Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (112)

Search Parameters:
Keywords = microwave-assisted organic synthesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1647 KiB  
Article
Application of Iron Oxides in the Photocatalytic Degradation of Real Effluent from Aluminum Anodizing Industries
by Lara K. Ribeiro, Matheus G. Guardiano, Lucia H. Mascaro, Monica Calatayud and Amanda F. Gouveia
Appl. Sci. 2025, 15(15), 8594; https://doi.org/10.3390/app15158594 (registering DOI) - 2 Aug 2025
Viewed by 159
Abstract
This study reports the synthesis and evaluation of iron molybdate (Fe2(MoO4)3) and iron tungstate (FeWO4) as photocatalysts for the degradation of a real industrial effluent from aluminum anodizing processes under visible light irradiation. The oxides [...] Read more.
This study reports the synthesis and evaluation of iron molybdate (Fe2(MoO4)3) and iron tungstate (FeWO4) as photocatalysts for the degradation of a real industrial effluent from aluminum anodizing processes under visible light irradiation. The oxides were synthesized via a co-precipitation method in an aqueous medium, followed by microwave-assisted hydrothermal treatment. Structural and morphological characterizations were performed using X-ray diffraction, field-emission scanning electron microscopy, Raman spectroscopy, ultraviolet–visible (UV–vis), and photoluminescence (PL) spectroscopies. The effluent was characterized by means of ionic chromatography, total organic carbon (TOC) analysis, physicochemical parameters (pH and conductivity), and UV–vis spectroscopy. Both materials exhibited well-crystallized structures with distinct morphologies: Fe2(MoO4)3 presented well-defined exposed (001) and (110) surfaces, while FeWO4 showed a highly porous, fluffy texture with irregularly shaped particles. In addition to morphology, both materials exhibited narrow bandgaps—2.11 eV for Fe2(MoO4)3 and 2.03 eV for FeWO4. PL analysis revealed deep defects in Fe2(MoO4)3 and shallow defects in FeWO4, which can influence the generation and lifetime of reactive oxygen species. These combined structural, electronic, and morphological features significantly affected their photocatalytic performance. TOC measurements revealed degradation efficiencies of 32.2% for Fe2(MoO4)3 and 45.3% for FeWO4 after 120 min of irradiation. The results highlight the critical role of morphology, optical properties, and defect structures in governing photocatalytic activity and reinforce the potential of these simple iron-based oxides for real wastewater treatment applications. Full article
(This article belongs to the Special Issue Application of Nanomaterials in the Field of Photocatalysis)
Show Figures

Figure 1

17 pages, 3345 KiB  
Article
Novel Tetraphenolic Porphyrazine Capable of MRSA Photoeradication
by Wojciech Szczolko, Eunice Zuchowska, Tomasz Koczorowski, Michal Kryjewski, Jolanta Dlugaszewska and Dariusz T. Mlynarczyk
Molecules 2025, 30(15), 3069; https://doi.org/10.3390/molecules30153069 - 22 Jul 2025
Viewed by 250
Abstract
This work presents the synthesis, characterization and evaluation of physicochemical and biological properties of two new aminoporphyrazine derivatives bearing magnesium(II) cations in their cores and peripheral pyrrolyl groups. The synthesis was carried out in several stages, using classical methods and the Microwave-Assisted Organic [...] Read more.
This work presents the synthesis, characterization and evaluation of physicochemical and biological properties of two new aminoporphyrazine derivatives bearing magnesium(II) cations in their cores and peripheral pyrrolyl groups. The synthesis was carried out in several stages, using classical methods and the Microwave-Assisted Organic Synthesis (MAOS) approach. The obtained compounds were characterized using spectral techniques: UV-Vis spectrophotometry, mass spectrometry, 1H and 13C NMR spectroscopy. The porphyrazine derivatives were tested for their electrochemical properties (CV and DPV), which revealed four redox processes, of which in compound 7 positive shifts of oxidation potentials were observed, resulting from the presence of free phenolic hydroxyl groups. In spectroelectrochemical measurements, changes in UV-Vis spectra associated with the formation of positive-charged states were noted. Photophysical studies revealed the presence of characteristic absorption Q and Soret bands, low fluorescence quantum yields and small Stokes shifts. The efficiency of singlet oxygen generation (ΦΔ) was higher for compound 6 (up to 0.06), but compound 7, despite its lower efficiency (0.02), was distinguished by a better biological activity profile. Toxicity tests using the Aliivibrio fischeri bacteria indicated the lower toxicity of 7 compared to 6. The most promising result was the strong photodynamic activity of porphyrazine 7 against the Methicillin-resistant Stapylococcus aureus (MRSA) strain, leading to a more-than-5.6-log decrease in viable counts after the colony forming units (CFU) after light irradiation. Compound 6 did not show any significant antibacterial activity. The obtained data indicate that porphyrazine 7 is a promising candidate for applications in photodynamic therapy of bacterial infections. Full article
Show Figures

Figure 1

21 pages, 4609 KiB  
Review
Covalent Organic Framework Membranes for Ion Separation: A Review
by Yutong Lou, Zhanyong Wang, Wanbei Yang, Shuchen Lang, Jiaxing Fan, Qiaomei Ke, Rui Wang, Zhen Zhang, Wentao Chen and Jian Xue
Membranes 2025, 15(7), 211; https://doi.org/10.3390/membranes15070211 - 15 Jul 2025
Viewed by 650
Abstract
Covalent organic framework (COF) membranes have garnered significant attention in ion separation due to their high surface area, tunable pore size, excellent stability, and diverse functional groups. Over the past decade, various synthesis methods, such as solvothermal synthesis, interfacial synthesis, microwave-assisted solvothermal synthesis, [...] Read more.
Covalent organic framework (COF) membranes have garnered significant attention in ion separation due to their high surface area, tunable pore size, excellent stability, and diverse functional groups. Over the past decade, various synthesis methods, such as solvothermal synthesis, interfacial synthesis, microwave-assisted solvothermal synthesis, and in situ growth, have been developed to fabricate COF membranes. COF membranes have demonstrated remarkable ion separation performance in different separation processes driven by pressure, electric field, and vapor pressure difference, showing great potential in a wide range of applications. Nevertheless, challenges in the synthesis and application of COF membranes still remain, requiring further research to fully realize their potential in ion separation. This review critically examines the development of COF membranes, from synthesis methods to ion separation applications. We evaluate the advantages and limitations of various synthesis techniques and systematically summarize COF membrane performance based on separation driving forces. Finally, we present a critical analysis of current challenges and offer perspectives on promising future research directions for advancing COF membrane technology in separation. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

19 pages, 2334 KiB  
Article
One-Pot Microwave-Assisted Synthesis of Fluorescent Carbon Dots from Tomato Industry Residues with Antioxidant and Antibacterial Activities
by Patrícia D. Barata, Alexandra I. Costa, Sónia Martins, Magda C. Semedo, Bruno G. Antunes and José V. Prata
Biomass 2025, 5(2), 35; https://doi.org/10.3390/biomass5020035 - 10 Jun 2025
Viewed by 1123
Abstract
Tomato waste (TW) was employed as a sustainable source for the synthesis of fluorescent carbon dots (CDs) via a microwave-assisted hydrothermal carbonization (Mw-HTC) method, aiming at its valorization. Several amines were used as nitrogen additives to enhance the fluorescence quantum yield (QY) of [...] Read more.
Tomato waste (TW) was employed as a sustainable source for the synthesis of fluorescent carbon dots (CDs) via a microwave-assisted hydrothermal carbonization (Mw-HTC) method, aiming at its valorization. Several amines were used as nitrogen additives to enhance the fluorescence quantum yield (QY) of CDs, and a set of reaction conditions, including additive/TW mass ratio (0.04–0.32), dwell time (15–60 min), and temperature (200–230 °C) of the HTC process, were scrutinized. The structural analysis of the tomato waste carbon dots (TWCDs) was undertaken by FTIR and 1H NMR techniques, revealing their most relevant features. In solid state, transmission electron microscopy (TEM) analysis showed the presence of nearly spherical nanoparticles with an average lateral size of 8.1 nm. Likewise, the topographical assessment by atomic force microscopy (AFM) also indicated particles’ heights between 3 and 10 nm. Their photophysical properties, revealed by UV–Vis, steady-state, and time-resolved fluorescence spectroscopies, are fully discussed. Higher photoluminescent quantum yields (up to 0.08) were attained when the biomass residues were mixed with organic aliphatic amines during the Mw-HTC process. Emission tunability is a characteristic feature of these CDs, which display an intensity average fluorescence lifetime of 8 ns. The new TWCDs demonstrated good antioxidant properties by the ABTS radical cation method (75% inhibition at TWCDs’ concentration of 5 mg/mL), which proved to be related to the dwell time used in the CDs synthesis. Moreover, the synthesized TWCDs suppressed the growth of Escherichia coli and Staphylococcus aureus at concentrations higher than 2000 μg/mL, encouraging future antibacterial applications. Full article
Show Figures

Figure 1

9 pages, 2019 KiB  
Short Note
5,5′-Di((E)-buta-1,3-dien-1-yl)-2,2′,3,3′-tetramethoxy-1,1′-biphenyl
by Maria Antonietta Dettori, Davide Fabbri, Roberto Dallocchio and Paola Carta
Molbank 2025, 2025(2), M2018; https://doi.org/10.3390/M2018 - 6 Jun 2025
Viewed by 505
Abstract
Phenylbutanoids, commonly found in various medicinal plants, have attracted significant attention due to their remarkable biological activities, including antioxidant, anti-inflammatory, and neuroprotective effects, as well as for their versatility as starting materials in organic synthesis. Among phenylbutanoids, phenyl-1,3-butadienes represent a unique class of [...] Read more.
Phenylbutanoids, commonly found in various medicinal plants, have attracted significant attention due to their remarkable biological activities, including antioxidant, anti-inflammatory, and neuroprotective effects, as well as for their versatility as starting materials in organic synthesis. Among phenylbutanoids, phenyl-1,3-butadienes represent a unique class of conjugated dienes, characterized by a phenyl (C6H5) group attached to a 1,3-butadiene (-CH=CH-CH=CH2) backbone. In this study, we synthesized the hydroxylated biphenyl 5,5′-di((E)-buta-1,3-dien-1-yl)-2,2′,3,3′-tetramethoxy-1,1′-biphenyl 1, closely related to its corresponding monomer 2, which is known for its broad range of pharmacological activities. The synthesis was carried out using microwave-assisted technologies. The structure of the synthesized compound was confirmed through elemental analysis, 13C-NMR, 1H-NMR, and ESI-MS spectrometry. Furthermore, we computed this novel compound’s conformational energy profile (CEP), evaluating how its energy varies with changes in the dihedral bond angle. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Graphical abstract

19 pages, 1415 KiB  
Article
Green and Efficient Synthetic Protocol for 1,3,5-Triazine Derivatives with Anticancer Potential Against Colorectal Cancer
by Julia Chrzan, Anna Karolina Drabczyk, Izabela Siemińska, Monika Baj-Krzyworzeka, Katarzyna Ewa Greber, Jolanta Jaśkowska, Damian Kułaga and Krzesimir Ciura
Molecules 2025, 30(11), 2437; https://doi.org/10.3390/molecules30112437 - 2 Jun 2025
Viewed by 2222
Abstract
Colorectal cancer (CRC) remains a major global health challenge, necessitating the development of more effective and environmentally sustainable treatments. This study presents a novel green synthetic protocol for 1,3,5-triazine derivatives with anticancer potential, employing both microwave-assisted and ultrasound-assisted methods. The synthesis was optimized [...] Read more.
Colorectal cancer (CRC) remains a major global health challenge, necessitating the development of more effective and environmentally sustainable treatments. This study presents a novel green synthetic protocol for 1,3,5-triazine derivatives with anticancer potential, employing both microwave-assisted and ultrasound-assisted methods. The synthesis was optimized using 4-chloro-N-(2-chlorophenyl)-6-(morpholin-4-yl)-1,3,5-triazin-2-amine as the key intermediate, with sodium carbonate, TBAB, and DMF providing optimal yields under microwave conditions. To enhance sustainability, a modified sonochemical method was also developed, enabling efficient synthesis in aqueous media with a minimal use of organic solvents. A series of nine morpholine-functionalized derivatives were synthesized and evaluated for cytotoxic activity against SW480 and SW620 colorectal cancer cell lines. Compound 11 demonstrated superior antiproliferative activity (IC₅₀ = 5.85 µM) compared to the reference drug 5-fluorouracil, while compound 5 showed promising dual-line activity. In silico ADME analysis supported the drug likeness of the synthesized compounds, and biomimetic chromatography analysis confirmed favorable physicochemical properties, including lipophilicity and membrane affinity. These results underscore the potential of the developed protocol to produce bioactive triazine derivatives through an efficient, scalable, and environmentally friendly process, offering a valuable strategy for future anticancer drug development. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

22 pages, 3278 KiB  
Review
Advances in Green Synthesis and Photo-/Electrocatalytic Applications of Zirconium-Based MOFs: A Review
by Tian Zhao, Shilin Peng, Jiangrong Yu, Jiayao Chen, Fuli Luo, Pengcheng Xiao, Saiqun Nie and Yi Chen
Organics 2025, 6(2), 22; https://doi.org/10.3390/org6020022 - 9 May 2025
Cited by 1 | Viewed by 902
Abstract
Metal–organic frameworks (MOFs), particularly zirconium-based frameworks (Zr-MOFs), have gained significant attention in recent years due to their unique structural and functional properties. This review focuses on eco-friendly synthetic methods for producing Zr-MOFs, addressing the environmental impacts and costs associated with conventional synthesis, which [...] Read more.
Metal–organic frameworks (MOFs), particularly zirconium-based frameworks (Zr-MOFs), have gained significant attention in recent years due to their unique structural and functional properties. This review focuses on eco-friendly synthetic methods for producing Zr-MOFs, addressing the environmental impacts and costs associated with conventional synthesis, which often relies on hazardous reagents and harsh conditions. We explore various green synthesis strategies, including the selection of raw materials (such as using zirconium acetate), organic ligands (recycling waste materials for ligand synthesis), and synthesis methods (solvothermal, microwave-assisted, ultrasound-assisted, electrochemical, and mechanochemical approaches). Additionally, the application of Zr-MOFs in photocatalysis and electrocatalysis is examined, highlighting their potential for environmental purification and energy conversion. Despite the progress made in laboratory settings, challenges remain in achieving cost-effectiveness, material stability, and scalability for industrial applications. Future research should concentrate on enhancing synthesis efficiency, optimizing catalytic properties, investigating structure–property relationships, and expanding applications to novel catalytic reactions, thus ensuring Zr-MOFs can contribute to sustainable development in chemical science and technology. Full article
Show Figures

Figure 1

40 pages, 12346 KiB  
Review
Synthesis Methods, Performance Optimization, and Application Progress of Metal–Organic Framework Material MIL-101(Cr)
by Jiayao Chen, Min Tang, Saiqun Nie, Pengcheng Xiao, Tian Zhao and Yi Chen
Chemistry 2025, 7(3), 78; https://doi.org/10.3390/chemistry7030078 - 6 May 2025
Cited by 1 | Viewed by 2735
Abstract
MIL-101(Cr), a widely studied chromium-based metal–organic framework material consisting of chromium metal ions and terephthalic acid ligands, has attracted much attention due to its ultra-high specific surface area, large pore size, and excellent thermal, chemical, and aqueous stability. The outstanding properties and abundant [...] Read more.
MIL-101(Cr), a widely studied chromium-based metal–organic framework material consisting of chromium metal ions and terephthalic acid ligands, has attracted much attention due to its ultra-high specific surface area, large pore size, and excellent thermal, chemical, and aqueous stability. The outstanding properties and abundant unsaturated Lewis acid sites of this material have shown promising applications in aqueous phase adsorption, gas storage, separation, catalysis, drug delivery, and sensing. In this paper, we systematically review the synthesis technology and performance optimization strategy of MIL-101(Cr), discuss the advantages and limitations of various synthesis methods, such as traditional hydrothermal method, microwave-assisted hydrothermal method, template method, and solvent-thermal method, and summarize and analyze the optimization strategy of MIL-101 from the aspects of physical modification and chemical modification. In addition, this paper summarizes the latest application progress of MIL-101(Cr) in gas adsorption and separation, wastewater purification, pollutant removal, catalysis, and pharmaceutical delivery, and points out the current challenges and future development directions, to provide guidance and inspiration for the industrial application of MIL-101(Cr) and the development of new materials. Full article
(This article belongs to the Section Theoretical and Computational Chemistry)
Show Figures

Graphical abstract

17 pages, 971 KiB  
Review
University of Oslo-66: A Versatile Zr-Based MOF for Water Purification Through Adsorption and Photocatalysis
by Lei Chen, Wenbo Pan, Ke Li, Miaomiao Chen, Pan Li, Yu Liu, Zeyu Li and Hai Lu
Processes 2025, 13(4), 1133; https://doi.org/10.3390/pr13041133 - 9 Apr 2025
Viewed by 1210
Abstract
Metal–organic frameworks (MOFs) have garnered significant attention for water purification in recent years. In particular, UiO-66 (a member of the UiO-MOF family, developed at the University of Oslo) has emerged as a promising water purification material. UiO-66 exhibits excellent adsorption through electrostatic interaction, [...] Read more.
Metal–organic frameworks (MOFs) have garnered significant attention for water purification in recent years. In particular, UiO-66 (a member of the UiO-MOF family, developed at the University of Oslo) has emerged as a promising water purification material. UiO-66 exhibits excellent adsorption through electrostatic interaction, π–π stacking and Lewis acid–base coordination mechanisms. The photocatalytic degradation property was enhanced through metal doping, composite with semiconductor materials, defect engineering, etc., and the removal efficiency of pollutants was significantly improved. This review systematically describes the structure of UiO-66 and the synthesis methods of UiO-66, including solvothermal, microwave-assisted, mechanized and electrochemical methods, as well as the application of UiO-66 in the adsorption and photocatalytic degradation of various pollutants. Full article
Show Figures

Figure 1

25 pages, 3293 KiB  
Article
Design of a Semi-Continuous Microwave System for Pretreatment of Microwave-Assisted Pyrolysis Using a Theoretical Method
by Paula Andrea Ramírez Cabrera, Alejandra Sophia Lozano Pérez and Carlos Alberto Guerrero Fajardo
Inventions 2025, 10(2), 24; https://doi.org/10.3390/inventions10020024 - 4 Mar 2025
Viewed by 1595
Abstract
This article provides an overview of various microwave-assisted techniques, such as microwave-assisted extraction (MAE), microwave-assisted organic synthesis (MAOS), microwave-assisted pyrolysis (MAP), microwave-assisted hydrothermal treatment (MAHT), microwave-assisted acid hydrolysis (MAAH), microwave-assisted organosolv (MAO), microwave-assisted alkaline hydrolysis (MAA), microwave-assisted enzymatic hydrolysis (MAEH), and microwave-assisted fermentation [...] Read more.
This article provides an overview of various microwave-assisted techniques, such as microwave-assisted extraction (MAE), microwave-assisted organic synthesis (MAOS), microwave-assisted pyrolysis (MAP), microwave-assisted hydrothermal treatment (MAHT), microwave-assisted acid hydrolysis (MAAH), microwave-assisted organosolv (MAO), microwave-assisted alkaline hydrolysis (MAA), microwave-assisted enzymatic hydrolysis (MAEH), and microwave-assisted fermentation (MAF). Microwave-assisted biomass pretreatment has emerged as a promising method to improve the efficiency of biomass conversion processes, in particular microwave-assisted pyrolysis (MAP). The focus is on microwave-assisted pyrolysis, detailing its key components, including microwave sources, applicators, feedstock characteristics, absorbers, collection systems, and reactor designs. Based on different studies reported in the literature and a mathematical model, a mechanical design of a microwave oven adapted for pyrolysis is proposed together with a computer-aided design and a finite element analysis. The semi-continuous system is designed for a 40 L capacity and a power of 800 W. The material with which the vessel was designed is suitable for the proposed process. The challenges, opportunities, and future directions of microwave-assisted technologies for the sustainable use of biomass resources are presented. Full article
Show Figures

Figure 1

44 pages, 7836 KiB  
Review
Biomass Hydrochar: A Critical Review of Process Chemistry, Synthesis Methodology, and Applications
by Joshua O. Ighalo, Florence C. Akaeme, Jordana Georgin, Jivago Schumacher de Oliveira and Dison S. P. Franco
Sustainability 2025, 17(4), 1660; https://doi.org/10.3390/su17041660 - 17 Feb 2025
Cited by 6 | Viewed by 3668
Abstract
Hydrothermal carbonization (HTC) is a novel thermochemical process that turns biomass into hydrochar, a substance rich in carbon that has potential uses in advanced material synthesis, energy production, and environmental remediation. With an emphasis on important chemical pathways, such as dehydration, decarboxylation, and [...] Read more.
Hydrothermal carbonization (HTC) is a novel thermochemical process that turns biomass into hydrochar, a substance rich in carbon that has potential uses in advanced material synthesis, energy production, and environmental remediation. With an emphasis on important chemical pathways, such as dehydration, decarboxylation, and polymerization, that control the conversion of lignocellulosic biomass into useful hydrochar, this review critically investigates the fundamental chemistry of HTC. A detailed analysis is conducted on the effects of process variables on the physicochemical characteristics of hydrochar, including temperature, pressure, biomass composition, water ratio, and residence time. Particular focus is placed on new developments in HTC technology that improve sustainability and efficiency, like recirculating process water and microwave-assisted co-hydrothermal carbonization. Furthermore, the improvement of adsorption capacity for organic contaminants and heavy metals is explored in relation to the functionalization and chemical activation of hydrochar, namely through surface modification and KOH treatment. The performance of hydrochar and biochar in adsorption, catalysis, and energy storage is compared, emphasizing the unique benefits and difficulties of each substance. Although hydrochar has a comparatively high higher heating value (HHV) and can be a good substitute for coal, issues with reactor design, process scalability, and secondary waste management continue to limit its widespread use. In order to maximize HTC as a sustainable and profitable avenue for biomass valorization, this study addresses critical research gaps and future initiatives. Full article
(This article belongs to the Section Sustainable Chemical Engineering and Technology)
Show Figures

Figure 1

27 pages, 20660 KiB  
Article
Microwave-Assisted In-Situ Synthesis of Polyethersulfone–ZnO Nanocomposite Membranes for Dye Removal: Enhanced Antifouling, Self-Cleaning, and Antibacterial Properties
by Lassaad Gzara, Ibtissem Ounifi, Hussam Organji, Faïçal Khlissa, Iqbal Ahmed Moujdin, Abdulmohsen Omar Alsaiari, Mohamed Abdel Salam and Amor Hafiane
Polymers 2025, 17(3), 398; https://doi.org/10.3390/polym17030398 - 2 Feb 2025
Viewed by 1118
Abstract
Microwave-assisted synthesis presents a promising method for enhancing the formation of nanocomposites due to its rapid heating and uniform energy distribution. In this study, we successfully fabricated polyethersulfone–zinc-oxide (PES-ZnO) nanocomposite membranes by exposing PES/ZnCl2/DMF dope solutions to microwave radiation. Before synthesizing [...] Read more.
Microwave-assisted synthesis presents a promising method for enhancing the formation of nanocomposites due to its rapid heating and uniform energy distribution. In this study, we successfully fabricated polyethersulfone–zinc-oxide (PES-ZnO) nanocomposite membranes by exposing PES/ZnCl2/DMF dope solutions to microwave radiation. Before synthesizing the membranes, zinc-oxide nanoparticles (ZnO-NPs) were optimized in an organic phase using microwave radiation to ensure effective nanoparticle formation. The synthesis of ZnO-NPs in DMF solvent was validated through UV–Vis spectroscopy, X-ray diffraction (XRD), and Dynamic Light Scattering (DLS). We examined the surface morphology and roughness of the PES-ZnO membranes through Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). Moreover, we assessed the membranes’ hydrophilicity, permeability, and physicochemical properties through contact-angle measurements, pure water flux tests, water uptake assessments, and porosity tests. Energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) verified the successful integration of ZnO nanoparticles (ZnO-NPs) into the membrane matrix. The results indicate that including ZnO-NPs significantly improves the membrane’s permeability and hydrophilicity. The nanocomposite membranes exhibited high dye rejection efficiency, with ZnO-NPs facilitating photocatalytic self-cleaning properties. Antibacterial tests also demonstrated a substantial inhibition of common bacteria, suggesting enhanced resistance to biofouling. This research highlights the potential of microwave-assisted PES-ZnO nanocomposite membranes as effective and sustainable solutions for wastewater treatment, offering scalable applications along with added benefits of antifouling, self-cleaning, and antibacterial properties. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

14 pages, 3578 KiB  
Article
Exploring Efficient and Energy-Saving Microwave Chemical and Material Processes Using Amplitude-Modulated Waves: Pd-Catalyzed Reaction and Ag Nanoparticle Synthesis
by Satoshi Horikoshi, Tomohiko Mitani and Nick Serpone
Molecules 2025, 30(3), 598; https://doi.org/10.3390/molecules30030598 - 28 Jan 2025
Cited by 1 | Viewed by 843
Abstract
This study investigated the impact of a 10 kHz amplitude-modulation (AM) wave from a semiconductor microwave generator on the heating of ultrapure water and electrolyte aqueous solutions containing NaCl. It also examined the effects of AM waves on the yields of 4-methylbiphenyl (4-MBP) [...] Read more.
This study investigated the impact of a 10 kHz amplitude-modulation (AM) wave from a semiconductor microwave generator on the heating of ultrapure water and electrolyte aqueous solutions containing NaCl. It also examined the effects of AM waves on the yields of 4-methylbiphenyl (4-MBP) in the heterogeneous Suzuki–Miyaura coupling reaction, which was conducted in the presence of palladium nanoparticles supported on activated carbon (Pd/AC), as well as their influence on the growth rate during silver nanoparticle synthesis. Applying AM waves, typically used in telecommunications, enhanced heating efficiencies and improved product yields in both the chemical reaction and nanoparticle growth. Irradiating with microwaves under AM conditions allowed it to reduce power output while still achieving target yields and growth rates, even at the same temperatures without AM. This indicates the potential for highly efficient and energy-saving microwave processes in chemical reactions and material synthesis. Full article
(This article belongs to the Special Issue Research on Heterogeneous Catalysis—2nd Edition)
Show Figures

Figure 1

42 pages, 7520 KiB  
Review
Applications of MOF-Based Nanocomposites in Heat Exchangers: Innovations, Challenges, and Future Directions
by Talha Bin Nadeem, Muhammad Imran and Emad Tandis
Nanomaterials 2025, 15(3), 205; https://doi.org/10.3390/nano15030205 - 27 Jan 2025
Cited by 3 | Viewed by 2135
Abstract
Metal–organic frameworks (MOFs) have garnered significant attention in recent years for their potential to revolutionize heat exchanger performance, thanks to their high surface area, tunable porosity, and exceptional adsorption capabilities. This review focuses on the integration of MOFs into heat exchangers to enhance [...] Read more.
Metal–organic frameworks (MOFs) have garnered significant attention in recent years for their potential to revolutionize heat exchanger performance, thanks to their high surface area, tunable porosity, and exceptional adsorption capabilities. This review focuses on the integration of MOFs into heat exchangers to enhance heat transfer efficiency, improve moisture management, and reduce energy consumption in Heating, Ventilation and Air Conditioning (HVAC) and related systems. Recent studies demonstrate that MOF-based coatings can outperform traditional materials like silica gel, achieving superior water adsorption and desorption rates, which is crucial for applications in air conditioning and dehumidification. Innovations in synthesis techniques, such as microwave-assisted and surface functionalization methods, have enabled more cost-effective and scalable production of MOFs, while also enhancing their thermal stability and mechanical strength. However, challenges related to the high costs of MOF synthesis, stability under industrial conditions, and large-scale integration remain significant barriers. Future developments in hybrid nanocomposites and collaborative efforts between academia and industry will be key to advancing the practical adoption of MOFs in heat exchanger technologies. This review aims to provide a comprehensive understanding of current advancements, challenges, and opportunities, with the goal of guiding future research toward more sustainable and efficient thermal management solutions. Full article
(This article belongs to the Special Issue Metal Organic Framework (MOF)-Based Micro/Nanoscale Materials)
Show Figures

Figure 1

15 pages, 2591 KiB  
Article
Microwave-Assisted Reduction of Graphene Oxide to Reduced Graphene Oxide
by Jessica T. Mhlongo, Boitumelo Tlhaole, Linda Z. Linganiso, Tshwafo E. Motaung and Ella C. Linganiso-Dziike
Processes 2025, 13(1), 216; https://doi.org/10.3390/pr13010216 - 14 Jan 2025
Cited by 2 | Viewed by 1451
Abstract
Green chemistry seeks to find alternative synthesis routes that are less harsh to living organisms and the environment. In this communication, a microwave-assisted hydrothermal technique and a thermal annealing method were used in the reduction of graphene oxide (GO) to make reduced GO [...] Read more.
Green chemistry seeks to find alternative synthesis routes that are less harsh to living organisms and the environment. In this communication, a microwave-assisted hydrothermal technique and a thermal annealing method were used in the reduction of graphene oxide (GO) to make reduced GO (rGO). Graphite powder was oxidised using the Improved Hummers’ method, exfoliated, and freeze-dried. Thereafter, an aqueous suspension of GO was reduced under microwave (MW) irradiation for 10 min at 600 W with and without the help of a reducing agent (hydrazine hydrate). Thermal annealing reduction was also conducted under a nitrogen atmosphere at 300 °C for 1 h. Prepared samples were analysed using Raman laser spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), the Brunauer–Emmett–Teller (BET) method, and X-ray photoelectron spectroscopy (XPS). A successful reduction in the GO functional groups between the sheets was established using XRD. In the Raman analysis, the ratio of the intensity of the D and G band (ID/IG) in graphene sheets assisted in assessing the quality of the graphene films. An estimation of the number of structural defects was calculated using the ID/IG ratio. The Raman analysis showed an increase in the ID/IG ratio after both oxidation and reduction processes. The defect densities of both MW-treated samples were comparable while an increased defect density was evident in the thermally annealed sample. TEM micrographs confirmed the sheet-like morphology of the samples. The rGO sheets obtained from the MW-treated method appeared to be smaller when compared to the rGO ones obtained by thermal treatment. It was also evident from XRD analysis that thermal treatment promoted the coalition of graphitic layers, such that the estimated number of layers was larger than that of GO. The elemental analysis showed that the C/O ratio of GO increased from 2 to 7.8 after MW hydrazine reduction. Full article
(This article belongs to the Special Issue Microwave Conversion Technique Intensification, 2nd Edition)
Show Figures

Figure 1

Back to TopTop