Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = methanol sorption

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2423 KB  
Article
Iron-Based Metal–Organic Frameworks for the Removal of Different Organic and Inorganic Arsenic Species from Water: Kinetic and Adsorption Studies
by Afef Azri, Khaled Walha, Claudia Fontàs, José-Elias Conde-González, Eladia M. Peña-Méndez, Andreas Seubert and Victoria Salvadó
Molecules 2025, 30(21), 4198; https://doi.org/10.3390/molecules30214198 - 27 Oct 2025
Viewed by 216
Abstract
Basolite® F300 and synthetic nano-{Fe-BTC} MOFs, two iron-trimesate MOFs, have been investigated, demonstrating broad pH range adsorption for monomethylarsenate (MMA), cacodylic acid (DMAA), 4-aminophenylarsonate (ASA), and arsenate, while arsenite adsorption was notable at pH > 9.5. A similar uptake trend was found [...] Read more.
Basolite® F300 and synthetic nano-{Fe-BTC} MOFs, two iron-trimesate MOFs, have been investigated, demonstrating broad pH range adsorption for monomethylarsenate (MMA), cacodylic acid (DMAA), 4-aminophenylarsonate (ASA), and arsenate, while arsenite adsorption was notable at pH > 9.5. A similar uptake trend was found for both MOFs, with Basolite® F300 being the more effective given its higher porosity and greater surface area. Pseudo-second-order kinetic models were followed by MMA, DMAA, ASA, and As(V), suggesting a chemisorption mechanism with arsenic species diffusion into MOF pores as the controlling step. Equilibrium data for DMAA and ASA fit the Langmuir model whereas MMA adsorption fits the Redlich–Peterson model. The uptake of MMA, DMAA, and ASA by both Fe-MOFs is mainly attributed to their coordination with Fe(III). Aromatic units in ASA enhance adsorption through П-П stacking interactions. The competition between all arsenic species for the sorption sites of the Fe-MOFs led to an uptake decrease of 10% for MMA and ASA and higher than 30% for DMAA and As(V) with respect to the individual uptakes. The Fe-MOFs can be reused for four cycles by washing with acidic methanol. Basolite® F300 and synthetic nano-{Fe-BTC} effectively removed organic and inorganic arsenic species, exhibiting rapid adsorption, selective uptake, stability, and easy regeneration. Full article
Show Figures

Figure 1

14 pages, 1527 KB  
Article
The Effect of the Metal Impurities on the Stability, Chemical, and Sensing Properties of MoSe2 Surfaces
by Danil W. Boukhvalov, Murat K. Rakhimzhanov, Aigul Shongalova, Abay S. Serikkanov, Nikolay A. Chuchvaga and Vladimir Yu. Osipov
Surfaces 2025, 8(3), 56; https://doi.org/10.3390/surfaces8030056 - 5 Aug 2025
Cited by 3 | Viewed by 701
Abstract
In this study, we present a comprehensive theoretical analysis of modifications in the physical and chemical properties of MoSe2 upon the introduction of substitutional transition metal impurities, specifically, Ti, V, Cr, Fe, Co, Ni, Cu, W, Pd, and Pt. Wet systematically calculated [...] Read more.
In this study, we present a comprehensive theoretical analysis of modifications in the physical and chemical properties of MoSe2 upon the introduction of substitutional transition metal impurities, specifically, Ti, V, Cr, Fe, Co, Ni, Cu, W, Pd, and Pt. Wet systematically calculated the adsorption enthalpies for various representative analytes, including O2, H2, CO, CO2, H2O, NO2, formaldehyde, and ethanol, and further evaluated their free energies across a range of temperatures. By employing the formula for probabilities, we accounted for the competition among molecules for active adsorption sites during simultaneous adsorption events. Our findings underscore the importance of integrating temperature effects and competitive adsorption dynamics to predict the performance of highly selective sensors accurately. Additionally, we investigated the influence of temperature and analyte concentration on sensor performance by analyzing the saturation of active sites for specific scenarios using Langmuir sorption theory. Building on our calculated adsorption energies, we screened the catalytic potential of doped MoSe2 for CO2-to-methanol conversion reactions. This paper also examines the correlations between the electronic structure of active sites and their associated sensing and catalytic capabilities, offering insights that can inform the design of advanced materials for sensors and catalytic applications. Full article
Show Figures

Graphical abstract

22 pages, 4961 KB  
Article
Dry Carbonate Sorbents for CO2 Capture from Flue Gases: Role of Support in Adsorption Efficiency and Thermal Stability
by Bolatbek Khussain, Alexandr Sass, Alexandr Brodskiy, Murat Zhurinov, Ivan Torlopov, Kenzhegul Rakhmetova, Daulet Zhumadullaev, Yerzhan Boleubayev, Atabek Khussain, Abzal Kenessary, Adel Sarsenova and Tumen Darzhokov
Molecules 2025, 30(13), 2859; https://doi.org/10.3390/molecules30132859 - 4 Jul 2025
Viewed by 877
Abstract
This study presents the results of an investigation of carbonate-containing sorbents for CO2 capture with natural support materials—kaolin and calcium carbonate—at various loadings of the active phase of Na2CO3. The effects of the support type on the distribution [...] Read more.
This study presents the results of an investigation of carbonate-containing sorbents for CO2 capture with natural support materials—kaolin and calcium carbonate—at various loadings of the active phase of Na2CO3. The effects of the support type on the distribution of the active component, phase composition, and pore structure of the sorbents were studied. It was found that a Na2CO3 loading of 25 wt.% provides the best balance between sorption capacity and technological feasibility. The thermal stability and regeneration capacity of the sorbents were evaluated under high-temperature conditions, revealing high thermal stability of the Na2CO3/CaCO3 system up to 1000 °C, along with its durability over multiple adsorption–desorption cycles. Kinetic studies on the Na2CO3/CaCO3 sorbent using the shrinking core model demonstrated that the overall CO2 chemisorption process is controlled by surface chemical reaction at temperatures below 50 °C. The obtained results demonstrate the high potential of CaCO3-based sorbents for practical applications in low-temperature CO2 capture technologies. A promising direction for the use of such sorbents within CCUS is the development of integrated systems, where CO2 capture is combined with its conversion into valuable products (e.g., methane, methanol, formic acid) through catalytic processes. Full article
(This article belongs to the Special Issue Novel Adsorbents for Environmental Pollutants' Removal)
Show Figures

Graphical abstract

34 pages, 2339 KB  
Review
Process Intensification for CO2 Hydrogenation to Liquid Fuels
by Simona Renda and Miguel Menéndez
Catalysts 2025, 15(6), 509; https://doi.org/10.3390/catal15060509 - 22 May 2025
Viewed by 1916
Abstract
Liquid fuels obtained from CO2 and green hydrogen (i.e., e-fuels) are powerful tools for decarbonizing economy. Improvements provided by Process Intensification in the existing conventional reactors aim to decrease energy consumption, increase yield, and ensure more compact and safe processes. This review [...] Read more.
Liquid fuels obtained from CO2 and green hydrogen (i.e., e-fuels) are powerful tools for decarbonizing economy. Improvements provided by Process Intensification in the existing conventional reactors aim to decrease energy consumption, increase yield, and ensure more compact and safe processes. This review describes the advances in the production of methanol, dimethyl ether, and hydrocarbons by Fischer–Tropsch using different Process Intensification tools, mainly membrane reactors, sorption-enhanced reactors, and structured reactors. Due to the environmental interest, this review article focused on discussing methanol and dimethyl ether synthesis from CO2 + H2, which also represented the most innovative approach. The use of syngas (CO + H2) is generally preferred for the Fischer–Tropsch process; hence, studies examining this process were included in the present review. Both mathematical models and experimental results are discussed. Achievements in the improvement of catalytic reactor performance are described. Experimental results in membrane reactors show increased performance in e-fuels production compared to the conventional packed bed reactor. The combination of sorption and reaction also increases the single-pass conversion and yield, although this improvement is limited by the saturation capacity of the sorbent in most cases. Full article
(This article belongs to the Special Issue Fluidizable Catalysts for Novel Chemical Processes)
Show Figures

Graphical abstract

20 pages, 2754 KB  
Article
Techno-Economic Analysis of a Supercritical Gas Turbine Energy System Fueled by Methanol and Upgraded Biogas
by Hossein Madi, Claude Biever, Chiara Berretta, Yashar S. Hajimolana and Tilman Schildhauer
Energies 2025, 18(7), 1651; https://doi.org/10.3390/en18071651 - 26 Mar 2025
Cited by 2 | Viewed by 1088
Abstract
The HERMES project investigates the utilization of surplus wind and solar energy to produce renewable fuels such as hydrogen, methane, and methanol for seasonal storage, thereby supporting carbon neutrality and the energy transition. This initiative aims to create a closed-loop, zero-emission energy system [...] Read more.
The HERMES project investigates the utilization of surplus wind and solar energy to produce renewable fuels such as hydrogen, methane, and methanol for seasonal storage, thereby supporting carbon neutrality and the energy transition. This initiative aims to create a closed-loop, zero-emission energy system with efficiencies of up to 65%, employing a low-pressure (≤30 bar) synthesis process—specifically, sorption-enhanced methanol synthesis—integrated into the power system. Excess renewable electricity is harnessed for chemical synthesis, beginning with electrolysis to generate hydrogen, which is then converted into methanol using CO2 sourced from a biogas plant. This methanol, biomethane, or a hybrid fuel blend powers a supercritical gas turbine, providing a flexible and reliable energy supply. Optimization analysis indicates that a combined wind and photovoltaic system can meet 62% of electricity demand, while the proposed storage system can handle over 90%. Remarkably, liquid methanol storage requires a compact 313 m3 tank, significantly smaller than storage requirements for hydrogen or methane in gas form. The project entails a total investment of 105 M EUR and annual operation and maintenance costs of 3.1 M EUR, with the levelized cost of electricity expected to decrease by 43% in the short term and 69% in the long term as future investment costs decline. Full article
(This article belongs to the Special Issue Green Hydrogen Energy Production)
Show Figures

Figure 1

21 pages, 6957 KB  
Article
Thermodynamic Evaluation of the Potential of a Sorption Storage System for Renewables and Waste Heat Integration
by Matteo Ametta, Gaetano Maggio and Salvatore Vasta
Appl. Sci. 2025, 15(4), 1951; https://doi.org/10.3390/app15041951 - 13 Feb 2025
Cited by 1 | Viewed by 1124
Abstract
This work investigates the potential of a sorption-based thermal energy storage (TES) system for enhancing the integration of renewable energy and waste heat recovery in key sectors—industry, transport, and buildings. Sorption-based TES systems, which utilize reversible sorbent–sorbate reactions to store and release thermal [...] Read more.
This work investigates the potential of a sorption-based thermal energy storage (TES) system for enhancing the integration of renewable energy and waste heat recovery in key sectors—industry, transport, and buildings. Sorption-based TES systems, which utilize reversible sorbent–sorbate reactions to store and release thermal energy, offer long-term storage capabilities with minimal losses. In particular, the aim of the study is to evaluate the efficiency of an adsorption TES system for various working pairs under different operating conditions, by means of a thermodynamic model (supported by experimental data). Key findings demonstrate that water-based solutions (e.g., zeolite and silica gel composites) perform well for residential and transport applications, while methanol-based solutions, such as LiCl-silica/methanol, maintain higher efficiency in industrial contexts. Short-term storage shows higher energy efficiencies compared to long-term applications, and the choice of working pairs significantly influences performance. Industrial applications face unique challenges due to extreme operating conditions, limiting the viable solutions to water-based working pairs. This research highlights the capability of sorption-based TES systems to reduce greenhouse gas emissions, improve energy efficiency, and facilitate a transition to sustainable energy practices. The findings contribute to developing cost-effective and reliable solutions for energy storage and renewable integration in various applications. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

13 pages, 5661 KB  
Article
New Insights into ZIF-90 Synthesis
by Jan Marčec, Alenka Ristić and Nataša Zabukovec Logar
Molecules 2024, 29(16), 3731; https://doi.org/10.3390/molecules29163731 - 6 Aug 2024
Cited by 3 | Viewed by 4109
Abstract
Zeolitic imidazolate frameworks (ZIFs) are traditionally synthesized using N, N-dimethylformamide (DMF). However, DMF is toxic and hazardous to human health and the environment, hence other alternative solvents need to be considered. Herein, three different solvents like methanol, water and acetone were used to [...] Read more.
Zeolitic imidazolate frameworks (ZIFs) are traditionally synthesized using N, N-dimethylformamide (DMF). However, DMF is toxic and hazardous to human health and the environment, hence other alternative solvents need to be considered. Herein, three different solvents like methanol, water and acetone were used to replace DMF and to explore the syntheses of ZIF-90 using a conventional and a microwave-assisted solvothermal method to obtain hydrothermally stable products, which also exhibit an increased water uptake. Pure ZIF-90 was synthesized under ambient pressure at 60 °C for 90 min using the conventional solvothermal method in an acetone–water solution, while under microwave irradiation it was formed in only 5 min at 80 °C. Altering methanol, water and acetone in the reaction mixture significantly affected the structural and water adsorption properties of ZIF-90s, which were monitored via PXRD, TGA, nitrogen and water sorption, and SEM. The highly efficient, less toxic, low-cost and activation-free microwave synthesis resulted in the formation of ZIF-90 nanoparticles that exhibited the highest maximum water adsorption capacity (0.37 g/g) and the best hydrothermal stability between water adsorption at 30 °C and desorption at 100 °C at 12.5 mbar among all the products obtained. Full article
(This article belongs to the Special Issue Recent Advances in Metal–Organic Frameworks)
Show Figures

Figure 1

18 pages, 2366 KB  
Article
Dependence of the Fluidizing Condition on Operating Parameters for Sorption-Enhanced Methanol Synthesis Catalyst and Adsorbent
by Simona Renda, Javier Lasobras, Jaime Soler, Javier Herguido and Miguel Menéndez
Catalysts 2024, 14(7), 432; https://doi.org/10.3390/catal14070432 - 7 Jul 2024
Cited by 2 | Viewed by 1867
Abstract
The fluidization of two different solids was investigated by varying the temperature and pressure conditions and the fluidizing gas. The solids are a novel catalyst and a water sorbent that could be used to perform sorption-enhanced methanol synthesis; the operating conditions were selected [...] Read more.
The fluidization of two different solids was investigated by varying the temperature and pressure conditions and the fluidizing gas. The solids are a novel catalyst and a water sorbent that could be used to perform sorption-enhanced methanol synthesis; the operating conditions were selected accordingly to this process. The aim of this investigation was to find an expression for predicting the minimum fluidization conditions of a methanol synthesis catalyst and an adsorbent in the presence of their process stream and operating conditions. The findings of this study highlighted how umf (STP) decreases with a rise in temperature and increases with a rise in pressure, according to other works in the literature with different solids. Furthermore, the type of gas was found to influence the minimum fluidization velocity significantly. The experimental results agreed well with a theoretical expression of the minimum fluidization velocity adjusted for temperature, pressure, and viscosity. The choice of the expression for viscosity calculation in the case of gas mixtures was found to be of key importance. These results will be useful for researchers aiming to calculate the minimum fluidization velocity of a catalyst or other solids under reaction conditions using results obtained at ambient conditions with air or inert gas. Full article
(This article belongs to the Special Issue Fluidizable Catalysts for Novel Chemical Processes)
Show Figures

Graphical abstract

17 pages, 3523 KB  
Article
A Preliminary Assessment of Sorption-Enhanced Methanol Synthesis in a Fluidized Bed Reactor with Selective Addition/Removal of the Sorbent
by Miguel Menéndez, Raúl Ciércoles, Javier Lasobras, Jaime Soler and Javier Herguido
Catalysts 2024, 14(7), 409; https://doi.org/10.3390/catal14070409 - 28 Jun 2024
Cited by 6 | Viewed by 1968
Abstract
Methanol synthesis from CO2 can be made in the presence of a sorbent to increase the achievable yield. If the fresh sorbent is continuously fed to a fluidized bed and separated from the catalyst bed by segregation, a steady-state operation can be [...] Read more.
Methanol synthesis from CO2 can be made in the presence of a sorbent to increase the achievable yield. If the fresh sorbent is continuously fed to a fluidized bed and separated from the catalyst bed by segregation, a steady-state operation can be achieved. The objective of the present work is to provide insight on the suitable operating conditions for such a fluidized bed reactor system. For this, a conventional CuO/ZnO/Al2O3 was selected as the catalyst, and the SiOLITE® zeolite was selected as the sorbent. Different particle sizes were used to be tested in various proportions to perform the fluidized bed segregation study. The fluid dynamics and segregation of the catalyst–sorbent binary mixtures were the most critical points in the development of this proof of concept. A good bed segregation with a mixing index of 0.31 was achieved. This fact favors the correct operation of the system with the continuous addition of adsorbent, which had hardly any catalyst losses during the tests carried out, achieving a loss of 0.005 g/min under optimal conditions. Continuous feeding and removal of sorbent with a low loss of catalyst was observed. Reactor simulations with MATLAB provided promising results, indicating that the addition of sorbent considerably improves the methanol yield under some operating conditions. This makes it more viable for industrial scaling, since it allows us to considerably reduce the pressure used in the methanol synthesis process or to increase the yield per step, reducing the recirculation of unconverted reactants. Full article
(This article belongs to the Special Issue Fluidizable Catalysts for Novel Chemical Processes)
Show Figures

Graphical abstract

19 pages, 3738 KB  
Article
Green Foaming of Biologically Extracted Chitin Hydrogels Using Supercritical Carbon Dioxide for Scaffolding of Human Osteoblasts
by Mariana Quintana-Quirino, Adriana Hernández-Rangel, Phaedra Silva-Bermudez, Julieta García-López, Víctor Manuel Domínguez-Hernández, Victor Manuel Araujo Monsalvo, Miquel Gimeno and Keiko Shirai
Polymers 2024, 16(11), 1569; https://doi.org/10.3390/polym16111569 - 1 Jun 2024
Cited by 3 | Viewed by 1231
Abstract
Chitin is a structural polysaccharide abundant in the biosphere. Chitin possesses a highly ordered crystalline structure that makes its processing a challenge. In this study, chitin hydrogels and methanogels, prepared by dissolution in calcium chloride/methanol, were subjected to supercritical carbon dioxide (scCO2 [...] Read more.
Chitin is a structural polysaccharide abundant in the biosphere. Chitin possesses a highly ordered crystalline structure that makes its processing a challenge. In this study, chitin hydrogels and methanogels, prepared by dissolution in calcium chloride/methanol, were subjected to supercritical carbon dioxide (scCO2) to produce porous materials for use as scaffolds for osteoblasts. The control of the morphology, porosity, and physicochemical properties of the produced materials was performed according to the operational conditions, as well as the co-solvent addition. The dissolution of CO2 in methanol co-solvent improved the sorption of the compressed fluid into the hydrogel, rendering highly porous chitin scaffolds. The chitin crystallinity index significantly decreased after processing the hydrogel in supercritical conditions, with a significant effect on its swelling capacity. The use of scCO2 with methanol co-solvent resulted in chitin scaffolds with characteristics adequate to the adhesion and proliferation of osteoblasts. Full article
(This article belongs to the Special Issue Synthesis, Characterization and Applications of Natural Polymers)
Show Figures

Figure 1

13 pages, 2308 KB  
Article
Influence of Process Parameters on the Efficiency of Pervaporation Pilot ECO-001 Plant for Raw Ethanol Dehydration
by Anna Kujawska, Wojciech Kujawski, Wiesław Capała, Urszula Kiełkowska, Marek Plesnar and Joanna Kujawa
Membranes 2024, 14(4), 90; https://doi.org/10.3390/membranes14040090 - 14 Apr 2024
Cited by 4 | Viewed by 2862
Abstract
Pervaporation is a membrane-based process used for the separation of liquid mixtures. As this membrane process is governed by the differences in the sorption and diffusivities of separated components, close boiling mixtures and azeotropic mixtures can effectively be separated. The dehydration of ethanol [...] Read more.
Pervaporation is a membrane-based process used for the separation of liquid mixtures. As this membrane process is governed by the differences in the sorption and diffusivities of separated components, close boiling mixtures and azeotropic mixtures can effectively be separated. The dehydration of ethanol is the most common application of hydrophilic pervaporation. The pilot scale properties of hydrophilic composite poly(vinyl alcohol) PVA membrane (PERVAPTM 2200) in contact with wet raw bioethanol are presented. The wet raw bioethanol was composed of ethanol (82.4–89.6 wt%), water (5.9–8.5 wt%), methanol (2.3–6.9 wt%), cyclohexane (0.2–2.4 wt%), higher alcohols (0.2–1.3 wt%), and acetaldehyde (0.004–0.030 wt%). All experiments were performed using a SULZER ECO-001 plant equipped with a 1.5 m2 membrane module. The efficiency of the dehydration process (i.e., membrane selectivity, permeate flux, degree of dehydration) was discussed as a function of the following parameters: the feed temperature, the feed composition, and the feed flow rate through the module. It was found that the low feed flow rate influenced the dehydration efficiency as the enthalpy of evaporation caused a high temperature drop in the module (around 25 °C at a feed flow rate equal to 5 kg h−1). The separation coefficient during pervaporation was in the range of 600–1200, depending on the feed composition. The increase in temperature augmented the permeation flux and shortened the time needed to reach the assumed level of dehydration. It was revealed that dehydration by pervaporation using ECO-001 pilot plant is an efficient process, allowing also to investigate the influence of various parameters on the process efficiency. Full article
(This article belongs to the Section Membrane Processing and Engineering)
Show Figures

Figure 1

24 pages, 6841 KB  
Article
Biodiesel Production by Methanolysis of Rapeseed Oil—Influence of SiO2/Al2O3 Ratio in BEA Zeolite Structure on Physicochemical and Catalytic Properties of Zeolite Systems with Alkaline Earth Oxides (MgO, CaO, SrO)
by Łukasz Szkudlarek, Karolina Chałupka-Śpiewak, Waldemar Maniukiewicz, Magdalena Nowosielska, Małgorzata Iwona Szynkowska-Jóźwik and Paweł Mierczyński
Int. J. Mol. Sci. 2024, 25(7), 3570; https://doi.org/10.3390/ijms25073570 - 22 Mar 2024
Cited by 6 | Viewed by 1937
Abstract
Alkaline earth metal oxide (MgO, CaO, SrO) catalysts supported on BEA zeolite were prepared by a wet impregnation method and tested in the transesterification reaction of rapeseed oil with methanol towards the formation of biodiesel (FAMEs—fatty acid methyl esters). To assess the influence [...] Read more.
Alkaline earth metal oxide (MgO, CaO, SrO) catalysts supported on BEA zeolite were prepared by a wet impregnation method and tested in the transesterification reaction of rapeseed oil with methanol towards the formation of biodiesel (FAMEs—fatty acid methyl esters). To assess the influence of the SiO2/Al2O3 ratio on the catalytic activity in the tested reaction, a BEA zeolite carrier material with different Si/Al ratios was used. The prepared catalysts were tested in the transesterification reaction at temperatures of 180 °C and 220 °C using a molar ratio of methanol/oil reagents of 9:1. The transesterification process was carried out for 2 h with the catalyst mass of 0.5 g. The oil conversion value and efficiency towards FAME formation were determined using the HPLC technique. The physicochemical properties of the catalysts were determined using the following research techniques: CO2-TPD, XRD, BET, FTIR, and SEM-EDS. The results of the catalytic activity showed that higher activity in the tested process was confirmed for the catalysts supported on the BEA zeolite characterized by the highest silica/alumina ratio for the reaction carried out at a temperature of 220 °C. The most active zeolite catalyst was the 10% CaO/BEA system (Si/Al = 300), which showed the highest triglyceride (TG) conversion of 90.5% and the second highest FAME yield of 94.6% in the transesterification reaction carried out at 220 °C. The high activity of this system is associated with its alkalinity, high value of the specific surface area, the size of the active phase crystallites, and its characteristic sorption properties in relation to methanol. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

14 pages, 3453 KB  
Article
Evaluation of the Hydrophilic/Hydrophobic Balance of 13X Zeolite by Adsorption of Water, Methanol, and Cyclohexane as Pure Vapors or as Mixtures
by Meryem Saidi, François Bihl, Olinda Gimello, Benoit Louis, Anne-Cécile Roger, Philippe Trens and Fabrice Salles
Nanomaterials 2024, 14(2), 213; https://doi.org/10.3390/nano14020213 - 18 Jan 2024
Cited by 8 | Viewed by 3724
Abstract
Adsorption isotherms of pure vapors and vapor mixtures of water, methanol, and cyclohexane were studied using a synthesized 13X zeolite (FAU topology), by means of a DVS gravimetric vapor analyzer. These results were validated by GCMC calculations. The surface chemistry of the adsorbent [...] Read more.
Adsorption isotherms of pure vapors and vapor mixtures of water, methanol, and cyclohexane were studied using a synthesized 13X zeolite (FAU topology), by means of a DVS gravimetric vapor analyzer. These results were validated by GCMC calculations. The surface chemistry of the adsorbent was characterized by the thermodesorption of ammonia, and its textural properties were studied using nitrogen physisorption. The 13X zeolite was found to be strongly acidic (BrØnsted acid sites, Si/Al = 1.3) and its specific surface area around 1100 m2·g−1. Water was found to be able to diffuse within both the supercages and the sodalite cavities of the FAU structure, whereas methanol and cyclohexane were confined in the supercages only. The water/methanol sorption selectivity of the 13X zeolite was demonstrated by co-adsorption measurements. The composition of the water/methanol adsorbed phase could be calculated by assuming IAST hypotheses. This model failed in the case of the water/cyclohexane co-adsorption system, which is in line with the non-miscibility of the components in the adsorbed state. The sorption isotherms could be successfully simulated, confirming the robustness of the forcefields used. The 13X zeolite confirmed its a priori expected hydrophilic nature, which is useful for the selective adsorption of water in a methanol–water vapor mixture. Full article
(This article belongs to the Special Issue Advanced Porous Nanomaterials: Synthesis, Properties, and Application)
Show Figures

Figure 1

20 pages, 1529 KB  
Article
Influence of Thermal and Chemical Treatment on Biosorbent from Rice Husk and Its Application in Removal of Resorcinol from Industrial Wastewater
by Salaha Saeed, Muhammad Yousaf Arshad, Ahsan Raza, Faisal Mahmood, Agnieszka Urbanowska, Anam Suhail Ahmed and Lukasz Niedzwiecki
Processes 2023, 11(12), 3344; https://doi.org/10.3390/pr11123344 - 30 Nov 2023
Cited by 11 | Viewed by 2351
Abstract
The removal of phenolic compounds is of great importance because of their toxic nature and potentially harmful effects on the environment and human health. This study examines the use of rice husk as a biosorbent for eliminating phenolic compounds, particularly resorcinol, from industrial [...] Read more.
The removal of phenolic compounds is of great importance because of their toxic nature and potentially harmful effects on the environment and human health. This study examines the use of rice husk as a biosorbent for eliminating phenolic compounds, particularly resorcinol, from industrial wastewater. Three types of rice husk, namely raw rice husk (RRH), chemically treated rice husk (CTRH), and thermally treated rice husk (TTRH), are utilized after grinding and methanol treatment. Characterization techniques including X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and optical microscopy are used to analyze the rice husk-based adsorbents. The microscopic analysis reveals the presence of nano-pores in TTRH and the existence of carbonyl and hydroxyl groups in all sorbent samples. XRD analysis confirms the presence of silica in biosorbents. This study also examines the influence of dosage and initial concentration on resorcinol sorption. Optimized dosages of 0.5 g (RRH), 0.5 g (CTRH), and 1.5 g (TTRH) result in sorption capacities of 14 mg/g (RRH), 11 mg/g (CTRH), and 5 mg/g (TTRH). Isotherm analysis indicates that the Langmuir isotherm best describes the sorption behavior of TTRH, while the Freundlich isotherm is observed for CTRH, and both RRH and CTRH follow the Temkin isotherm. Full article
Show Figures

Figure 1

41 pages, 12406 KB  
Review
Integration of CO2 Capture and Conversion by Employing Metal Oxides as Dual Function Materials: Recent Development and Future Outlook
by Wei Jie Tan and Poernomo Gunawan
Inorganics 2023, 11(12), 464; https://doi.org/10.3390/inorganics11120464 - 30 Nov 2023
Cited by 7 | Viewed by 4676
Abstract
To mitigate the effect of CO2 on climate change, significant efforts have been made in the past few decades to capture CO2, which can then be further sequestered or converted into value-added compounds, such as methanol and hydrocarbons, by using [...] Read more.
To mitigate the effect of CO2 on climate change, significant efforts have been made in the past few decades to capture CO2, which can then be further sequestered or converted into value-added compounds, such as methanol and hydrocarbons, by using thermochemical or electrocatalytic processes. However, CO2 capture and conversion have primarily been studied independently, resulting in individual processes that are highly energy-intensive and less economically viable due to high capital and operation costs. To enhance the overall process efficiency, integrating CO2 capture and conversion into a single system offers an opportunity for a more streamlined process that can reduce energy and capital costs. This strategy can be achieved by employing dual function materials (DFMs), which possess the unique capability to simultaneously adsorb and convert CO2. These materials combine basic metal oxides with active metal catalytic sites that enable both sorption and conversion functions. In this review paper, we focus on the recent strategies that utilize mixed metal oxides as DFMs. Their material design and characteristics, reaction mechanisms, as well as performance and limitations will be discussed. We will also address the challenges associated with this integrated system and attempt to provide insights for future research endeavors. Full article
(This article belongs to the Special Issue 10th Anniversary of Inorganics: Inorganic Materials)
Show Figures

Figure 1

Back to TopTop