Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (102)

Search Parameters:
Keywords = methylene blue sorption

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4509 KiB  
Article
Activated Biocarbons Based on Salvia officinalis L. Processing Residue as Adsorbents of Pollutants from Drinking Water
by Joanna Koczenasz, Piotr Nowicki, Karina Tokarska and Małgorzata Wiśniewska
Molecules 2025, 30(14), 3037; https://doi.org/10.3390/molecules30143037 - 19 Jul 2025
Viewed by 326
Abstract
This study presents research on the production of activated biocarbons derived from herbal waste. Sage stems were chemically activated with two activating agents of different chemical natures—H3PO4 and K2CO3—and subjected to two thermal treatment methods: conventional [...] Read more.
This study presents research on the production of activated biocarbons derived from herbal waste. Sage stems were chemically activated with two activating agents of different chemical natures—H3PO4 and K2CO3—and subjected to two thermal treatment methods: conventional and microwave heating. The effect of the activating agent type and heating method on the basic physicochemical properties of the resulting activated biocarbons was investigated. These properties included surface morphology, elemental composition, ash content, pH of aqueous extracts, the content and nature of surface functional groups, points of zero charge, and isoelectric points, as well as the type of porous structure formed. In addition, the potential of the prepared carbonaceous materials as adsorbents of model organic (represented by Triton X-100 and methylene blue) and inorganic (represented by iodine) pollutants was assessed. The influence of the initial adsorbate concentration (5–150 (dye) and 10–800 mg/dm3 (surfactant)), temperature (20–40 °C), and pH (2–10) of the system on the efficiency of contaminant removal from aqueous solutions was evaluated. The adsorption kinetics were also investigated to better understand the rate and mechanism of contaminant uptake by the prepared activated biocarbons. The results showed that materials activated with orthophosphoric acid exhibited a significantly higher sorption capacity for all tested adsorbates compared to their potassium carbonate-activated counterparts. Microwave heating was found to be more effective in promoting the formation of a well-developed specific surface area (471–1151 m2/g) and porous structure (mean pore size 2.17–3.84 nm), which directly enhanced the sorption capacity of both organic and inorganic contaminants. The maximum adsorption capacities for iodine, methylene blue, and Triton X-100 reached the levels of 927.0, 298.4, and 644.3 mg/g, respectively, on the surface of the H3PO4-activated sample obtained by microwave heating. It was confirmed that the heating method used during the activation step plays a key role in determining the physicochemical properties and sorption efficiency of activated biocarbons. Full article
Show Figures

Figure 1

25 pages, 2162 KiB  
Article
Adsorption of Butylparaben and Methylene Blue from Aqueous Solution Using Activated Carbon Derived from Oak Bark
by Dorota Paluch, Robert Wolski, Aleksandra Bazan-Wozniak and Robert Pietrzak
Materials 2025, 18(13), 2984; https://doi.org/10.3390/ma18132984 - 24 Jun 2025
Viewed by 354
Abstract
This study presents the production of activated carbon through the direct physical activation of oak bark using carbon (IV) oxide. The activation process was conducted at three distinct temperatures of 700 °C, 800 °C, and 900 °C. The activation time was 60 min. [...] Read more.
This study presents the production of activated carbon through the direct physical activation of oak bark using carbon (IV) oxide. The activation process was conducted at three distinct temperatures of 700 °C, 800 °C, and 900 °C. The activation time was 60 min. A comprehensive series of analytical procedures was performed on the resultant adsorbents. These included elemental analysis, determination of textural parameters, Boehm titration, pH determination of aqueous extracts, pHpzC0, assessment of ash content, and elemental and XPS analysis. Subsequently, adsorption tests for butyl paraben and methylene blue were carried out on the materials obtained. The total surface area of the sorbents ranged from 247 m2/g to 696 m2/g. The acid-based properties of the samples tested were examined, and the results indicated that the sorbents exhibited a distinct alkaline surface character. The sorption capacities of the tested samples for butylparaben ranged between 20 and 154 mg/g, while the capacities for methylene blue varied between 13 and 224 mg/g. The constants of the Langmuir and Freundlich models were determined for each of the impurities, as well as the thermodynamic parameters. The present study investigates the influence of contact time between adsorbent and adsorbate, in addition to the kinetics of the adsorption processes. The activated carbon samples obtained demonstrated satisfactory sorption capacities, with the material obtained at 900 °C exhibiting the best sorption capacities. Full article
Show Figures

Graphical abstract

24 pages, 2893 KiB  
Article
Adsorption of Methylene Blue Dye onto Various Marine Sediments and Seagrass Biomass of Posidonia oceanica Species: Kinetics and Equilibrium Studies
by Maria C. Vagi, Andreas S. Petsas, Dionysia Dimitropoulou, Melpomeni Leventelli and Anastasia D. Nikolaou
Organics 2025, 6(2), 21; https://doi.org/10.3390/org6020021 - 6 May 2025
Viewed by 695
Abstract
This study concerns the investigation of the sorption and desorption phenomena of the organic dye methylene blue (MB) on three different marine sediments and non-living biomass of the seagrass species Posidonia oceanica. All tested adsorbents were of natural origin and were collected [...] Read more.
This study concerns the investigation of the sorption and desorption phenomena of the organic dye methylene blue (MB) on three different marine sediments and non-living biomass of the seagrass species Posidonia oceanica. All tested adsorbents were of natural origin and were collected from unpolluted coasts of the North Aegean Sea (Greece). The batch equilibrium technique was applied and MB concentrations were determined by spectrophotochemical analysis (λ = 665 nm). The experimental results showed that all four isotherm models, Freundlich, Langmuir, Henry, and Temkin, could describe the process. The normalized to organic matter content adsorption coefficients (KOM) ranged between 33.0765 and 34.5279 for the studied sediments. The maximum adsorption capacity (qmax) of sediments was in the range of 0.98 mg g−1 and 6.80 mg g−1, indicating a positive correlation with the adsorbents’ organic matter content, textural analysis of fine fraction (<63 μm), and specific surface area. The bioadsorption of MB on P. oceanica biomass resulted in 13.25 mg g−1 up to 17.86 mg g−1 adsorption efficiency. Desorption studies revealed that the studied dye in most cases was very strongly adsorbed on studied matrices with extremely low quantities of seawater extractable amounts (≤1.62%). According to the experimental findings, phycoremediation by using P. oceanica can be characterized as an efficient method for the bioremediation of dye-polluted wastewater. Full article
Show Figures

Figure 1

16 pages, 4884 KiB  
Article
Simple Method for Controlling Gold Nanocluster Size in Mesoporous Silica: SBA-11
by Tariq Aqeel and Ali Bumajdad
Molecules 2025, 30(9), 2035; https://doi.org/10.3390/molecules30092035 - 2 May 2025
Viewed by 478
Abstract
Mesoporous silica containing Au nanoclusters has been widely used in various fields owing to its desirable properties and functionality. This work introduces a facile method to control the size of Au nanoclusters within silica hosts. This was achieved by applying a reducing gas [...] Read more.
Mesoporous silica containing Au nanoclusters has been widely used in various fields owing to its desirable properties and functionality. This work introduces a facile method to control the size of Au nanoclusters within silica hosts. This was achieved by applying a reducing gas at a controlled temperature to obtain a narrow or broad Au cluster size distribution inside the silica host. The Au nanoclusters and their silica hosts were characterized through X-ray diffraction, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, ultraviolet-visible spectroscopy, N2 sorption analysis, and X-ray photoelectron spectroscopy. The average size of the Au nanoclusters was 1.3 nm in the narrow-distribution sample. In comparison, the wide-distribution sample exhibited two cluster populations: 1–2 nm inside the pores and 5–30 nm outside the pores. Methylene blue (M.B.) photocatalysis was conducted under direct sunlight to evaluate the catalytic activity of these materials. Sample 1–Au–SBA-11, containing Au clusters averaging 1.3 nm, achieved substantial M.B. degradation within 90 min—half the time required by the 2–Au–SBA-11 sample. Such Au clusters of different size ranges have potential applications across diverse fields. Full article
Show Figures

Graphical abstract

16 pages, 6332 KiB  
Article
Carbon Capture Efficiency of Mechanically Activated Australian Halloysite-Rich Kaolin with Varying Iron Impurities and Its Potential Reuse for Removing Dyes from Water
by Siavash Davoodi, Bhabananda Biswas and Ravi Naidu
Minerals 2025, 15(4), 399; https://doi.org/10.3390/min15040399 - 10 Apr 2025
Cited by 1 | Viewed by 552
Abstract
Sustainable strategies are required to mitigate elevated atmospheric CO2 levels. Achieving that by adsorption, especially by using clay-based adsorbents, drew attention. These are even more promising when these adsorbents are obtained by low-cost modifications. This study evaluates the effect of ball milling [...] Read more.
Sustainable strategies are required to mitigate elevated atmospheric CO2 levels. Achieving that by adsorption, especially by using clay-based adsorbents, drew attention. These are even more promising when these adsorbents are obtained by low-cost modifications. This study evaluates the effect of ball milling on the carbon capture performance of Australian halloysite nanotube (HNT)-rich kaolin samples: one without iron impurities (Hal) and the other with iron impurities (HalFe). The iron was mainly nested within illite/mica minerals in HalFe. Samples were ball-milled for 30 and 60 min, and their CO2 sorption was assessed at various pressures and temperatures. Crystallography, electronic microscopy, and surface area and charge characterization revealed reduced length and increased width of tubular structure following ball milling, leading to higher specific surface area without compromising crystallinity. CO2 sorption of Hal increased 14% at 20 bar and 15 °C after 60 min milling, with a ~300% rise at near-atmospheric pressures. Conversely, milling negatively affected CO2 sorption of HalFe, likely due to iron/illite-mica-related damage during milling. Crystallography, infrared, and thermographic analyses revealed physisorption as the primary sorption mechanism. Since direct disposal of CO2-laden materials is against sustainability principles, these materials were tested for methylene blue removal from aqueous solutions, achieving ~83% (Hal) and ~91% (HalFe) removal efficiencies. This highlights HNTs-rich kaolin clays’ valorization potential for carbon capture and utilization (CCU). Full article
(This article belongs to the Special Issue Adsorption Properties and Environmental Applications of Clay Minerals)
Show Figures

Graphical abstract

18 pages, 3212 KiB  
Article
Facile Hydrothermal Assisted Basic Catalyzed Sol Gel Synthesis for Mesoporous Silica Nanoparticle from Alkali Silicate Solutions Using Dual Structural Templates
by Khaled M. AlMohaimadi, Hassan M. Albishri, Khaled A. Thumayri, Awadh O. AlSuhaimi, Yassin T. H. Mehdar and Belal H. M. Hussein
Gels 2024, 10(12), 839; https://doi.org/10.3390/gels10120839 - 19 Dec 2024
Cited by 1 | Viewed by 1799
Abstract
This work presents a novel hydrothermally aided sol-gel method for preparation of mesoporous silica nanoparticles (MSNs) with a narrow particle size distribution and varied pore sizes. The method was carried out in alkaline media in presence of polyethylene glycol (PEG) and cetyltrimethylammonium chloride [...] Read more.
This work presents a novel hydrothermally aided sol-gel method for preparation of mesoporous silica nanoparticles (MSNs) with a narrow particle size distribution and varied pore sizes. The method was carried out in alkaline media in presence of polyethylene glycol (PEG) and cetyltrimethylammonium chloride (CTAC) as dual templates and permitted the synthesis of spherical mesoporous silica with a high surface area (1011.42 m2/g). The MSN materials were characterized by FTIR, Thermogravimetric (TG), Nitrogen adsorption and desorption and Field emission scanning electron microscopic analysis (FESEM). The materials feasibility as solid phase adsorbent has been demonstrated using cationic dyes; Rhodamine B (RB) and methylene blue (MB) as models. Due to the large surface area and variable pore width, the adsorption behaviors toward cationic dyes showed outstanding removal efficiency and a rapid sorption rate. The adsorption isotherms of RB and MB were well-fitted to the Langmuir and Freundlich models, while the kinetic behaviours adhered closely to the pseudo-second-order pattern. The maximum adsorption capacities were determined to be 256 mg/g for MB and 110.3 mg/g for RB. The findings suggest that MSNs hold significant potential as solid-phase nanosorbents for the extraction and purification of dye pollutants, particularly in the analysis and treatment of effluents containing cationic dyes. Full article
(This article belongs to the Special Issue Advanced Aerogels: From Design to Application)
Show Figures

Figure 1

14 pages, 4014 KiB  
Article
Performance Analysis of Effective Methylene Blue Immobilization by Carbon Microspheres Obtained from Hydrothermally Processed Fructose
by Sanja S. Krstić, Đuro Čokeša, Radojka T. Vujasin, Branka V. Kaluđerović, Milan Z. Momčilović, Darko Jaćimovski, Pavel Gurikov and Vladimir M. Dodevski
Processes 2024, 12(12), 2683; https://doi.org/10.3390/pr12122683 - 28 Nov 2024
Viewed by 823
Abstract
Carbon microspheres have been synthesized by the hydrothermal method with fructose and a phosphoric acid solution at two different concentrations, which were used as precursors. The obtained materials were characterized by elemental analysis, X-ray powder diffraction (XRPD) analysis, scanning electron microscopy (SEM), nitrogen [...] Read more.
Carbon microspheres have been synthesized by the hydrothermal method with fructose and a phosphoric acid solution at two different concentrations, which were used as precursors. The obtained materials were characterized by elemental analysis, X-ray powder diffraction (XRPD) analysis, scanning electron microscopy (SEM), nitrogen adsorption/desorption measurements, and Fourier transform infrared (FTIR) spectroscopy. Batch sorption experiments were performed to remove methylene blue (MB) from aqueous solutions by varying the initial concentration of MB (C0) from 50 to 500 mg/dm3, contact period, solution pH value, and temperature. Prepared sorbents consisted of microsphere particles with diameters in the range of 0.6–2.7 µm. The synthetic route was found to govern the microporous–mesoporous structure and surface acidic functional groups of the final product. A phosphoric acid concentration of 40 wt.% gave carbon material with a specific surface area of 932 m2/g and a total pore volume of 0.43 cm3/g. It was found that the extent of MB sorption by the obtained carbon microspheres increased with initial dye concentration, contact time, and especially solution pH but slightly decreased with increasing temperature. Kinetic studies showed that the dye sorption process followed pseudo-second-order kinetics. Full article
(This article belongs to the Special Issue Biomass Treatment and Pyrolysis Processes)
Show Figures

Figure 1

16 pages, 7087 KiB  
Article
Hydrochar Loaded with Nitrogen-Containing Functional Groups for Versatile Removal of Cationic and Anionic Dyes and Aqueous Heavy Metals
by Yue Zhang, Yongshan Wan, Yulin Zheng, Yicheng Yang, Jinsheng Huang, Hao Chen, Jianjun Chen, Ahmed Mosa and Bin Gao
Water 2024, 16(23), 3387; https://doi.org/10.3390/w16233387 - 25 Nov 2024
Cited by 2 | Viewed by 1507
Abstract
Developing novel sorbents for effective removal of heavy metals and organic dyes from industrial wastewater remains a central theme for water research. We modified hydrochar derived from the hydrothermal carbonization of wheat straw at 180 °C with 3-Aminopropyl triethoxysilane (APTES) to enhance its [...] Read more.
Developing novel sorbents for effective removal of heavy metals and organic dyes from industrial wastewater remains a central theme for water research. We modified hydrochar derived from the hydrothermal carbonization of wheat straw at 180 °C with 3-Aminopropyl triethoxysilane (APTES) to enhance its versatile adsorption of Pb(II), Cu(II), methylene blue (MB), and reactive red (Red). Pristine and modified hydrochar (HyC and APTES-HyC) were characterized and tested for sorption performance. Characterization results revealed an enriched presence of N-functional groups, mainly -NH2 and C-N, on APTES-HyC, in addition to an increased specific surface area from 1.14 m2/g (HyC) to 4.51 m2/g. APTES-HyC exhibited a faster adsorption rate than HyC, reaching equilibrium approximately 4 h after initiation. The Langmuir adsorption capacities of APTES-HyC were 49.6, 14.8, 31.7, and 18.3 mg/g for Pb(II), Cu(II), MB, and Red, respectively, about 8.5, 5.0, 1.3, and 9.5 times higher than for HyC. The enhanced adsorption performance of APTES-HyC is attributed to the increased N-functional groups, which facilitated adsorption mechanisms specific to the pollutant of concern such as formation of frustrated Lewis pairs and cation–π interactions for metal ions and π–π interactions and hydrogen bond for dyes. This study offers a novel and facile approach to the synthesis of N-doped carbon materials for practical applications. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Graphical abstract

22 pages, 5451 KiB  
Article
Synthesis of a New Composite Material Derived from Cherry Stones and Sodium Alginate—Application to the Adsorption of Methylene Blue from Aqueous Solution: Process Parameter Optimization, Kinetic Study, Equilibrium Isotherms, and Reusability
by Cristina-Gabriela Grigoraș and Andrei-Ionuț Simion
J. Compos. Sci. 2024, 8(10), 402; https://doi.org/10.3390/jcs8100402 - 3 Oct 2024
Cited by 1 | Viewed by 1283
Abstract
Purifying polluted water is becoming a crucial concern to meet quantity and quality demands as well as to ensure the resource’s sustainability. In this study, a new material was prepared from cherry stone powder and sodium alginate, and its capacity to remove methylene [...] Read more.
Purifying polluted water is becoming a crucial concern to meet quantity and quality demands as well as to ensure the resource’s sustainability. In this study, a new material was prepared from cherry stone powder and sodium alginate, and its capacity to remove methylene blue (MB) from water was determined. The characterization of the resulting product, performed via scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR), revealed that the raw material considered for the synthesis was successfully embedded in the polymeric matrix. The impact of three of the main working parameters (pH 3–9, adsorbent dose 50–150 g/L, contact time 60–180 min) on the retention of MB was evaluated through response surface methodology with a Box–Behnken design. In the optimal settings, a removal efficiency of 80.46% and a maximum sorption capacity of 0.3552 mg/g were recorded. MB retention followed the pseudo-second-order kinetic and was suitably described by Freundlich, Khan, Redlich–Peterson, and Sips isotherm models. The experimental results show that the synthesized composite can be used for at least three successive cycles of MB adsorption. From these findings, it can be concluded that the use of the cherry-stone-based adsorbent is environmentally friendly, and efficacious in the removal of contaminants from the water environment. Full article
(This article belongs to the Special Issue Theoretical and Computational Investigation on Composite Materials)
Show Figures

Graphical abstract

14 pages, 1392 KiB  
Article
Performance of Bioenergy Production from Durian Shell Wastes Coupled with Dye Wastewater Treatment
by Yunhui Pu, Ni Jin, Yao Xiong, Jingyun Chen, Ruoran Liu, Jialing Tang, Qingyuan Wang and Abdelfatah Abomohra
Water 2024, 16(18), 2688; https://doi.org/10.3390/w16182688 - 21 Sep 2024
Viewed by 1704
Abstract
Adsorption using biochar is a high-efficient method for removing dyes from wastewater, and it has become a hot research topic in recent years. Biochar produced from organic wastes through pyrolysis is a promising way to combine bioenergy recovery and dye removal. In this [...] Read more.
Adsorption using biochar is a high-efficient method for removing dyes from wastewater, and it has become a hot research topic in recent years. Biochar produced from organic wastes through pyrolysis is a promising way to combine bioenergy recovery and dye removal. In this study, durian shell (DS) was used as a feedstock for biochar and bio-oil production under different pyrolysis temperatures (400, 500, and 600 °C) for bioenergy recovery. Then, the biochar was applied as the absorbent for methylene blue (MB) removal from wastewater under batch and continuous experiments. It was found that the bio-oil production was slightly affected by temperature, while the productivity of biochar decreased from 42.05% to 30.65% with the increase in pyrolysis temperature from 400 to 600 °C. Compared with the biochar produced at 500 °C (DS-500) and 600 °C (DS-600), the biochar obtained at 400 °C (DS-400) exhibited higher MB removal efficiency and adsorption capacity under various pH conditions due to the superior microstructure. A high pH condition was beneficial for the adsorption process with DS-400. Additionally, the MB removal efficiencies increased with the increase in biochar dosage by providing more activated sites. A high MB content can promote the adsorption process, but a too high MB content negatively affects the removal efficiency due to the sorption saturation. Adsorption processes are more likely to match a pseudo-second-order model by chemical reactions. In the long-term continuous experiment, MB can be effectively removed to match the discharge standard by DS-400. This study provided a sustainable pathway for organic waste disposal and dye wastewater treatment. Full article
Show Figures

Figure 1

17 pages, 3001 KiB  
Article
Fennel Seed Biochar: A Sustainable Approach for Methylene Blue Removal from Aqueous Solutions
by Dorota Paluch, Aleksandra Bazan-Wozniak, Agnieszka Nosal-Wiercińska, Judyta Cielecka-Piontek and Robert Pietrzak
Materials 2024, 17(17), 4350; https://doi.org/10.3390/ma17174350 - 2 Sep 2024
Cited by 3 | Viewed by 1317
Abstract
In this study, biochars were produced from by-products of the herbal industry, specifically fennel seeds (Foeniculum vulgare), through direct activation by carbon dioxide at two different temperatures. The biochar samples were comprehensively analysed. Additionally, adsorption studies were conducted for methylene blue. [...] Read more.
In this study, biochars were produced from by-products of the herbal industry, specifically fennel seeds (Foeniculum vulgare), through direct activation by carbon dioxide at two different temperatures. The biochar samples were comprehensively analysed. Additionally, adsorption studies were conducted for methylene blue. The resulting adsorbents exhibited a specific surface area ranging from 2.29 to 14.60 m2/g. The resulting materials displayed a basic character on their surface. The constants for adsorption models were determined for each dye as well as thermodynamic parameters and the kinetics of the process. The sorption capacities of methylene blue for the samples exhibited a range of 22 to 43 mg/g. The adsorption kinetics of the dye on the biochar materials were found to follow a pseudo-second-order model, with the adsorption process best described by the Langmuir isotherm for the DA-800 sample and the Freundlich isotherm for the DA-750 sample. This indicates the development of a monolayer adsorbate on the biochar surfaces. The efficacy of the adsorption process in aqueous solutions of methylene blue was found to increase with rising temperature. Furthermore, based on thermodynamic studies, the adsorption process was found to be spontaneous and endothermic. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

19 pages, 3615 KiB  
Article
Methylene Blue and Rhodamine B Dyes’ Efficient Removal Using Biocarbons Developed from Waste
by Robert Wolski, Aleksandra Bazan-Wozniak, Agnieszka Nosal-Wiercińska and Robert Pietrzak
Molecules 2024, 29(17), 4022; https://doi.org/10.3390/molecules29174022 - 25 Aug 2024
Cited by 4 | Viewed by 2312
Abstract
The preparation of biocarbons from cellulose fibres utilised in the production of baby nappy mats (sourced from Feniks Recycling company, Poland) for the removal of methylene blue and rhodamine B dyes has been documented. A Brunauer, Emmett and Teller analysis revealed a surface [...] Read more.
The preparation of biocarbons from cellulose fibres utilised in the production of baby nappy mats (sourced from Feniks Recycling company, Poland) for the removal of methylene blue and rhodamine B dyes has been documented. A Brunauer, Emmett and Teller analysis revealed a surface area within the range of 384 to 450 m2/g. The objective of this study was to investigate the removal efficiency of dyes from aqueous solutions by biocarbons, with a particular focus on the influence of various parameters, including pH, dye concentration, adsorbent dosage, shaking speed, contact time, and temperature. The maximum adsorption capacity of the dyes onto the biocarbons was found to be 85 mg/g for methylene blue and 48 mg/g for rhodamine B, respectively. The Langmuir equation proved to be the most suitable for interpreting the sorption of organic dyes. The adsorption process was found to exhibit a chemisorption mechanism, effectively mirroring the pseudo-second-order kinetics. Furthermore, the adsorption of dyes was observed to be endothermic (the enthalpy change was positive, 9.1–62.6 kJ/mol) and spontaneous under the tested operating conditions. The findings of this study indicate that biocarbons represent a cost-effective option for the removal of methylene blue and rhodamine B. The adsorption method was observed to be an effective and straightforward approach for the removal of these dyes. The results of the Boehm titration analysis and zero charge point value indicated that the synthesised biomaterials exhibited a slightly basic surface character. Full article
Show Figures

Figure 1

23 pages, 4213 KiB  
Article
Deep Cleaning of Crystal Violet and Methylene Blue Dyes from Aqueous Solution by Dextran-Based Cryogel Adsorbents
by Maria Marinela Lazar, Roxana P. Damaschin, Irina Volf and Maria Valentina Dinu
Gels 2024, 10(9), 546; https://doi.org/10.3390/gels10090546 - 23 Aug 2024
Cited by 3 | Viewed by 1946
Abstract
Polysaccharides have recently attracted growing attention as adsorbents for various pollutants, since they can be extracted from a variety of renewable sources at low cost. An interesting hydrophilic and biodegradable polysaccharide is dextran (Dx), which is well-known for its applications in the food [...] Read more.
Polysaccharides have recently attracted growing attention as adsorbents for various pollutants, since they can be extracted from a variety of renewable sources at low cost. An interesting hydrophilic and biodegradable polysaccharide is dextran (Dx), which is well-known for its applications in the food industry and in medicine. To extend the application range of this biopolymer, in this study, we investigated the removal of crystal violet (CV) and methylene blue (MB) dyes from an aqueous solution by Dx-based cryogels using the batch technique. The cryogel adsorbents, consisting of cross-linked Dx embedding a polyphenolic (PF) extract of spruce bark, were prepared by the freeze-thawing approach. It was shown that the incorporation of PF into the Dx-based matrix induced a decrease in porosity, pore sizes and swelling ratio values. Moreover, the average pore sizes of the DxPF cryogels loaded with dyes further decreased from 42.30 ± 7.96 μm to 23.68 ± 2.69 μm, indicating a strong interaction between the functional groups of the cryogel matrix and those of the dye molecules. The sorption performances of the DxPF adsorbents were evaluated in comparison to those of the Dx cryogels and of the PF extract. The experimental sorption capacities of the DxPF cryogel adsorbents were higher in comparison to those of the Dx cryogels and the PF extract. The DxPF cryogels, particularly those with the highest PF contents (sample DxPF2), demonstrated sorption capacities of 1.2779 ± 0.0703 mmol·g−1, for CV, and 0.3238 ± 0.0121 mmol·g−1, for MB. The sorption mechanisms were analyzed using mathematical models, including Langmuir, Freundlich, Sips and Dubinin–Radushkevich isotherms, and kinetic models, like pseudo-first-order (PFO), pseudo-second-order (PSO), Elovich and intra-particle diffusion (IPD). The sorption process was best described by the Sips isotherm and PSO kinetic models, indicating chemisorption as the dominant mechanism. This study outlines the importance of developing advanced renewable materials for environmental applications. Full article
Show Figures

Figure 1

20 pages, 10054 KiB  
Article
The Influence of Pore-Forming Diluents on Porous Structure, Thermal and Sorption Properties of the Divinylbenzene and Glycidyl Methacrylate Copolymers
by Magdalena Sobiesiak and Monika Parcheta
Materials 2024, 17(16), 4114; https://doi.org/10.3390/ma17164114 - 20 Aug 2024
Cited by 1 | Viewed by 1104
Abstract
The aim of this work was the characterization of polymer microspheres obtained by the suspension polymerization of divinylbenzene (DVB) and glycidyl methacrylate (GMA), depending on the pore-forming diluents and molar ratio of monomers. The assessed properties included the chemical and porous structure, thermal [...] Read more.
The aim of this work was the characterization of polymer microspheres obtained by the suspension polymerization of divinylbenzene (DVB) and glycidyl methacrylate (GMA), depending on the pore-forming diluents and molar ratio of monomers. The assessed properties included the chemical and porous structure, thermal stability, and sorption capacity of the obtained polymers towards methylene blue. The abovementioned characteristic was carried out for two series of copolymers with molar ratios of monomers of 1:2, 1:1 and 2:1, synthetized with toluene and a mixture of decanol and benzyl alcohol. The structure of the polymers was confirmed by FTIR and elemental analysis. The results of TGA demonstrated the main influence on thermal stability was the composition of polymers, whereas the impact of porogens was negligible. The SBET varied in the range of 12–534 m2g−1 for polymers obtained with toluene and 0–396 m2g−1 with the mixture of alcohols. Toluene enhanced the formation of micro- and mesopores, while the mixture of alcohols enhanced the creation of meso- and macropores. For the polymers prepared with toluene, their effectiveness in water purification decreases in the following order: DVB-GMA 2:1 > DVB-GMA 1:1 > DVB-GMA 1:2, according to the decreasing values of porous structure parameters. In the case of a series obtained with a mixture of alcohols, such correlation was not observed. Full article
Show Figures

Figure 1

16 pages, 4487 KiB  
Article
An Oxalato-Bridged Cu(II)-Based 1D Polymer Chain: Synthesis, Structure, and Adsorption of Organic Dyes
by Fouzia Munawar, Muhammad Khalid, Muhammad Imran, Muhammad Naveed Qasim, Shazia Waseem, Murad A. AlDamen, Muhammad Ashfaq, Muhammad Imran and Muhammad Nadeem Akhtar
Polymers 2024, 16(12), 1742; https://doi.org/10.3390/polym16121742 - 19 Jun 2024
Cited by 8 | Viewed by 1235
Abstract
In the current research, we prepared a polymeric framework, {[Cu(C2O4)(C10H8N2)]·H2O·0.67(CH3OH)]}n (1) (where C2O4 = oxalic acid; C10H8N2 = [...] Read more.
In the current research, we prepared a polymeric framework, {[Cu(C2O4)(C10H8N2)]·H2O·0.67(CH3OH)]}n (1) (where C2O4 = oxalic acid; C10H8N2 = 2,2-bipyridine), and explored this compound for adsorption of methylene blue (MB) and methyl orange (MO). The crystal structure of the compound consists of a Cu(ox)(bpy) unit connected via oxalate to form a 1D polymeric chain. This polymeric chain has adsorption capacities of 194.0 and 167.3 mg/g for MB and MO, respectively. The removal rate is estimated to be 77.6% and 66.9% for MB and MO, respectively. The plausible mechanisms for adsorption are electrostatic, π-π interaction, and OH-π interaction for dye stickiness. The adsorbent surface exhibits a negative charge that produces the electrostatic interaction, resulting in excellent adsorption efficiency at pH 7 and 8. The pseudo-first-order kinetic model is selected for the adsorption of MB and MO on the adsorbent. The reported compound has remarkable efficiency for sorption of organic dyes and can be useful in wastewater treatment. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

Back to TopTop