Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = metamorphic effects of power

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 5432 KiB  
Communication
CSAMT-Driven Feasibility Assessment of Beishan Underground Research Laboratory
by Zhiguo An, Qingyun Di, Changmin Fu and Zhongxing Wang
Sensors 2025, 25(14), 4282; https://doi.org/10.3390/s25144282 - 9 Jul 2025
Viewed by 257
Abstract
The safe disposal of high-level radioactive waste (HLW) is imperative for sustaining China’s rapidly expanding nuclear power sector, with deep geological repositories requiring rigorous site evaluation via underground research laboratories (URLs). This study presents a controlled-source audio-frequency magnetotellurics (CSAMT) survey at the Xinchang [...] Read more.
The safe disposal of high-level radioactive waste (HLW) is imperative for sustaining China’s rapidly expanding nuclear power sector, with deep geological repositories requiring rigorous site evaluation via underground research laboratories (URLs). This study presents a controlled-source audio-frequency magnetotellurics (CSAMT) survey at the Xinchang site in China’s Beishan area, a region dominated by high-resistivity metamorphic rocks. To overcome electrical data acquisition challenges in such resistive terrains, salt-saturated water was applied to transmitting and receiving electrodes to enhance grounding efficiency. Using excitation frequencies of 9600 Hz to 1 Hz, the survey achieved a 1000 m investigation depth. Data processing incorporated static effect removal via low-pass filtering and smoothness-constrained 2D inversion. The results showed strong consistency between observed and modeled data, validating inversion reliability. Borehole correlations identified a 600-m-thick intact rock mass, confirming favorable geological conditions for URL construction. The study demonstrates CSAMT’s efficacy in characterizing HLW repository sites in high-resistivity environments, providing critical geophysical insights for China’s HLW disposal program. These findings advance site evaluation methodologies for deep geological repositories, though integrated multidisciplinary assessments remain essential for comprehensive site validation. This work underscores the feasibility of the Xinchang site while establishing a technical framework that is applicable to analogous challenging terrains globally. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

20 pages, 10810 KiB  
Article
Design and Simulation of Portable Paving Vehicle for Straw Checkerboard Barriers
by Zuntao Peng, Mingrun Jia, Jingrong Fang and Feng Jiang
Machines 2024, 12(12), 835; https://doi.org/10.3390/machines12120835 - 22 Nov 2024
Viewed by 1006
Abstract
Paving straw checkerboard barriers in the desert is an efficient measure of wind break and sand fixation. Generally, straw checkerboard barriers are paved manually. Focusing on the low automation level of straw checkerboard barrier paving, a portable paving vehicle for straw checkerboard barriers [...] Read more.
Paving straw checkerboard barriers in the desert is an efficient measure of wind break and sand fixation. Generally, straw checkerboard barriers are paved manually. Focusing on the low automation level of straw checkerboard barrier paving, a portable paving vehicle for straw checkerboard barriers was designed in this paper. First, the portable paving vehicle for straw checkerboard barriers was designed using SolidWorks, and the design contents include a grass insertion mechanism, an intermittent transmission mechanism, a metamorphic mechanism, and motor and power supply. Then, the load test of the grass insertion mechanism was carried out to determine the maximum force load of 25 N during the grass insertion process, and the strength of the rocker and the horizontal slide rod were checked. Among them, the safety factor of the rocker rod and the horizontal slide rod were 1 and 1.5, respectively, and the allowable stress of the rocker rod and the horizontal slide rod was 27.3 MPa and 205 MPa. The maximum stresses of 0.92 MPa and 67 MPa were less than the allowable stresses, which meet the strength requirements. In order to verify the design principle and the results of the strength check, the grass insertion mechanism, rocker, and horizontal slide rod were analyzed by using ABAQUS. The results show that the grass insertion mechanism has an obvious rapid return characteristic, which is in agreement with the design principle. At the same time, the maximum stress of the rocker rod and the horizontal slide rod was 1 MPa and 36 MPa, respectively, which meets the strength requirements. Finally, the physical prototype was manufactured and its running state was verified. The results show that the physical prototype can pave the straw checkerboard sand barrier on the sand normally, and the portable paving vehicle for straw checkerboard barriers can be a reference for other sand-control vehicles and provide an effective way of paving straw checkerboard barriers to control desertification. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

15 pages, 14513 KiB  
Article
Fractal Analysis of Polarizability in Graphite Deposits: Methodological Integration for Geological Prediction and Exploration Efficiency
by Yuqi Liang, Qinglin Xia, Kenan Jiang and Ercheng Pang
Fractal Fract. 2024, 8(4), 198; https://doi.org/10.3390/fractalfract8040198 - 29 Mar 2024
Viewed by 1349
Abstract
Most geophysical and geochemical data are commonly acknowledged to exhibit fractal and multifractal properties, but the fractal characteristics of polarizability have received limited attention from the literature. The present study demonstrates that the polarizability data of the graphite deposits have fractal characteristics and [...] Read more.
Most geophysical and geochemical data are commonly acknowledged to exhibit fractal and multifractal properties, but the fractal characteristics of polarizability have received limited attention from the literature. The present study demonstrates that the polarizability data of the graphite deposits have fractal characteristics and introduces the fractal method for its quantitative analysis to indicate and predict the properties of graphite deposits. The results show that the concentration-area (C-A) method is superior to classical interpolation in anomaly extraction but inferior to the spectrum-area (S-A) method in the coverage region. Because the type of graphite ore is sedimentary-metamorphic in this area, the graphite ore-bodies can be regarded as a special stratum, which is different from most metal deposits, and the anomaly of graphite ore are shown in the background mode of the S-A method. The high values of the background mode effectively indicate the potential areas where the graphite-bearing strata occur, while observing a decrease in the power-law exponent (β) of the background mode as the width of ore-bodies increases. The validity of this conclusion was confirmed based on the vertical profiles of the predicted area, and the uncharted ore vein was thereby identified. Furthermore, it was found that the anomaly mode can serve as a grade indicator of graphite ore rather than delineating the fault. By integrating the background and anomaly modes of the S-A method, we can quantitatively predict and effectively identify high-grade targets from sedimentary deposits containing minerals in future exploration. Full article
(This article belongs to the Special Issue Fractal Analysis and Its Applications in Geophysical Science)
Show Figures

Figure 1

19 pages, 6656 KiB  
Article
Development and Application of a New Exponential Model for Hydraulic Conductivity with Depth of Rock Mass
by Zhi Dou, Xin Huang, Weifeng Wan, Feng Zeng and Chaoqi Wang
Water 2024, 16(5), 778; https://doi.org/10.3390/w16050778 - 5 Mar 2024
Cited by 1 | Viewed by 1978
Abstract
Hydraulic conductivity generally decreases with depth in the Earth’s crust. The hydraulic conductivity–depth relationship has been assessed through mathematical models, enabling predictions of hydraulic conductivity in depths beyond the reach of direct measurements. However, it is observed that beyond a certain depth, hydraulic [...] Read more.
Hydraulic conductivity generally decreases with depth in the Earth’s crust. The hydraulic conductivity–depth relationship has been assessed through mathematical models, enabling predictions of hydraulic conductivity in depths beyond the reach of direct measurements. However, it is observed that beyond a certain depth, hydraulic conductivity tends to stabilize; this phenomenon cannot be effectively characterized by the previous models. Thus, these models may make inaccurate predictions at deeper depths. In this work, we introduce an innovative exponential model to effectively assess the conductivity–depth relationship, particularly addressing the stabilization at greater depths. This model, in comparison with an earlier power-like model, has been applied to a globally sourced dataset encompassing a range of lithologies and geological structures. Results reveal that the proposed exponential model outperforms the power-like model in correctly representing the stabilized conductivity, and it well captures the fast stabilization effect of multiple datasets. Further, the proposed model has been utilized to analyze three distinct groups of datasets, revealing how lithology, geological stabilization, and faults impact the conductivity–depth relationship. The hydraulic conductivity decays to the residual hydraulic conductivity in the order (fast to slow): metamorphic rocks, sandstones, igneous rock, mudstones. The mean hydraulic conductivity in stable regions is roughly an order of magnitude lower than unstable regions. The faults showcase a dual role in both promoting and inhibiting hydraulic conductivity. The new exponential model has been successfully applied to a dataset from a specific engineering site to make predictions, demonstrating its practical usage. In the future, this model may serve as a potential tool for groundwater management, geothermal energy collection, pollutant transport, and other engineering projects. Full article
Show Figures

Figure 1

31 pages, 6020 KiB  
Review
New Era of Electroceuticals: Clinically Driven Smart Implantable Electronic Devices Moving towards Precision Therapy
by RaviPrakash Magisetty and Sung-Min Park
Micromachines 2022, 13(2), 161; https://doi.org/10.3390/mi13020161 - 22 Jan 2022
Cited by 21 | Viewed by 7367
Abstract
In the name of electroceuticals, bioelectronic devices have transformed and become essential for dealing with all physiological responses. This significant advancement is attributable to its interdisciplinary nature from engineering and sciences and also the progress in micro and nanotechnologies. Undoubtedly, in the future, [...] Read more.
In the name of electroceuticals, bioelectronic devices have transformed and become essential for dealing with all physiological responses. This significant advancement is attributable to its interdisciplinary nature from engineering and sciences and also the progress in micro and nanotechnologies. Undoubtedly, in the future, bioelectronics would lead in such a way that diagnosing and treating patients’ diseases is more efficient. In this context, we have reviewed the current advancement of implantable medical electronics (electroceuticals) with their immense potential advantages. Specifically, the article discusses pacemakers, neural stimulation, artificial retinae, and vagus nerve stimulation, their micro/nanoscale features, and material aspects as value addition. Over the past years, most researchers have only focused on the electroceuticals metamorphically transforming from a concept to a device stage to positively impact the therapeutic outcomes. Herein, the article discusses the smart implants’ development challenges and opportunities, electromagnetic field effects, and their potential consequences, which will be useful for developing a reliable and qualified smart electroceutical implant for targeted clinical use. Finally, this review article highlights the importance of wirelessly supplying the necessary power and wirelessly triggering functional electronic circuits with ultra-low power consumption and multi-functional advantages such as monitoring and treating the disease in real-time. Full article
(This article belongs to the Special Issue Smart Implants)
Show Figures

Figure 1

21 pages, 5149 KiB  
Review
Apatite U-Pb Thermochronology: A Review
by David M. Chew and Richard A. Spikings
Minerals 2021, 11(10), 1095; https://doi.org/10.3390/min11101095 - 5 Oct 2021
Cited by 55 | Viewed by 8247
Abstract
The temperature sensitivity of the U-Pb apatite system (350–570 °C) makes it a powerful tool to study thermal histories in the deeper crust. Recent studies have exploited diffusive Pb loss from apatite crystals to generate t-T paths between ~350–570 °C, by comparing apatite [...] Read more.
The temperature sensitivity of the U-Pb apatite system (350–570 °C) makes it a powerful tool to study thermal histories in the deeper crust. Recent studies have exploited diffusive Pb loss from apatite crystals to generate t-T paths between ~350–570 °C, by comparing apatite U-Pb ID-TIMS (isotope dilution-thermal ionisation mass spectrometry) dates with grain size or by LA-MC-ICP-MS (laser ablation-multicollector-inductively coupled plasma-mass spectrometry) age depth profiling/traverses of apatite crystals, and assuming the effective diffusion domain is the entire crystal. The key assumptions of apatite U-Pb thermochronology are discussed including (i) that Pb has been lost by Fickian diffusion, (ii) can experimental apatite Pb diffusion parameters be extrapolated down temperature to geological settings and (iii) are apatite grain boundaries open (i.e., is Pb lost to an infinite reservoir). Particular emphasis is placed on detecting fluid-mediated remobilisation of Pb, which invalidates assumption (i). The highly diverse and rock-type specific nature of apatite trace-element chemistry is very useful in this regard—metasomatic and low-grade metamorphic apatite can be easily distinguished from sub-categories of igneous rocks and high-grade metamorphic apatite. This enables reprecipitated domains to be identified geochemically and linked with petrographic observations. Other challenges in apatite U-Pb thermochronology are also discussed. An appropriate choice of initial Pb composition is critical, while U zoning remains an issue for inverse modelling of single crystal ID-TIMS dates, and LA-ICP-MS age traverses need to be integrated with U zoning information. A recommended apatite U-Pb thermochronology protocol for LA-MC-ICP-MS age depth profiling/traverses of apatite crystals and linked to petrographic and trace element information is presented. Full article
(This article belongs to the Special Issue Thermochronology at Temperatures Higher than 150 °C)
Show Figures

Figure 1

15 pages, 860 KiB  
Article
A Metamorphic Testing Approach for Assessing Question Answering Systems
by Kaiyi Tu, Mingyue Jiang and Zuohua Ding
Mathematics 2021, 9(7), 726; https://doi.org/10.3390/math9070726 - 28 Mar 2021
Cited by 11 | Viewed by 3062
Abstract
Question Answering (QA) enables the machine to understand and answer questions posed in natural language, which has emerged as a powerful tool in various domains. However, QA is a challenging task and there is an increasing concern about its quality. In this paper, [...] Read more.
Question Answering (QA) enables the machine to understand and answer questions posed in natural language, which has emerged as a powerful tool in various domains. However, QA is a challenging task and there is an increasing concern about its quality. In this paper, we propose to apply the technique of metamorphic testing (MT) to evaluate QA systems from the users’ perspectives, in order to help the users to better understand the capabilities of these systems and then to select appropriate QA systems for their specific needs. Two typical categories of QA systems, namely, the textual QA (TQA) and visual QA (VQA), are studied, and a total number of 17 metamorphic relations (MRs) are identified for them. These MRs respectively focus on some characteristics of different aspects of QA. We further apply MT to four QA systems (including two APIs from the AllenNLP platform, one API from the Transformers platform, and one API from CloudCV) by using all of the MRs. Our experimental results demonstrate the capabilities of the four subject QA systems from various aspects, revealing their strengths and weaknesses. These results further suggest that MT can be an effective method for assessing QA systems. Full article
(This article belongs to the Special Issue Mathematics in Software Reliability and Quality Assurance)
Show Figures

Figure 1

15 pages, 69 KiB  
Article
The Productive Uses of Conflict in Child Protection
by Doug Magnuson
Soc. Sci. 2014, 3(4), 672-686; https://doi.org/10.3390/socsci3040672 - 2 Oct 2014
Cited by 2 | Viewed by 4928
Abstract
Some child protection cases exemplify a certain kind of cooperative interdependence, a consequence of the ways in which practitioners and clients are entangled. Client and practitioner are “stuck” with each other and need each other to succeed. There is also an intrinsic power [...] Read more.
Some child protection cases exemplify a certain kind of cooperative interdependence, a consequence of the ways in which practitioners and clients are entangled. Client and practitioner are “stuck” with each other and need each other to succeed. There is also an intrinsic power imbalance that technique, ideology, and skill cannot hide and that has risks for the well-being and success of the practitioner-client relationship. There is also a risk to the practitioner of biases caused by successful influence. “Productive conflict,” defined as conflict under conditions of cooperative interdependence, may compensate for these challenges and lead to “integrative solutions.” In these cases the conflict itself is a kind of collaboration. Full article
(This article belongs to the Special Issue Contemporary Developments in Child Protection)
Back to TopTop