Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (643)

Search Parameters:
Keywords = microfluidic droplets

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 5027 KB  
Review
Droplets Sliding Down Partially Wetted (Non-Superhydrophobic) Surfaces: A Review
by Silvia Varagnolo
Liquids 2025, 5(4), 29; https://doi.org/10.3390/liquids5040029 (registering DOI) - 31 Oct 2025
Abstract
Droplets sliding down a partially wetted surface are a ubiquitous phenomenon in nature and everyday life. Despite its apparent simplicity, it hinders complex intricacies for theoretical and numerical descriptions matching the experimental observations, even for the simplest case of a drop sliding down [...] Read more.
Droplets sliding down a partially wetted surface are a ubiquitous phenomenon in nature and everyday life. Despite its apparent simplicity, it hinders complex intricacies for theoretical and numerical descriptions matching the experimental observations, even for the simplest case of a drop sliding down a homogeneous surface. A key aspect to be considered is the distribution of contact angles along the droplet perimeter, which can be challenging to include in the theoretical/numerical analysis. The scenario can become more complex when considering geometrically or chemically patterned surfaces or complex fluids. Indeed, these aspects can provide strategies to passively control the droplet motion in terms of velocity or direction. This review gathers the state of the art of experimental, numerical, and theoretical research about droplets made of Newtonian and non-Newtonian fluids sliding down homogeneous, chemically heterogeneous, or geometrically patterned surfaces. Full article
(This article belongs to the Section Physics of Liquids)
Show Figures

Figure 1

18 pages, 4036 KB  
Article
Precise Control of Micropipette Flow Rate for Fluorescence Imaging in In Vivo Micromanipulation
by Ruimin Li, Shaojie Fu, Zijian Guo, Jinyu Qiu, Yuzhu Liu, Mengya Liu, Qili Zhao and Xin Zhao
Sensors 2025, 25(21), 6647; https://doi.org/10.3390/s25216647 - 30 Oct 2025
Abstract
Precise regulation of micropipette outlet flow is critical for fluorescence imaging in vivo micromanipulations. In such procedures, a micropipette with a micro-sized opening is driven by gas pressure to deliver internal solution into the in vivo environment. The outlet flow rate needs to [...] Read more.
Precise regulation of micropipette outlet flow is critical for fluorescence imaging in vivo micromanipulations. In such procedures, a micropipette with a micro-sized opening is driven by gas pressure to deliver internal solution into the in vivo environment. The outlet flow rate needs to be precisely regulated to ensure a uniform and stable fluorescence distribution. However, conventional manual pressure injection methods face inherent limitations, including insufficient precision and poor reproducibility. Existing commercial microinjection systems lack a quantitative relationship between pressure and flow rate. And existing calibration methods in the field of microfluidics suffer from a limited flow-rate measurement resolution, constraining the establishment of a precise pressure–flow quantitative relationship. To address these challenges, we developed a closed-loop pressure regulation system with 1 Pa-level control resolution and established a quantitative calibration of the pressure–flow relationship using a droplet-based method. The calibration revealed a linear relationship with a mean pressure–flow gain of 4.846 × 1017m3·s1·Pa1 (R2 > 0.99). Validation results demonstrated that the system achieved the target outlet flow rate with a flow control error less than 10 fL/s. Finally, the application results in brain-slice environment confirmed its capability to maintain stable fluorescence imaging, with fluorescence intensity fluctuations around 1.3%. These results demonstrated that the proposed approach provides stable, precise, and reproducible flow regulation under physiologically relevant conditions, thereby offering a valuable tool for in vivo micromanipulation and detection. Full article
Show Figures

Figure 1

24 pages, 6290 KB  
Article
Combined Effect of Plant Protein Isolate Content and the Homogenization Processes on the Physical Stability of Oily Extract Emulsions
by Juan A. Damas-Espinoza, Liliana Alamilla-Beltrán, Diana E. Leyva-Daniel, Fidel Villalobos-Castillejos, Humberto Hernández-Sánchez and Antonio R. Jiménez-Aparicio
Foods 2025, 14(21), 3717; https://doi.org/10.3390/foods14213717 - 30 Oct 2025
Viewed by 35
Abstract
The homogenization methods and selection of biomaterials of the continuous phase are critical in the formulation of food emulsions. This study evaluated the stability of emulsions containing an oily extract using soy protein isolate (SPI), pea protein isolate (PPI), and two homogenization techniques: [...] Read more.
The homogenization methods and selection of biomaterials of the continuous phase are critical in the formulation of food emulsions. This study evaluated the stability of emulsions containing an oily extract using soy protein isolate (SPI), pea protein isolate (PPI), and two homogenization techniques: microfluidization (MF) and rotor–stator (RS). Emulsions formulated with SPI and processed by MF exhibited the highest stability, with a Turbiscan Stability Index (TSI) of 0.85, a mean droplet size of 160.1 nm, a polydispersity index of 0.152, a ζ-potential of −29.3 mV, and an apparent viscosity of 8.1 mPa·s. The PPI emulsions processed by MF showed slightly higher TSI (1.6) and droplet size (188.1 nm). All MF emulsions achieved desirability >0.8. The RS systems showed lower stability, with a TSI of 5.7 (SPI) and 7.9 (PPI), and droplet sizes >1700 nm, despite more negative ζ-potentials (−40.2 mV for SPI, −36.7 mV for PPI). All optimized emulsions showed pseudoplastic flow behavior, with a transition to Newtonian flow at higher shear rates. Overall, microfluidization significantly improved emulsion stability and rheological properties. Full article
(This article belongs to the Special Issue Food Emulsion System: Preparation, Stabilization and Application)
Show Figures

Figure 1

22 pages, 4279 KB  
Article
Development and Mechanism of the Graded Polymer Profile-Control Agent for Heterogeneous Heavy Oil Reservoirs Under Water Flooding
by Tiantian Yu, Wangang Zheng, Xueqian Guan, Aifen Li, Dechun Chen, Wei Chu and Xin Xia
Gels 2025, 11(11), 856; https://doi.org/10.3390/gels11110856 - 26 Oct 2025
Viewed by 214
Abstract
During water flooding processes, the high viscosity of heavy oil and significant reservoir heterogeneity often lead to severe water channeling and low sweep efficiency. Addressing the limitations of traditional hydrophobically associating polymer-based profile-control agents—such as significant adsorption loss, mechanical degradation during reservoir migration, [...] Read more.
During water flooding processes, the high viscosity of heavy oil and significant reservoir heterogeneity often lead to severe water channeling and low sweep efficiency. Addressing the limitations of traditional hydrophobically associating polymer-based profile-control agents—such as significant adsorption loss, mechanical degradation during reservoir migration, resulting in a limited effective radius and short functional duration—this study developed a polymeric graded profile-control agent suitable for highly heterogeneous conditions. The physicochemical properties of the system were comprehensively evaluated through systematic testing of its apparent viscosity, salt tolerance, and anti-aging performance. The microscopic oil displacement mechanisms in porous media were elucidated by combining CT scanning and microfluidic visual displacement experiments. Experimental results indicate that the agent exhibits significant hydrophobic association behavior, with a critical association concentration of 1370 mg·L−1, and demonstrates a “low viscosity at low temperature, high viscosity at high temperature” rheological characteristic. At a concentration of 3000 mg·L−1, the apparent viscosity of the solution is 348 mPa·s at 30 °C, rising significantly to 1221 mPa·s at 70 °C. It possesses a salinity tolerance of up to 50,000 mg·L−1, and a viscosity retention rate of 95.4% after 90 days of high-temperature aging, indicating good injectivity, reservoir compatibility, and thermal stability. Furthermore, within a concentration range of 500–3000 mg·L−1, the agent can effectively emulsify Gudao heavy oil, forming O/W emulsion droplets with sizes ranging from 40 to 80 μm, enabling effective plugging of pore throats of corresponding sizes. CT scanning and microfluidic displacement experiments further reveal that the agent possesses a graded control function: in the near-wellbore high-concentration zone, it primarily relies on its aqueous phase viscosity-increasing capability to control the mobility ratio; upon entering the deep reservoir low-concentration zone, it utilizes “emulsion plugging” to achieve fluid diversion, thereby expanding the sweep volume and extending the effective treatment period. This research outcome provides a new technical pathway for the efficient development of highly heterogeneous heavy oil reservoirs. Full article
(This article belongs to the Topic Polymer Gels for Oil Drilling and Enhanced Recovery)
Show Figures

Figure 1

23 pages, 3697 KB  
Article
Microfluidic Edible Coatings: Multiphase VOF Modeling, Physicochemical Properties, Image Analysis, and Applications in Fried Foods
by Cristian Aarón Dávalos-Saucedo, Giovanna Rossi-Márquez, Sergio Rodríguez-Miranda and Carlos E. Castañeda
Coatings 2025, 15(11), 1245; https://doi.org/10.3390/coatings15111245 - 26 Oct 2025
Viewed by 414
Abstract
Edible coatings are widely used to modulate oil uptake and moisture in fried foods. In this study, we evaluated a microfluid-assisted flow-blurring spray against conventional application by dipping/spraying, focusing on the coating efficiency and preliminary implications for sustainable process. This study combines benchtop [...] Read more.
Edible coatings are widely used to modulate oil uptake and moisture in fried foods. In this study, we evaluated a microfluid-assisted flow-blurring spray against conventional application by dipping/spraying, focusing on the coating efficiency and preliminary implications for sustainable process. This study combines benchtop experiments with a near-nozzle numerical analysis where the gas–liquid interface and primary breakup are modeled using the Volume of Fluid (VOF) approach implemented in OpenFOAM, configured for a flow-blurring geometry to generate whey protein isolate (WPI) coatings. Viscosity, density, solid content, and contact angle were validated experimentally and used in the simulation setup. An image-based droplet pipeline quantified spray characteristics, yielding a volumetric median diameter D50 = 83.69 µm and confirming process uniformity. Contact angles showed marked substrate dependence: hydrophilic surfaces, 68°–85°; hydrophobic surfaces, 95°–110°. For turkey sausages, sessile-drop contact angles were not determinable (N.D.) due to wicking/roughness; wettability was therefore assessed on smooth surrogates and via performance metrics. Fit-for-purpose simulation procedures are outlined. Microfluidic application (WPI-McF) lowered oil uptake versus uncoated controls. Together, robust modeling, targeted image analytics, and high-precision microfluidics enable rational tuning of coating microstructure and barrier performance, offering a scalable pathway to reduce lipid content and enhance fried food quality. Full article
(This article belongs to the Section Coatings for Food Technology and System)
Show Figures

Figure 1

16 pages, 2080 KB  
Article
Triacylglycerol Crystallinity and Emulsion Colloidal Acid Stability Influence In Vitro Digestion Lipolysis and Bioaccessibility of Long-Chain Omega-3 Fatty Acid-Rich Nanoemulsions
by Jessica D. Ulbikas, Saeed Mirzaee Ghazani, Alejandro G. Marangoni and Amanda J. Wright
Foods 2025, 14(21), 3631; https://doi.org/10.3390/foods14213631 - 24 Oct 2025
Viewed by 316
Abstract
This study investigated the relationships between emulsion droplet triacylglycerol (TAG) crystallinity and colloidal acid stability on in vitro digestion microstructure, lipolysis, and docosahexaenoic acid (DHA) bioaccessibility. Oil-in-water (o/w) nanoemulsions (20 wt%) composed of 50/50 DHA-rich algal oil with either palm stearin (PS) or [...] Read more.
This study investigated the relationships between emulsion droplet triacylglycerol (TAG) crystallinity and colloidal acid stability on in vitro digestion microstructure, lipolysis, and docosahexaenoic acid (DHA) bioaccessibility. Oil-in-water (o/w) nanoemulsions (20 wt%) composed of 50/50 DHA-rich algal oil with either palm stearin (PS) or olein (PO), and either acid-stable Tween 80 (2.0 wt%; AS) or acid-unstable soy lecithin (2.2 wt%; AU) were fast or slow cooled to 37 °C after microfluidization. Similar particle size distributions and D3,2 (~131–142 nm) and D4,3 (~208–239 nm) values were achieved. All emulsions were highly electronegative (~−45–70 mV) and differences (p < 0.05) were due to emulsifier type, as expected, and cooling rate. Next, emulsions were subjected to INFOGEST in vitro digestion for analysis of intestinal lipolysis by free fatty acid titration and DHA bioaccessibility. As expected, AU emulsions flocculated, forming larger aggregates during the gastric phase. Slower lipolysis was observed for the AU emulsions (p < 0.05), attributed to gastric phase aggregation, and lower 2 h lipolysis was observed for the PS emulsions (~74–77%) based on the presence of crystallinity. DHA bioaccessibility was high (~57–88%), especially for the AS emulsions (p < 0.05). Therefore, emulsion colloidal acid stability and TAG physical state significantly impacted emulsion gastric microstructure, digestion, and bioaccessibility. Full article
Show Figures

Figure 1

18 pages, 4894 KB  
Article
Study on Microdroplets Generation and Detection Method in Four-Way Microfluid Structure (FWMS) by Double Photoresist Method Pulses
by Lele Luo and Lu Zhang
Micromachines 2025, 16(11), 1205; https://doi.org/10.3390/mi16111205 - 23 Oct 2025
Viewed by 231
Abstract
Hundred-micron-sized microdroplets are widely used in microbial culture, chemical investigations and industrial processes. The size, velocity and frequency of microdroplets significantly affect the cultivation and processing effects. The detections of droplets mainly rely on capacitance detection or imaging, but it requires expensive and [...] Read more.
Hundred-micron-sized microdroplets are widely used in microbial culture, chemical investigations and industrial processes. The size, velocity and frequency of microdroplets significantly affect the cultivation and processing effects. The detections of droplets mainly rely on capacitance detection or imaging, but it requires expensive and complex systems for capacitance detection, and high-throughput imaging detections are challenging. In this study, four-way microfluid structure (FWMS) is proposed for microdroplets generation and detection. FWMS, fixed on a 3D-printed holder, is designed to generate microdroplets (100–500 µm), with optical fibers embedded to collect double photoresist method pulses of scattering light by fast-moving microdroplets. The size and volume of the microdroplets are retrieved by tracking the double pulse signal in the time sequence. In the experiments, 50 groups of microdroplets (a total of 105 microdroplets) with size ranging from 100 to 450 µm were generated and detected. Compared with traditional imaging detection, this method has a better sampling rate and detection error of less than 1.42%, which can provide a simple and accurate integrated microfluid system for microdroplet generation and synchronous detection. Full article
Show Figures

Figure 1

22 pages, 4274 KB  
Article
Enhanced Bioavailability and Stability of Curcumin in Cosmeceuticals: Exploiting Droplet Microfluidics for Nanoemulsion Development
by Nikolaos D. Bikiaris, Afroditi Kapourani, Ioannis Pantazos and Panagiotis Barmpalexis
Cosmetics 2025, 12(5), 226; https://doi.org/10.3390/cosmetics12050226 - 15 Oct 2025
Viewed by 625
Abstract
Curcumin (Cur), a natural polyphenolic compound with potent antioxidant and anti-inflammatory properties, faces significant challenges in cosmeceutical applications due to its poor aqueous solubility and low bioavailability. Nanotechnology offers a promising approach to overcome these limitations and enhance the functionality of cosmetic formulations. [...] Read more.
Curcumin (Cur), a natural polyphenolic compound with potent antioxidant and anti-inflammatory properties, faces significant challenges in cosmeceutical applications due to its poor aqueous solubility and low bioavailability. Nanotechnology offers a promising approach to overcome these limitations and enhance the functionality of cosmetic formulations. In this work, Cur-loaded nanoemulsions (NEs) were developed using a droplet microfluidics technique to enhance Cur’s stability, bioavailability, and permeability for advanced cosmeceuticals. Various oils were screened for Cur solubility, with coconut oil demonstrating the highest capacity. Optimal oil-to-water flow ratios were determined to produce monodisperse NEs with controlled droplet sizes. Characterization via dynamic light scattering (DLS) revealed stable NEs with Z-potential values exceeding −30 mV at both room temperature and +4 °C for up to 21 days, indicating strong colloidal stability. Antioxidant activity was evaluated through DPPH assays, while in vitro permeability studies of the drug-loaded NEs after incorporation into suitable hydrogels, using Strat-M® membranes mimicking human skin, demonstrated significantly enhanced penetration of the encapsulated Cur. In sum, this work highlights the potential of droplet microfluidics as a scalable and precise method for producing high-performance Cur NEs tailored for cosmeceutical applications. Full article
(This article belongs to the Section Cosmetic Formulations)
Show Figures

Figure 1

14 pages, 2970 KB  
Article
Cost-Effective and High-Throughput LPS Detection via Microdroplet Technology in Biopharmaceuticals
by Adriano Colombelli, Daniela Lospinoso, Valentina Arima, Vita Guarino, Alessandra Zizzari, Monica Bianco, Elisabetta Perrone, Luigi Carbone, Roberto Rella and Maria Grazia Manera
Biosensors 2025, 15(10), 649; https://doi.org/10.3390/bios15100649 - 30 Sep 2025
Viewed by 459
Abstract
Lipopolysaccharides (LPS) from Gram-negative bacteria represent a significant challenge across various industries due to their prevalence and pathogenicity and the limitations of existing detection methods. Traditional approaches, such as the rabbit pyrogen test (RPT) and the Limulus Amebocyte Lysate (LAL) assay, have served [...] Read more.
Lipopolysaccharides (LPS) from Gram-negative bacteria represent a significant challenge across various industries due to their prevalence and pathogenicity and the limitations of existing detection methods. Traditional approaches, such as the rabbit pyrogen test (RPT) and the Limulus Amebocyte Lysate (LAL) assay, have served as gold standards for endotoxin detection. However, these methods are constrained by high costs, lengthy processing times, environmental concerns, and the need for significant reagent volumes, which limit their scalability and application in resource-limited settings. In this study, we introduce an innovative microfluidic platform that integrates the LAL assay within microdroplets, addressing the critical limitations of traditional techniques. By leveraging the precise fluid control and reaction isolation offered by microdroplet technology, the system reduces reagent consumption, enhances sensitivity, and enables high-throughput analysis. Calibration tests were performed to validate the platform’s ability to detect LPS, using colorimetric measurements. Results demonstrated comparable or improved performance relative to traditional systems, achieving lower detection limits and greater accuracy. This work demonstrates a proof-of-concept miniaturisation of the pharmacopoeial LAL assay. The method yielded low intra-assay variability (σ ≈ 0.002 OD; CV ≈ 0.9% over n = 50 droplets per point) and a LOD estimated from calibration statistics after path-length normalisation. Broader adoption will require additional comparative validation and standardisation. This scalable, cost-effective, and environmentally sustainable approach offers a practical solution for endotoxin detection in clinical diagnostics, biopharmaceutical production, and environmental monitoring. The proposed technology paves the way for advanced LPS detection methods that meet stringent safety standards while improving efficiency, affordability, and adaptability for diverse applications. Full article
(This article belongs to the Special Issue Advanced Microfluidic Devices and MEMS in Biosensing Applications)
Show Figures

Figure 1

10 pages, 1471 KB  
Communication
Unsaturated Fatty Acid Oil-Based Microdroplets: A Promising Novel Class of Microdroplets
by Mitra Shojania Feizabadi, Ramiz Alejilat and Amy Ataalla
Appl. Sci. 2025, 15(18), 10290; https://doi.org/10.3390/app151810290 - 22 Sep 2025
Viewed by 438
Abstract
Droplet-based microfluidics has rapidly advanced applications in chemistry, biology, materials science, medicine, food science, and cosmetics. Using this technology, various oils have been employed for fluid encapsulation. This study is the first to investigate the use of an animal-based unsaturated fatty acid oil—emu [...] Read more.
Droplet-based microfluidics has rapidly advanced applications in chemistry, biology, materials science, medicine, food science, and cosmetics. Using this technology, various oils have been employed for fluid encapsulation. This study is the first to investigate the use of an animal-based unsaturated fatty acid oil—emu oil—for microdroplet formation. We characterized droplet generation in the presence and absence of a non-fluorinated surfactant at a defined concentration and examined the influence of geometrical parameters using T-junction microchannels with two different central channel widths. The results were compared with those obtained from a plant-based oil (olive oil) under parallel experimental conditions. Given the growing concerns regarding the environmental and health risks of fluorocarbon oils combined with fluorinated surfactants, which are widely used in microfluidics, emu oil represents a potentially safer alternative for microdroplet-based technologies across multiple fields. Full article
Show Figures

Figure 1

22 pages, 4299 KB  
Article
Motion Control of Gallium-Based Liquid Metal Droplets in Abrasive Suspensions Within a Flow Channel
by Yapeng Ma, Baoqi Feng, Kaixiang Li and Lei Zhang
Actuators 2025, 14(9), 456; https://doi.org/10.3390/act14090456 - 18 Sep 2025
Viewed by 426
Abstract
Gallium-based room-temperature liquid metal is a promising multifunctional material for microfluidics and precision machining due to its high mobility and deformability. However, precise motion control of gallium-based liquid metal droplets, especially in abrasive particle-laden fluids, remains challenging. This study presents a hybrid control [...] Read more.
Gallium-based room-temperature liquid metal is a promising multifunctional material for microfluidics and precision machining due to its high mobility and deformability. However, precise motion control of gallium-based liquid metal droplets, especially in abrasive particle-laden fluids, remains challenging. This study presents a hybrid control framework for regulating droplet motion in a one-dimensional PMMA channel filled with NaOH-based SiC abrasive suspensions. A dynamic model incorporating particle size and concentration effects on the damping coefficient was established. The system combines a setpoint controller, high-resolution voltage source, and vision feedback to guide droplets to target positions with high accuracy. Experimental validation and MATLAB simulations confirm that the proposed dynamic damping control strategy ensures stable, rapid, and precise positioning of droplets, minimizing motion fluctuations. This approach offers new insights into the manipulation of gallium-based liquid metal droplets for targeted material removal in micro-manufacturing, with potential applications in microelectronics and high-precision surface finishing. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

14 pages, 3255 KB  
Article
Droplet Diameter Variability Induced by Flow Oscillations in a Micro Cross-Junction
by Filippo Azzini, Beatrice Pulvirenti, Gian Luca Morini and Cesare Biserni
Appl. Sci. 2025, 15(18), 10107; https://doi.org/10.3390/app151810107 - 16 Sep 2025
Viewed by 380
Abstract
This study investigates the stochastic variation in droplet size generated within a microfluidic flow-focusing cross-junction. A commercial micro cross-junction was used to experimentally analyze droplet formation under fixed flow rate conditions. An in-house machine learning-based algorithm was developed to automatically detect and measure [...] Read more.
This study investigates the stochastic variation in droplet size generated within a microfluidic flow-focusing cross-junction. A commercial micro cross-junction was used to experimentally analyze droplet formation under fixed flow rate conditions. An in-house machine learning-based algorithm was developed to automatically detect and measure droplet dimensions from high-speed video recordings. Despite constant flow rates, the analysis revealed fluctuations in droplet size, attributed to velocity oscillations induced by syringe pumps. To explore this phenomenon, micro-Particle Image Velocimetry (micro-PIV) was employed to capture velocity profiles, which were then used to define time-dependent boundary conditions for numerical simulations. Simulations were conducted using the OpenFOAM solver interFoam and validated against experimental data. The results demonstrate good agreement and confirm that velocity fluctuations significantly influence droplet formation. This combined experimental and numerical approach provides an innovative, robust framework for understanding and predicting droplet behavior in microfluidic systems. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

17 pages, 10657 KB  
Article
Ultrashort Pulsed Laser Fabrication of High-Performance Polymer-Film-Based Moulds for Rapid Prototyping of Microfluidic Devices
by Pieter Daniël Haasbroek, Mischa Wälty, Michael Grob and Per Magnus Kristiansen
J. Manuf. Mater. Process. 2025, 9(9), 313; https://doi.org/10.3390/jmmp9090313 - 12 Sep 2025
Viewed by 2751
Abstract
Microfluidic device prototyping demands rapid, cost-effective, and high-precision mould fabrication, yet ultrashort pulsed laser structuring of polymer inserts remains underexplored. This study presents a novel method for fabricating microfluidic mould inserts using femtosecond (fs) laser ablation of polyimide (PI) films, achieving high precision [...] Read more.
Microfluidic device prototyping demands rapid, cost-effective, and high-precision mould fabrication, yet ultrashort pulsed laser structuring of polymer inserts remains underexplored. This study presents a novel method for fabricating microfluidic mould inserts using femtosecond (fs) laser ablation of polyimide (PI) films, achieving high precision from design to prototype. PI films (250 µm) were structured using a 355 nm fs laser (300 fs, 500 kHz, 0.95 J/cm2) in a photochemically dominated ablation regime and bonded to reusable steel plates. Injection moulding trials with cyclic olefin copolymer (COC) and polymethyl methacrylate (PMMA) were conducted with diverse designs, including concentration gradient generators (CGG), organ-on-chip (OOC) with 20 µm bridges, and double emulsion droplet generators (DEDG) with 100–500 µm channels, ensuring robustness across complex geometries. The method achieved near 1:1 replication (errors < 2%, microchannel height tolerances < 1%, Sa = 0.02 µm in channels, 0.26 µm in laser-structured areas), machining times under 2 h, and mould durability over 100 cycles without significant deterioration. The PI’s heat-retarding effect mimicked variothermal moulding, ensuring complete micro-penetration without specialised equipment. By reducing material costs using PI films and reusable steel plates, enabling rapid iterations within hours, and supporting industry-compatible prototyping, this approach lowers barriers for small-scale labs. It enables rapid prototyping of diagnostic lab-on-chip devices and supports decentralised manufacturing for biomedical, chemical, and environmental applications, offering a versatile, cost-effective tool for early-stage development. Full article
Show Figures

Figure 1

11 pages, 3848 KB  
Article
Considering the Node Level in Error Correction for DMFBs
by Koki Suzuki, Shigeru Yamashita, Hiroyuki Tomiyama and Ankur Gupta
Micromachines 2025, 16(9), 1013; https://doi.org/10.3390/mi16091013 - 31 Aug 2025
Viewed by 513
Abstract
In recent years, a type of biochip known as a Digital Microfluidic Biochip (DMFB) has been actively researched in the field of life sciences. DMFBs perform dilution operations by mixing reagent solutions and buffer solutions at a 1:1 ratio to generate droplets with [...] Read more.
In recent years, a type of biochip known as a Digital Microfluidic Biochip (DMFB) has been actively researched in the field of life sciences. DMFBs perform dilution operations by mixing reagent solutions and buffer solutions at a 1:1 ratio to generate droplets with the desired concentration. One of the challenges of DMFBs is that droplets may not always be evenly split during the droplet division process. To address this issue, an error correction method utilizing error cancellation has been proposed. This method modifies the dilution graph to minimize the impact of division errors on the target node. However, this approach has a significant drawback: when large division errors occur in nodes close to the target node, they can introduce substantial concentration errors at the target node. In this paper, we propose a method that duplicates nodes near the target node and performs re-dilution to correct errors. Furthermore, we present an efficient and accurate error correction approach by modifying the dilution graph so that the output nodes of the dilution operation are at equal levels relative to the target node. Through simulations conducted 10,000 times, we demonstrate that our method effectively reduces the average concentration error at the target node. Full article
(This article belongs to the Special Issue Electronic Design Automation (EDA) for Microfluidic Biochips)
Show Figures

Figure 1

17 pages, 5751 KB  
Article
Laser-Induced Forward Transfer in Organ-on-Chip Devices
by Maria Anna Chliara, Antonios Hatziapostolou and Ioanna Zergioti
Photonics 2025, 12(9), 877; https://doi.org/10.3390/photonics12090877 - 30 Aug 2025
Viewed by 848
Abstract
Laser-induced forward transfer (LIFT) bioprinting enables precise deposition of biological materials for advanced biomedical applications. This study presents a parametric analysis of the donor–receiver distances (1.0, 1.5, 2.0, 2.5, and 3.0 mm) in LIFT bioprinting, investigated through high-speed video and image analysis of [...] Read more.
Laser-induced forward transfer (LIFT) bioprinting enables precise deposition of biological materials for advanced biomedical applications. This study presents a parametric analysis of the donor–receiver distances (1.0, 1.5, 2.0, 2.5, and 3.0 mm) in LIFT bioprinting, investigated through high-speed video and image analysis of 4 × 4 spot arrays. Droplet velocity was quantified and jet trajectory characterized, revealing that increased distances reduced spatial resolution, with significant shape deterioration observed beyond 2.0 mm. Thus, a maximum 2.0 mm donor–receiver gap was determined as optimal for acceptable printing resolution. As an application, a microfluidic device was fabricated using LCD 3D printing with a biocompatible resin and glass-bottomed configuration. The chamber height was matched to the validated 2.0 mm distance, ensuring compatibility with LIFT printing. Computational fluid dynamics simulations were conducted to model fluid flow conditions within the device. Subsequently, LLC cells were successfully printed inside the microfluidic chamber, cultured under continuous flow for 24 h, and demonstrated normal proliferation. This work highlights LIFT bioprinting’s viability and precision for integrating cells within microfluidic platforms, presenting promising potential for organ-on-chip applications and future biomedical advancements. Full article
Show Figures

Figure 1

Back to TopTop