQPF) were in X-intrinsic proteins (XIPs), and the other (AQPG) could not be classified. Their ability to facilitate diffusion of hydrogen peroxide was identified using yeast phenotypic growth assays and by studying AQP gene knock-outs in A. niger. The X-intrinsic protein AQPF appears to play roles in facilitating hydrogen peroxide transport across the cellular membrane in both Saccharomyces cerevisiae and A. niger experiments. Full article
(This article belongs to the Special Issue Physiology and Biotechnology of Aspergillus niger)
Show Figures

Figure 1

17 pages, 3496 KiB  
Article
Core-Shell Magnetic Imprinted Polymers for the Recognition of FLAG-Tagpeptide
by Elsa Lafuente-González, Miriam Guadaño-Sánchez, Idoia Urriza-Arsuaga and Javier Lucas Urraca
Int. J. Mol. Sci. 2023, 24(4), 3453; https://doi.org/10.3390/ijms24043453 - 9 Feb 2023
Cited by 5 | Viewed by 2300
Abstract
FLAG® tag (DYKDDDDK) is a small epitope peptide employed for the purification of recombinant proteins such as immunoglobulins, cytokines, and gene regulatory proteins. It provides superior purity and recoveries of fused target proteins when compared to the commonly used His-tag. Nevertheless, the [...] Read more.
FLAG® tag (DYKDDDDK) is a small epitope peptide employed for the purification of recombinant proteins such as immunoglobulins, cytokines, and gene regulatory proteins. It provides superior purity and recoveries of fused target proteins when compared to the commonly used His-tag. Nevertheless, the immunoaffinity-based adsorbents required for their isolation are far more expensive than the ligand-based affinity resin used in combination with the His-tag. In order to overcome this limitation we report herein the development of molecularly imprinted polymers (MIPs) selective to the FLAG® tag. The polymers were prepared by the epitope imprinting approach using a four amino acids peptide, DYKD, including part of the FLAG® sequence as template molecule. Different kinds of magnetic polymers were synthesised in aqueous and organic media also using different sizes of magnetite core nanoparticles. The synthesised polymers were used as solid phase extraction materials with excellent recoveries and high specificity for both peptides. The magnetic properties of the polymers confer a new, effective, simple, and fast method in the purification using FLAG® tag. Full article
(This article belongs to the Collection State-of-the-Art Macromolecules in Spain)
Show Figures

Figure 1

14 pages, 438 KiB  
Article
Effective smMIPs-Based Sequencing of Maculopathy-Associated Genes in Stargardt Disease Cases and Allied Maculopathies from the UK
by Benjamin Mc Clinton, Zelia Corradi, Martin McKibbin, Daan M. Panneman, Susanne Roosing, Erica G. M. Boonen, Manir Ali, Christopher M. Watson, David H. Steel, Frans P. M. Cremers, Chris F. Inglehearn, Rebekkah J. Hitti-Malin and Carmel Toomes
Genes 2023, 14(1), 191; https://doi.org/10.3390/genes14010191 - 11 Jan 2023
Cited by 2 | Viewed by 2704
Abstract
Macular dystrophies are a group of individually rare but collectively common inherited retinal dystrophies characterised by central vision loss and loss of visual acuity. Single molecule Molecular Inversion Probes (smMIPs) have proved effective in identifying genetic variants causing macular dystrophy. Here, a previously [...] Read more.
Macular dystrophies are a group of individually rare but collectively common inherited retinal dystrophies characterised by central vision loss and loss of visual acuity. Single molecule Molecular Inversion Probes (smMIPs) have proved effective in identifying genetic variants causing macular dystrophy. Here, a previously established smMIPs panel tailored for genes associated with macular diseases has been used to examine 57 UK macular dystrophy cases, achieving a high solve rate of 63.2% (36/57). Among 27 bi-allelic STGD1 cases, only three novel ABCA4 variants were identified, illustrating that the majority of ABCA4 variants in Caucasian STGD1 cases are currently known. We examined cases with ABCA4-associated disease in detail, comparing our results with a previously reported variant grading system, and found this model to be accurate and clinically useful. In this study, we showed that ABCA4-associated disease could be distinguished from other forms of macular dystrophy based on clinical evaluation in the majority of cases (34/36) Full article
(This article belongs to the Special Issue Genetics and Pathogenesis of Inherited Eye Diseases)
Show Figures

Figure 1

7 pages, 1283 KiB  
Article
Anterior Umbilication of Lens in a Family with Congenital Cataracts Associated with a Missense Mutation of MIP Gene
by Zhixing Cheng, Xun Wang, Qiwei Wang, Xulin Zhang, Dongni Wang, Weiming Huang, Meimei Dongye, Xiaocheng Feng, Danying Zheng and Haotian Lin
Genes 2022, 13(11), 1987; https://doi.org/10.3390/genes13111987 - 31 Oct 2022
Viewed by 2020
Abstract
Congenital cataracts (CCs) have significant genotypic and phenotypic heterogeneity. The major intrinsic protein (MIP) gene, one of the causative genes of CCs, plays a vital role in maintaining the homeostasis and transparency of the lens. In this study, we identified a [...] Read more.
Congenital cataracts (CCs) have significant genotypic and phenotypic heterogeneity. The major intrinsic protein (MIP) gene, one of the causative genes of CCs, plays a vital role in maintaining the homeostasis and transparency of the lens. In this study, we identified a unique phenotype of anterior umbilication of the lens in a four-generation pedigree with CCs. All patients in the observed family had nystagmus, nuclear cataracts, and elongated axial lengths compared with their healthy counterparts except for patient I:2, whose axial length was unavailable, and patientII:4, who had total cataracts. We confirmed, using Sanger sequencing based on whole-exon sequencing (WES) data, that all patients carried a heterozygous variant NM_012064.4:c.97C > T (NP_036196.1:p.R33C) in their MIP gene. To our knowledge, 29 variants of the human MIP gene and the relative phenotypes associated with CCs have been identified. Nevertheless, this is the first report on the anterior umbilication of the lens with nuclear or total opacity caused by the c.97C > T (p.R33C) variant in the MIP gene. These results also provide evidence that the elongated axial length might be associated with this variant. This study further confirms the phenotypic heterogeneity of CCs. Full article
(This article belongs to the Special Issue Genetic and Phenotypic Correlation: Gene-Disease Validation)
Show Figures

Figure 1

12 pages, 3406 KiB  
Article
Identification and Characterization of PTE-2, a Stowaway-like MITE Activated in Transgenic Chinese Cabbage Lines
by Young-Ji Jeon, Yun-Hee Shin, Su-Jeong Cheon and Young-Doo Park
Genes 2022, 13(7), 1222; https://doi.org/10.3390/genes13071222 - 8 Jul 2022
Cited by 3 | Viewed by 2330
Abstract
Transposable elements (TEs) are DNA fragments that can be replicated or transposed within a genome. TEs make up a high proportion of the plant genome and contribute to genetic diversity and evolution, affecting genome structure or gene activity. Miniature inverted-repeat transposable elements (MITEs) [...] Read more.
Transposable elements (TEs) are DNA fragments that can be replicated or transposed within a genome. TEs make up a high proportion of the plant genome and contribute to genetic diversity and evolution, affecting genome structure or gene activity. Miniature inverted-repeat transposable elements (MITEs) are short, non-autonomous class II DNA transposable elements. MITEs have specific sequences, target site duplications (TSDs), and terminal inverted repeats(TIRs), which are characteristics of the classification of MITE families. In this study, a Stowaway-like MITE, PTE-2, was activated in transgenic Chinese cabbage lines. PTE-2 was revealed by in silico analysis as the putative activated element in transgenic Chinese cabbage lines. To verify the in silico analysis data, MITE insertion polymorphism (MIP) PCR was conducted and PTE-2 was confirmed to be activated in transgenic Chinese cabbage lines. The activation tendency of the copy elements of PTE-2 at different loci was also analyzed and only one more element was activated in the transgenic Chinese cabbage lines. Analyzing the sequence of MIP PCR products, the TSD sequence and TIR motif of PTE-2 were identified and matched to the characteristics of the Stowaway-like MITE family. In addition, the flanking region of PTE-2 was modified when PTE-2 was activated. Full article
(This article belongs to the Special Issue Genetic Research and Plant Breeding)
Show Figures

Figure 1

Back to TopTop