Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (649)

Search Parameters:
Keywords = microscopic defects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2382 KB  
Article
Hyperfine Coupling Constants of Photoinduced Axial Symmetry NV Centers in a 6H Silicon Carbide: DFT and High-Field ENDOR Spectroscopy Study
by Yuliya Ermakova, Ekaterina Dmitrieva, Irina Gracheva, Darya Shurtakova, Margarita Sadovnikova, Fadis Murzakhanov, Georgy Mamin, Sergey Nagalyuk, Evgeny Mokhov and Marat Gafurov
Appl. Nano 2025, 6(4), 23; https://doi.org/10.3390/applnano6040023 (registering DOI) - 31 Oct 2025
Viewed by 32
Abstract
Solid-state spin centers are at the forefront of developing advanced quantum technologies, engaging in applications of sensing, communication and computing. A semiconductor host matrix compatible with existing silicon technology provides a robust platform for holding spin defects and an opportunity for external manipulation. [...] Read more.
Solid-state spin centers are at the forefront of developing advanced quantum technologies, engaging in applications of sensing, communication and computing. A semiconductor host matrix compatible with existing silicon technology provides a robust platform for holding spin defects and an opportunity for external manipulation. In this article, negatively charged nitrogen-vacancy (NV) centers in the hexagonal hh position in a 6H polytype silicon carbide crystal was studied using high-frequency (94 GHz) electron paramagnetic (EPR) and electron nuclear double resonances (ENDOR) spectroscopy. Experimentally determined values of hyperfine and quadrupole interactions of 14N were compared with the values obtained for the centers in NVk2k1 positions. The distribution of spin density of the defect within a supercell of the SiC crystal lattice was calculated using the density functional theory approach. The theoretical estimation of electron-nuclear interaction constants turned out to be in close agreement with the experimental values, which allows us to refine the microscopic model of a point defect. The temperature dependence of the spin Hamiltonian values (δA/δT ≅ 180 Hz/K) was studied with the possibility of observing the 14N NMR signal at room temperature. The fundamental knowledge gained about interactions’ parameters’ behavior lays the foundation for the creation of promising quantum platforms. Full article
Show Figures

Figure 1

19 pages, 17884 KB  
Article
Mechanism and Simulation Analysis of Acoustic Wave Excitation by Partial Discharge
by Ziqi Li, Xianmei Wu, Tao Leng, Bingwen An and Wei Dong
Appl. Sci. 2025, 15(21), 11611; https://doi.org/10.3390/app152111611 - 30 Oct 2025
Viewed by 72
Abstract
Partial discharge serves as a typical indicator of insulation defects in high-voltage electrical equipment and is often accompanied by acoustic emission. The online monitoring of partial discharge via acoustic signals makes it essential to investigate the underlying mechanism of acoustic wave excitation by [...] Read more.
Partial discharge serves as a typical indicator of insulation defects in high-voltage electrical equipment and is often accompanied by acoustic emission. The online monitoring of partial discharge via acoustic signals makes it essential to investigate the underlying mechanism of acoustic wave excitation by partial discharge. However, experimental investigation is often prohibitively expensive and struggles to capture key discharge parameters. Numerical simulation thus provides a valuable alternative for microscopic analysis. In this study, a typical needle-plane corona discharge model is employed. Based on the theory that acoustic waves are generated by gas disturbances caused by collisions between charged and neutral particles in weakly ionized gases, a numerical model for acoustic wave excitation by positive corona discharge is developed. Simulations and analyses are performed on the acoustic source characteristics and the acoustic field distribution. The results demonstrate that the spatiotemporal evolution of electron density plays a dominant role in the generation of acoustic waves during positive DC corona discharge. The characteristics of the simulated acoustic field agree well with experimental results from relevant studies, validating the effectiveness of the proposed electroacoustic coupling numerical model and providing a new tool for further research into the acoustic features of partial discharge. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

13 pages, 3181 KB  
Article
Load and Velocity Dependence of Friction at Iron–Silica Interfaces: An Atomic-Scale Study
by Xiang Jiao, Guochen Huang, Ouwen Chen, Qian Cheng, Chenchen Peng and Guoqing Wang
Coatings 2025, 15(11), 1252; https://doi.org/10.3390/coatings15111252 - 29 Oct 2025
Viewed by 255
Abstract
Understanding the microscopic interaction between agricultural tillage tools and soil is essential for improving wear resistance. In this study, molecular dynamics (MD) simulations are employed to investigate the tribological behavior of the Fe–SiO2 interface under varying loads and sliding velocities. The results [...] Read more.
Understanding the microscopic interaction between agricultural tillage tools and soil is essential for improving wear resistance. In this study, molecular dynamics (MD) simulations are employed to investigate the tribological behavior of the Fe–SiO2 interface under varying loads and sliding velocities. The results demonstrate that the coefficient of friction increases with both normal load and sliding velocity, accompanied by a clear running-in stage. Under high loads, significant plastic deformation occurs, characterized by asymmetric atomic pile-up, expansion of the strain field, and heterogeneous von Mises strain distribution. Energy analysis reveals intensified kinetic and potential energy variations, indicating enhanced defect accumulation and interfacial non-equilibrium states. Temperature distributions are highly localized at the interface, with thermal saturation observed under high-velocity conditions. Mean square displacement (MSD) results confirm that higher loads and velocities promote atomic migration and plastic flow. This study provides atomic-scale insights into wear mechanisms under extreme mechanical conditions, offering theoretical support for the design of durable soil-engaging components in agricultural machinery. Full article
Show Figures

Figure 1

13 pages, 276 KB  
Article
Sperm Quality and Welfare of Sexually Mature Boars Supplemented with Partially Fermentable Insoluble Fiber
by Daniela Ferreira de Brito Mandu, Vivian Schwaab Sobral, Juliana Cristina Rego Ribas, Maria Fernanda de Castro Burbarelli, Cristiny Santos Braga, Rodrigo Garófallo Garcia, Ibiara Correia de Lima Almeida Paz, Claudia Marie Komiyama and Fabiana Ribeiro Caldara
Life 2025, 15(10), 1597; https://doi.org/10.3390/life15101597 - 13 Oct 2025
Viewed by 456
Abstract
Dietary fiber plays an important role in animal nutrition by influencing gut health, feed intake, and metabolism. In swine production, studies suggest that fibers may also affect reproductive traits, but findings remain inconsistent, especially in adult boars. This study evaluated the effects of [...] Read more.
Dietary fiber plays an important role in animal nutrition by influencing gut health, feed intake, and metabolism. In swine production, studies suggest that fibers may also affect reproductive traits, but findings remain inconsistent, especially in adult boars. This study evaluated the effects of partially fermentable insoluble fiber (PFIF) on semen quality, behavior, and general health of adult boars. Thirty animals were assigned to a completely randomized design with two treatments: (1) CON: no fiber supplementation, and (2) PFIF: fiber supplementation (35 g/animal/day). Fiber was provided once daily for 120 consecutive days. During the period, semen was collected weekly and analyzed macroscopically and microscopically using the Computer-Assisted Sperm Analysis (CASA) system. Behavior was recorded weekly, one and three hours after feeding, based on a pre-established ethogram. Feed intake, perineal, and fecal scores were also evaluated. Fiber supplementation did not affect total motility, progressive motility, sperm concentration, fecal or perineal scores, or behavior. However, improvements were observed in sperm kinematics, with higher straight-line distance (DSL), linearity (LIN), and straightness (STR), as well as a tendency for increased straight-line velocity (VSL) and wobble (WOB). Conversely, a higher incidence of proximal cytoplasmic droplets was recorded in the fiber group, indicating more sperm maturation defects. Supplemented animals also showed reduced feed intake compared with controls, suggesting a satiety effect of the fiber. In conclusion, PFIF supplementation (35 g/animal/day offered once daily) in adult boars produced mixed outcomes, with improved sperm kinematics but increased maturation defects and only minor changes in feeding behavior, indicating a limited and inconsistent physiological response. Full article
(This article belongs to the Special Issue Animal Reproduction and Health)
Show Figures

Graphical abstract

13 pages, 1795 KB  
Article
Enhanced Wear and Corrosion Resistance of AlCoCrFeNiMoTi High-Entropy Alloy via B Addition by Laser Cladding
by Sansan Ao, Jiaxun Sun, Ziyuan Qi, Youxiang Wei, Hongyu Chen and Yang Li
Materials 2025, 18(20), 4651; https://doi.org/10.3390/ma18204651 - 10 Oct 2025
Viewed by 504
Abstract
To address the synergistic degradation mechanisms in engineering service environments, we propose a boron microalloying strategy to enhance the multifunctional surface performance of AlCoCrFeNiMo-based high-entropy alloys. AlCoCrFeNiMoTiBx coatings (x = 0, 0.5, 1, and 1.5) were fabricated on Q235 steel substrates using laser [...] Read more.
To address the synergistic degradation mechanisms in engineering service environments, we propose a boron microalloying strategy to enhance the multifunctional surface performance of AlCoCrFeNiMo-based high-entropy alloys. AlCoCrFeNiMoTiBx coatings (x = 0, 0.5, 1, and 1.5) were fabricated on Q235 steel substrates using laser cladding. The microstructure of the coatings was characterized using scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), while their wear and corrosion resistance were evaluated through tribological and electrochemical tests. The key findings indicate that boron addition preserves the original body-centered cubic (BCC) and σ phases in the coating while promoting the in situ formation of TiB2, leading to lattice distortion. With increasing B content, the BCC phase becomes refined, and both the fraction and size of TiB2 particles increase. Boron incorporation improves the coating’s microhardness and wear resistance, with the highest wear resistance achieved at x = 1, where abrasive and oxidative wear predominate. At lower content (x = 0.5), B enhances the stability of the passive film and thereby improves corrosion resistance. In contrast, excessive formation of large TiB2 particles introduces defects into the passive film, accelerating its degradation. Full article
Show Figures

Figure 1

21 pages, 3712 KB  
Article
CISC-YOLO: A Lightweight Network for Micron-Level Defect Detection on Wafers via Efficient Cross-Scale Feature Fusion
by Yulun Chi, Xingyu Gong, Bing Zhao and Lei Yao
Electronics 2025, 14(19), 3960; https://doi.org/10.3390/electronics14193960 - 9 Oct 2025
Viewed by 481
Abstract
With the development of the semiconductor manufacturing process towards miniaturization and high integration, the detection of microscopic defects on wafer surfaces faces the challenge of balancing precision and efficiency. Therefore, this study proposes a lightweight inspection model based on the YOLOv8 framework, aiming [...] Read more.
With the development of the semiconductor manufacturing process towards miniaturization and high integration, the detection of microscopic defects on wafer surfaces faces the challenge of balancing precision and efficiency. Therefore, this study proposes a lightweight inspection model based on the YOLOv8 framework, aiming to achieve an optimal balance between inspection accuracy, model complexity, and inference speed. First, we design a novel lightweight module called IRB-GhostConv-C2f (IGC) to replace the C2f module in the backbone, thereby significantly minimizing redundant feature computations. Second, a CNN-based cross-scale feature fusion neck network, the CCFF-ISC neck, is proposed to reduce the redundant computation of low-level features and enhance the expression of multi-scale semantic information. Meanwhile, the novel IRB-SCSA-C2f (ISC) module replaces the C2f in the neck to further improve the efficiency of feature fusion. In addition, a novel dynamic head network, DyHeadv3, is integrated into the head structure, aiming to improve the small-scale target detection performance by dynamically adjusting the feature interaction mechanism. Finally, so as to comprehensively assess the proposed algorithm’s performance, an industrial dataset of wafer defects, WSDD, is constructed, which covers “broken edges”, “scratches”, “oil pollution”, and “minor defects”. The experimental results demonstrate that the CISC-YOLO model attains an mAP50 of 93.7%, and the parameter amount is reduced to 1.92 M, outperforming other mainstream leading algorithms in the field. The proposed approach provides a high-precision and low-latency real-time defect detection solution for semiconductor industry scenarios. Full article
Show Figures

Figure 1

14 pages, 797 KB  
Article
Quantum Transport and Molecular Sensing in Reduced Graphene Oxide Measured with Scanning Probe Microscopy
by Julian Sutaria and Cristian Staii
Molecules 2025, 30(19), 3929; https://doi.org/10.3390/molecules30193929 - 30 Sep 2025
Viewed by 475
Abstract
We report combined scanning probe microscopy and electrical measurements to investigate local electronic transport in reduced graphene oxide (rGO) devices. We demonstrate that quantum transport in these materials can be significantly tuned by the electrostatic potential applied with a conducting atomic force microscope [...] Read more.
We report combined scanning probe microscopy and electrical measurements to investigate local electronic transport in reduced graphene oxide (rGO) devices. We demonstrate that quantum transport in these materials can be significantly tuned by the electrostatic potential applied with a conducting atomic force microscope (AFM) tip. Scanning gate microscopy (SGM) reveals a clear p-type response in which local gating modulates the source–drain current, while scanning impedance microscopy (SIM) indicates corresponding shifts of the Fermi level under different gating conditions. The observed transport behavior arises from the combined effects of AFM tip-induced Fermi-level shifts and defect-mediated scattering. These results show that resonant scattering associated with impurities or structural defects plays a central role and highlight the strong influence of local electrostatic potentials on rGO conduction. Consistent with this electrostatic control, the device also exhibits chemical gating and sensing: during exposure to electron-withdrawing molecules (acetone), the source–drain current increases reversibly and returns to baseline upon purging with air. Repeated cycles over 15 min show reproducible amplitudes and recovery. Using a simple transport model, we estimate an increase of about 40% in carrier density during exposure, consistent with p-type doping by electron-accepting analytes. These findings link nanoscale electrostatic control to macroscopic sensing performance, advancing the understanding of charge transport in rGO and underscoring its promise for nanoscale electronics, flexible chemical sensors, and tunable optoelectronic devices. Full article
Show Figures

Graphical abstract

17 pages, 17502 KB  
Article
Multiscale Compressive Failure Analysis of Wrinkled Laminates Based on Multiaxial Damage Model
by Jian Shi, Guang Yang, Nan Sun, Jie Zheng, Jingjing Qian, Wenjia Wang and Kun Song
Materials 2025, 18(19), 4503; https://doi.org/10.3390/ma18194503 - 27 Sep 2025
Viewed by 345
Abstract
The waviness defect, a common manufacturing flaw in composite structures, can significantly impact the mechanical performance. This study investigates the effects of wrinkles on the ultimate load and failure modes of two Carbon Fiber Reinforced Composite (CFRC) laminates through compressive experiments and simulation [...] Read more.
The waviness defect, a common manufacturing flaw in composite structures, can significantly impact the mechanical performance. This study investigates the effects of wrinkles on the ultimate load and failure modes of two Carbon Fiber Reinforced Composite (CFRC) laminates through compressive experiments and simulation analyses. The laminates have stacking sequences of [0]10S and [45/0/−45/90/45/0/−45/0/45/0]S. Each laminate includes four different waviness ratios (the ratio of wrinkle amplitude to laminate thickness) of 0%, 10%, 20% and 30%. In the simulation, a novel multiaxial progressive damage model is implemented via the user material (UMAT) subroutine to predict the compressive failure behavior of wrinkled composite laminates. This multiscale analysis framework innovatively features a 7 × 7 generalized method of cells coupled with stress-based multiaxial Hashin failure criteria to accurately analyze the impact of wrinkle defects on structural performance and efficiently transfer macro-microscopic damage variables. When any microscopic subcell within the representative unit cell (RUC) satisfies a failure criterion, its stiffness matrix is reduced to a nominal value, and the corresponding failure modes are tracked through state variables. When more than 50% fiber subcells fail in the fiber direction or more than 50% matrix subcells fail in the transverse or thickness direction, it indicates that the RUC has experienced the corresponding failure modes, which are the tensile or compressive failure of fibers, matrix, or delamination in the three axial directions. This multiscale model accurately predicted the load–displacement curves and failure modes of wrinkled composites under compressive load, showing good agreement with experimental results. The analysis results indicate that wrinkle defects can reduce the ultimate load-carrying capacity and promote local buckling deformation at the wrinkled region, leading to changes in damage distribution and failure modes. Full article
Show Figures

Figure 1

21 pages, 4967 KB  
Article
In Vitro Evaluation and Comparative Analysis of Resorbable Membranes for Guided Bone Regeneration
by Donato Antonacci, Rossella Padula, Federico Gaudelli, Irene Catalano and Filiberto Mastrangelo
Medicina 2025, 61(9), 1720; https://doi.org/10.3390/medicina61091720 - 22 Sep 2025
Viewed by 557
Abstract
Background and Objectives: In vitro evaluation of macro and microscopic features of five resorbable barrier membranes used for Guided Bone Regeneration (GBR) in oral hard tissue surgery. Materials and Methods: Five different resorbable barrier membranes were analyzed by optical microscopy and [...] Read more.
Background and Objectives: In vitro evaluation of macro and microscopic features of five resorbable barrier membranes used for Guided Bone Regeneration (GBR) in oral hard tissue surgery. Materials and Methods: Five different resorbable barrier membranes were analyzed by optical microscopy and scanning electron microscopy (SEM). For each sample, surface appearance, the presence and size of ridges and depressions, number of layers, and the inner structure were recorded. Each membrane was cut into 1 × 1 cm squares to determine mass, density and thickness. In addition, an EDX microanalysis was performed. Results: Under optical microscopy, all membranes appeared rough, with ridges and depressions. In cross-section, only Sample 2 presented true stratification. On SEM, most membranes showed a three-dimensional collagen fiber architecture. Sample 3, a sheet of collagenated equine bone, differed accordingly. EDX spectra showed broadly overlapping elemental composition, characterized by N, O and C. The mass depends on the composition: bone-containing membranes weighed more; those composed predominantly of collagen weighed less. Conclusions: Pore size, surface density and roughness, and the type of cross-linking can influence cell interaction and may lead to different regenerative scenarios, potentially improving the quality and timing of tissue regeneration. Membrane selection should be dictated by the clinical scenario, prioritizing properties most advantageous for the defect. Full article
(This article belongs to the Special Issue Advances in Soft and Hard Tissue Management Around Dental Implants)
Show Figures

Figure 1

14 pages, 4622 KB  
Article
Pressure-Dependent Breakdown Voltage in SF6/Epoxy Resin Insulation Systems: Electric Field Enhancement Mechanisms and Interfacial Synergy
by Lin Liu, Qiaogen Zhang, Xiangyang Peng, Xiaoang Li, Zheng Wang and Shihu Yu
Energies 2025, 18(18), 5014; https://doi.org/10.3390/en18185014 - 21 Sep 2025
Viewed by 393
Abstract
In SF6 gas-insulated equipment, solid dielectrics critically degrade insulation performance by reducing the electric field’s ability to withstand gas gaps. To investigate the critical role played by solid dielectric surfaces during the initial phase of gas–solid interface discharge phenomena, this paper experimentally [...] Read more.
In SF6 gas-insulated equipment, solid dielectrics critically degrade insulation performance by reducing the electric field’s ability to withstand gas gaps. To investigate the critical role played by solid dielectric surfaces during the initial phase of gas–solid interface discharge phenomena, this paper experimentally measures the AC breakdown voltage (Ubd) of both dielectric surface-initiated breakdown (DIBD) and electrode surface-initiated breakdown (EIBD) across eight types of post insulator samples. Tests are conducted in 36 mm SF6 gas gaps under pressures ranging from 0.1 to 0.4 MPa. Combined with electrostatic field simulations, the results reveal that DIBD requires substantially lower Ubd than EIBD under comparable maximum electric field (Emax) conditions. As gas pressure increases, this difference becomes more pronounced. This phenomenon can be explained by three key mechanisms: First, due to the regulatory effect of dielectric materials and shielding electrodes on the electric field distribution, the high-electric-field zone along the gas–solid interface exhibits a longer effective discharge path compared to that in a pure gas gap. This configuration creates more favorable conditions for discharge initiation and subsequent propagation toward the opposite electrode. Second, microscopic irregularities on the dielectric surface induce stronger local electric field enhancement than comparable features on metallic electrodes. Third, in high-electric-field regions adjacent to the dielectric surface, desorption processes significantly enhance electron multiplication during gas discharge, and this enhancement effect becomes more pronounced as gas pressure increases, further lowering the discharge inception threshold. As a result, discharge initiation at dielectric interfaces requires less stringent electric field conditions compared to breakdown in a gas gap, especially at high gas pressure. This conclusion not only accounts for the saturation behavior in the Ubd-p characteristic of SF6 gas–solid interface discharges but also explains why surface contaminants/defects disproportionately degrade interfacial insulation performance relative to their impact on gas gaps. Full article
Show Figures

Figure 1

21 pages, 1571 KB  
Article
Synergistic ZnO–CuO/Halloysite Nanocomposite for Photocatalytic Degradation of Ciprofloxacin with High Stability and Reusability
by Willams A. Albuquerque, Adilson J. Neres Filho, Yonny Romaguera-Barcelay, Santiago Medina-Carrasco, Maria del Mar Orta, Pollyana Trigueiro and Ramón Raudel Peña-Garcia
Minerals 2025, 15(9), 977; https://doi.org/10.3390/min15090977 - 15 Sep 2025
Viewed by 604
Abstract
This study focused on creating a novel material by integrating ZnO and CuO nanoparticles into the structure of halloysite using a hydrothermal method. The formation of the nanocomposite was validated through X-ray diffraction and Raman analysis, which confirmed the presence of ZnO and [...] Read more.
This study focused on creating a novel material by integrating ZnO and CuO nanoparticles into the structure of halloysite using a hydrothermal method. The formation of the nanocomposite was validated through X-ray diffraction and Raman analysis, which confirmed the presence of ZnO and CuO phases without compromising the structure of halloysite. Microscopic analysis revealed a well-distributed presence of metallic oxide nanoparticles within the nanotubular structure of halloysite, which adhered to both the outer and inner surfaces of the clay mineral. Optical characterization identified a substantial density of defects, which played a key role in improving the performance of the supported semiconductors. Furthermore, the narrow band gap at 3.02 eV promoted the mobility of photogenerated charges. Photocatalytic tests yielded promising results, demonstrating a synergistic effect between photocatalysis and adsorption processes that positively influenced the removal of ciprofloxacin from solutions. The material achieved up to 76% removal of the antibiotic within 120 min, utilizing a catalyst concentration of 0.5 g L−1 with a pollutant concentration of 20 mg L−1. In reuse experiments, the material exhibited high recyclability even after multiple reaction cycles. Halloysite-based nanocomposites represent a strategic advancement in environmental remediation technologies, contributing to the development of clean, effective, and reusable materials. Full article
(This article belongs to the Special Issue Use of Clay Minerals in Adsorption and Photocatalysis Technologies)
Show Figures

Figure 1

17 pages, 10010 KB  
Article
Microstructure Characterization and Mechanical Properties of Dissimilar Al/Al-Li Alloy T-Joints Welded by Friction Stir Welding
by Yanjie Han, Duquan Zuo, Tianyu Xu, Guoling Ma, Shilin Feng, Haoran Fu, Zengqiang Cao and Wenya Li
Machines 2025, 13(9), 852; https://doi.org/10.3390/machines13090852 - 15 Sep 2025
Viewed by 485
Abstract
This paper investigates the influence of the internal concave surface structure of the stirring tool and welding parameters on the microstructure and mechanical properties of the T-joint. The analysis reveals that compared to the inner concave surface without spirals, T-joints welded by inner [...] Read more.
This paper investigates the influence of the internal concave surface structure of the stirring tool and welding parameters on the microstructure and mechanical properties of the T-joint. The analysis reveals that compared to the inner concave surface without spirals, T-joints welded by inner concave surfaces with spirals exhibit fewer welding defects. Meanwhile, the microscopic results showed that there is a welding juncture zone between the thermomechanical affected zone and the nugget zone, and a large number of θ’, T1, and η’ phases precipitate in the nugget zone of the joint, which improves its strength and hardness. When welding speed v, rotational speed w and insertion depth h are 60 mm/min, 350 rpm, and 0.21 mm, respectively, the yield strength, the tensile strength, and the elongation of the T-joint reach their maximum values (352 MPa, 408 MPa and 5%), and the tensile strength represents 68.0% and 71.6% of the base materials, respectively. The fracture mechanism of the joint is a mode of ductile fracture. Furthermore, the T-joint exhibits a “W” and “Z” distribution pattern on both sides of the weld centerline B and A, respectively. Full article
(This article belongs to the Section Material Processing Technology)
Show Figures

Figure 1

17 pages, 5136 KB  
Article
Laser Welding of Metal–Polymer–Metal Composites: Enhancing Energy Control
by Serguei P. Murzin and Heinz Palkowski
Processes 2025, 13(9), 2774; https://doi.org/10.3390/pr13092774 - 29 Aug 2025
Viewed by 707
Abstract
This study investigates two-sided pulsed-periodic laser welding of three-layer metal–polymer–metal (MPM) composite sheets composed of galvanized dual-phase steel (DPK 30/50+ZE) as outer layers and a polypropylene–polyethylene (PP–PE) core. Welding was performed using a Rofin StarWeld Performance pulsed Nd:YAG laser with controlled parameters: pulse [...] Read more.
This study investigates two-sided pulsed-periodic laser welding of three-layer metal–polymer–metal (MPM) composite sheets composed of galvanized dual-phase steel (DPK 30/50+ZE) as outer layers and a polypropylene–polyethylene (PP–PE) core. Welding was performed using a Rofin StarWeld Performance pulsed Nd:YAG laser with controlled parameters: pulse energy (30–32 J), duration (6–8 ms), and frequency (up to 1 Hz). High-quality welds were achieved with penetration depths reaching 70% of the outer metal layer thickness and minimal defects. Microscopic analysis revealed distinct fusion and heat-affected zones (HAZ) with no evidence of cracks or porosity, indicating stable thermal conditions. Mechanical testing showed that the welded joints attained a tensile strength of approximately 470 MPa, about 80% of the ultimate tensile strength of the base metal, with an average elongation of 0.6 mm. These results confirm the structural integrity of the joints. The observed weld morphology and microstructural features suggest that thermal conditions during welding significantly affect joint quality and HAZ formation. The study demonstrates that strong, defect-free joints can be produced using basic beam-shaping optics and outlines a pathway for further improvement through the integration of diffractive optical elements (DOEs) to enhance spatial-energy control in multilayer structures. Full article
(This article belongs to the Special Issue Progress in Laser-Assisted Manufacturing and Materials Processing)
Show Figures

Figure 1

27 pages, 2915 KB  
Article
Insights into Vascular Changes in Hip Degenerative Disorders: An Observational Study
by Riana Maria Huzum, Bogdan Huzum, Marius Valeriu Hinganu, Ludmila Lozneanu, Fabian Cezar Lupu and Delia Hinganu
J. Clin. Med. 2025, 14(16), 5845; https://doi.org/10.3390/jcm14165845 - 18 Aug 2025
Viewed by 548
Abstract
Background: The epiphyseal vascularization of long bones generates a particular flow pattern that is important for adequate angiogenesis to be achieved. Imaging reveals that vessel development in murine long bone involves the expansion and anastomotic fusion of endothelial buds. Impaired blood flow [...] Read more.
Background: The epiphyseal vascularization of long bones generates a particular flow pattern that is important for adequate angiogenesis to be achieved. Imaging reveals that vessel development in murine long bone involves the expansion and anastomotic fusion of endothelial buds. Impaired blood flow leads to defective angiogenesis and osteogenesis and downregulation of Notch signaling in endothelial cells. We examined whether altered blood flow and endothelial signaling via the Notch pathway—a highly conserved cell–cell communication mechanism that regulates angiogenesis and vascular remodeling—contributes to hip joint degeneration. Material and Methods: In our study, we used two groups of patients. The first is a control group of 15 patients without degenerative joint pathology. The second group consists of 51 patients diagnosed with an advanced form of degenerative joint pathology. On both study groups, we used immunohistochemical markers that highlight the endothelium of epiphyseal capillaries, the collagen matrix, and the presence of joint lubricant-secreting cells. Ultrastructural analysis was performed on hematoxylin-eosin slides that were exposed to a surface electron microscope, following a previously tested protocol. Results: The results of our study show that there are numerous anastomoses between epiphyseal vessels and that these capillaries persist even after pathological bone resorption, for a certain period of time. Discussions: Our results are complementary to recent studies on this research topic that emphasize the possibility that the main cause of joint degeneration is vascular. Revascularization of an area of bone demineralization after bone infarction has become a reality. Conclusions: This study opens new perspectives regarding the research on epiphyseal capillary vascularization and the modern concept of morpho functional rehabilitation of the hip joint. Full article
(This article belongs to the Special Issue Neuromuscular Diseases and Musculoskeletal Disorders)
Show Figures

Figure 1

22 pages, 1661 KB  
Article
Biliary Injuries Repair Using Copolymeric Scaffold: A Systematic Review and In Vivo Experimental Study
by Salvatore Buscemi, Giulia Bonventre, Andrea Gottardo, Mariano Licciardi, Fabio Salvatore Palumbo, Giovanni Cassata, Luca Cicero, Giulia Lo Monte, Roberto Puleio and Attilio Ignazio Lo Monte
J. Funct. Biomater. 2025, 16(8), 297; https://doi.org/10.3390/jfb16080297 - 18 Aug 2025
Viewed by 730
Abstract
Background: Common bile duct (CBD) treatments are often associated with complications, limiting long-term efficacy. To overcome these issues, polymeric grafts have been suggested as promising alternatives, since they are highly customizable, biocompatible, and may reduce side effects frequency. Methods: A systematic review was [...] Read more.
Background: Common bile duct (CBD) treatments are often associated with complications, limiting long-term efficacy. To overcome these issues, polymeric grafts have been suggested as promising alternatives, since they are highly customizable, biocompatible, and may reduce side effects frequency. Methods: A systematic review was conducted, interrogating MEDLINE and Cochrane Library. Next, an in vivo study involved 20 pigs, which underwent a former controlled biliary injury. To repair the defect, a α,β-Poly(N-2-hydroxyethyl)-DL-Aspartamide (PHEA)–Polylactic-acid (PLA)–Polycaprolactone (PCL) scaffold was implanted. The animals were sacrificed at one and three months for gross and histological examinations, to assess tissue integration and healing outcomes. Results: The systematic review highlighted that such scaffolds have shown promising results in CBD regeneration, both in single and joined applications. These findings were confirmed by the in vivo study, where the use of such scaffolds—particularly, the planar ones—led to safe and complete bile duct regeneration. Histological analysis revealed lymphomonocytic infiltrates and neovascularization, while microscopic examination showed progressive scaffold degradation accompanied by biliary tissue regeneration. Conclusions: Experimental results are consistent with the literature, confirming the potential of such polymeric scaffolds in aiding complete CBD regeneration and being reabsorbed shortly after. Still, further studies are needed to fully validate their translational application. PROSPERO ID: CRD420251115056. Full article
(This article belongs to the Special Issue Polymers Materials Used in Biomedical Engineering)
Show Figures

Graphical abstract

Back to TopTop