Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (327)

Search Parameters:
Keywords = metal drug interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 3847 KB  
Review
Lysosome as a Chemical Reactor
by Mahendiran Dharmasivam and Busra Kaya
Int. J. Mol. Sci. 2025, 26(23), 11581; https://doi.org/10.3390/ijms262311581 - 29 Nov 2025
Viewed by 62
Abstract
The lysosome is no longer viewed as a simple degradative “trash can” of the cell. The lysosome is not only degradative; its acidic, redox-active lumen also serves as a chemical “microreactor” that can modulate anticancer drug disposition and activation. This review examines how [...] Read more.
The lysosome is no longer viewed as a simple degradative “trash can” of the cell. The lysosome is not only degradative; its acidic, redox-active lumen also serves as a chemical “microreactor” that can modulate anticancer drug disposition and activation. This review examines how the distinctive chemical features of the lysosome, including its acidic pH (~4.5–5), strong redox gradients, limited thiol-reducing capacity, generation of reactive oxygen (ROS), diverse acid hydrolases, and reservoirs of metal ions, converge to influence the fate and activity of anticancer drugs. The acidic lumen promotes sequestration of weak-base drugs, which can reduce efficacy by trapping agents within a protective “safe house,” yet can also be harnessed for pH-responsive drug release. Lysosomal redox chemistry, driven by intralysosomal iron and copper, catalyzes Fenton-type ROS generation that contributes to oxidative damage and ferroptosis. The lysosome’s broad enzyme repertoire enables selective prodrug activation, such as through protease-cleavable linkers in antibody–drug conjugates, while its membrane transporters, particularly P-glycoprotein (Pgp), can sequester chemotherapies and promote multidrug resistance. Emerging therapeutic strategies exploit these processes by designing lysosomotropic drug conjugates, pH- and redox-sensitive delivery systems, and combinations that trigger lysosomal membrane permeabilization (LMP) to release trapped drugs. Acridine–thiosemicarbazone hybrids exemplify this approach by combining lysosomal accumulation with metal-based redox activity to overcome Pgp-mediated resistance. Advances in chemical biology, including fluorescent probes for pH, redox state, metals, and enzymes, are providing new insights into lysosomal function. Reframing the lysosome as a chemical reactor rather than a passive recycling compartment opens new opportunities to manipulate subcellular pharmacokinetics, improve drug targeting, and overcome therapeutic resistance in cancer. Overall, this review translates the chemical principles of the lysosome into design rules for next-generation, more selective anticancer strategies. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Graphical abstract

32 pages, 2610 KB  
Review
Recent Trends in the Design of Ruthenium Homometallic Polynuclear Complexes with Bioactive Ligands for Cancer Treatment
by Irena Kostova
Inorganics 2025, 13(12), 380; https://doi.org/10.3390/inorganics13120380 - 22 Nov 2025
Viewed by 344
Abstract
Significant efforts have been devoted to discovering novel metal-based complexes with better cytotoxicity and specificity to tumor cells. Within the range of complexes studied for cytotoxic activity, Ru complexes have gained significant attention as one of the most promising classes of compounds offering [...] Read more.
Significant efforts have been devoted to discovering novel metal-based complexes with better cytotoxicity and specificity to tumor cells. Within the range of complexes studied for cytotoxic activity, Ru complexes have gained significant attention as one of the most promising classes of compounds offering advantages such as good scaffolds for the construction of new bioactive molecules with a variety of ligands. Ruthenium-based compounds demonstrate efficient penetration into cancer cells and show affinity for DNA binding with antitumor mechanisms, other than those of cisplatin. They were identified as perfect chemotherapeutics for cancer treatment due to their good tolerance by normal cells, negligible toxic effects and stronger activity towards Pt-drug-resistant tumor cell lines. Ru-based complexes may interact with multiple targets and show selective accumulation in cancer cells, which enhances their therapeutic potential. In recent years, the design of polynuclear complexes has aroused considerable interest in drug discovery research. The strategy to incorporate two or more metal centers into one precise molecular structure may result in better cytotoxic activity compared to the mononuclear precursors. That is why ruthenium-based multinuclear anticancer organometallic and complex compounds have attracted lots of attention. The objective of the current review is to highlight the key results obtained in research on ruthenium complexes, presenting the up-to-date advances of multinuclear homometallic ruthenium complexes as promising anticancer candidates. The reported outcomes shed new light on the fundamental biological interactions and antineoplastic modes of action of ruthenium-based complexes and organometallic compounds as well as significant information for the prediction of novel anticancer drugs. Full article
Show Figures

Graphical abstract

34 pages, 10503 KB  
Article
Polymeric Nanoparticles with Surface-Anchored Functional Groups as Chelating Agents for Calcium (Ca2+) and Magnesium (Mg2+) Ions to Inhibit Cellular Interactions
by Lazaro Ruiz-Virgen, Juan Luis Salazar-García, Ismael Arturo Garduño-Wilches, Marlon Rojas-López, Gabriela Martínez-Mejía, Rubén Caro-Briones, Nadia A. Vázquez-Torres, Andrés Castell-Rodríguez, Hugo Martínez-Gutiérrez, José Manuel del Río and Mónica Corea
Pharmaceuticals 2025, 18(12), 1774; https://doi.org/10.3390/ph18121774 - 21 Nov 2025
Viewed by 392
Abstract
Background: Cancer therapeutics development has been a challenge in medical and scientific areas due to their toxicity, limited biocompatibility, and unfortunate side effects. However, despite advances in early detection and the study of novel treatments, the mortality rate for breast cancer remains high, [...] Read more.
Background: Cancer therapeutics development has been a challenge in medical and scientific areas due to their toxicity, limited biocompatibility, and unfortunate side effects. However, despite advances in early detection and the study of novel treatments, the mortality rate for breast cancer remains high, making it a significant global health concern. Objectives: In this study, poly(methyl methacrylate) (PMMA) nanoparticles functionalized with acrylic acid (AA), fumaramide (FA), and curcumin (CUR) as chelating and inhibitor agents were synthesized by emulsion polymerization techniques. Methods and Results: Comprehensive physiochemical characterization studies based on gravimetry, dynamic light scattering (DLS), electrophoresis, Fourier transform infrared (FT-IR), ultraviolet–visible (UV–Vis) and photoluminescence (PL) spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM) revealed a pH dependence of nanoparticles that exhibit structural changes upon interaction with calcium (Ca2+) and magnesium (Mg2+) ions. Calorimetric thermodynamic properties measured by isothermal titration calorimetry (ITC) confirmed chelating coordination and positive cooperativity between the nanoparticles and metal ions. In vitro studies showed the low cytotoxicity of nanoparticles by fibroblast proliferation, and their chelation process was observed by fluorescence microscopy, with the loss of interaction between cells. Conclusions: These results suggest that the functionalized nanoparticles have potential in drug delivery systems (DDS) for targeted breast cancer therapies, providing a promising polymer material for more efficient and less toxic treatments. Full article
Show Figures

Graphical abstract

12 pages, 1240 KB  
Article
Exploratory Toxicogenomic Analysis of Parasite-Related Th2 Immune Response
by Marina Ziliotto, José Artur Bogo Chies and Joel Henrique Ellwanger
Parasitologia 2025, 5(4), 58; https://doi.org/10.3390/parasitologia5040058 - 3 Nov 2025
Viewed by 287
Abstract
Helminth parasites infect mammalian hosts through complex life cycles, mostly triggering T helper type 2 (Th2) immune responses characterized by interleukin-4 (IL4), interleukin-5 (IL5), and interleukin-13 (IL13) production. Environmental chemical exposures may modulate these immune pathways, potentially affecting infection outcomes. Using The Comparative [...] Read more.
Helminth parasites infect mammalian hosts through complex life cycles, mostly triggering T helper type 2 (Th2) immune responses characterized by interleukin-4 (IL4), interleukin-5 (IL5), and interleukin-13 (IL13) production. Environmental chemical exposures may modulate these immune pathways, potentially affecting infection outcomes. Using The Comparative Toxicogenomics Database (CTD), we analyzed chemical–gene interactions affecting IL4, IL5, and IL13 genes to identify chemicals capable of modulating Th2 immunity and their associated expression profiles. Accordingly, a total of 818 chemicals can interact with IL4, IL5 and/or IL13, with 145 chemicals showing the potential of affecting all three genes. These 145 chemicals include air pollutants (8.3%), allergens (2.7%), bioactive molecules (8.3%), industry-related chemicals (14.5%), medicinal drugs (21.4%), metal and metal-containing chemicals (8.3%), pesticides (3.4%), plant compounds (12.4%), and others (20.7%). We observed a greater number of chemicals associated with increased (n = 95) gene expression compared to decreased (n = 14) gene expression, suggesting a Th2 pathway hyperactivation caused by chemicals capable of affecting IL4, IL5 and IL13. Eight classes of parasitic diseases were observed among chemical-associated conditions. Environmental chemicals extensively modulate Th2 immune responses through diverse molecular mechanisms. The trend concerning upregulation of Th2 pathways may enhance antiparasitic protection but, on the other hand, could predispose individuals to allergic diseases, among other Th2-related conditions. These exploratory findings suggest that chemical pollution may influence the susceptibility and pathogenesis of helminth infections and highlight the need for the incorporation of exposome-based approaches in parasitology research. Full article
Show Figures

Graphical abstract

31 pages, 5639 KB  
Review
Multifunctional Bio-Gels in Environmental Remediation: Current Advances and Future Perspectives
by Baolei Liu, Shixing Zhang, Lingfeng Zhao, Cunyou Zou and Jianlong Xiu
Gels 2025, 11(11), 864; https://doi.org/10.3390/gels11110864 - 28 Oct 2025
Viewed by 434
Abstract
Bio-gels are a class of functional polymeric materials with three-dimensional network structures. Their exceptional biocompatibility, biodegradability, high specific surface area, and tunable physicochemical properties make them highly promising for environmental remediation. This article systematically reviews the classification of bio-gels based on source, cross-linking [...] Read more.
Bio-gels are a class of functional polymeric materials with three-dimensional network structures. Their exceptional biocompatibility, biodegradability, high specific surface area, and tunable physicochemical properties make them highly promising for environmental remediation. This article systematically reviews the classification of bio-gels based on source, cross-linking mechanisms, and functional attributes. It also elaborates on their fundamental properties such as porous structure, high water absorbency, stimuli-responsiveness, and mechanical stability and examines how these properties influence their environmental remediation efficiency. This review comprehensively analyze the mechanisms and efficacy of bio-gels in adsorbing heavy metal ions, removing organic dyes, improving soil water retention, and restoring ecosystems. Special attention is given to the interactions between surface functional groups and contaminants, the role of porous structures in mass transfer, and the ecological effects within soil–plant systems. Additionally, this review explores extended applications of bio-gels in medical tissue engineering, controlled release of drugs and fertilizers, and enhanced oil recovery, highlighting their versatility as multifunctional materials. Finally, based on current progress and challenges, this review outline key future research directions. These include elucidating microscopic interaction mechanisms, developing low-cost renewable feedstocks, designing multi-stimuli-responsive structures, improving long-term stability, and establishing full life-cycle environmental safety assessments. These efforts will help advance the efficient, precise, and sustainable use of bio-gels in environmental remediation, offering innovative solutions to complex environmental problems. Full article
(This article belongs to the Special Issue State-of-the-Art Gel Research in China)
Show Figures

Figure 1

13 pages, 1504 KB  
Review
Unusual, Uncommon, Intriguing, and Significant Causes of Kounis Syndrome: Important Medications and Chemicals Used to Treat Kounis Syndrome and Myocardial Infarction Can Cause Kounis Syndrome
by Nicholas G. Kounis, Cesare de Gregorio, Ming-Yow Hung, Grigorios Giamouzis, Marina A. Michalaki, Uğur Özkan, Alexandr Ceasovschih, Virginia Mplani, Periklis Dousdampanis, Sophia N. Kouni, Alexandros Stefanidis, Kassiani-Maria Nastouli, Maria Bozika, Nicholas Patsouras and Ioanna Koniari
J. Cardiovasc. Dev. Dis. 2025, 12(11), 423; https://doi.org/10.3390/jcdd12110423 - 24 Oct 2025
Viewed by 565
Abstract
Mast cell degranulation and other interacting and linked cells, including T-lymphocytes, macrophages, eosinophils, and platelets, as well as a range of inflammatory mediators produced during an anaphylactic or allergic reaction, constitute the main causes of Kounis syndrome. Acute ischemia episodes, coronary spasm, atheromatous [...] Read more.
Mast cell degranulation and other interacting and linked cells, including T-lymphocytes, macrophages, eosinophils, and platelets, as well as a range of inflammatory mediators produced during an anaphylactic or allergic reaction, constitute the main causes of Kounis syndrome. Acute ischemia episodes, coronary spasm, atheromatous plaque erosion/rupture, and platelet activation can all be caused by histamine, tryptase, arachidonic acid derivatives, and chymase in the Kounis syndrome cascade. Kounis syndrome can be triggered by a variety of factors, including medications, hymenopteran stings, metals, foods, environmental exposures, illnesses, and immunizations. In addition, some unusual, rare, intriguing, and significant causes of Kounis syndrome have been discovered recently, namely the “kiss of death”, where human kissing and pet kissing can induce fatal Kounis syndrome. Moreover, the clinical conundrum is that several of the main drugs and substances used to treat myocardial infarction and Kounis syndrome, such as adrenaline (epinephrine), aspirin, atropine, clopidogrel, corticosteroids, heparins, protamine sulfate, and hirudotherapy can also initiate it. Therefore, physicians should be aware of this clinical discrepancy to prevent catastrophic consequences. Full article
(This article belongs to the Section Basic and Translational Cardiovascular Research)
Show Figures

Figure 1

29 pages, 2853 KB  
Review
X-Ray Absorption and Emission Spectroscopy in Pharmaceutical Applications: From Local Atomic Structure Elucidation to Protein-Metal Complex Analysis—A Review
by Klaudia Wojtaszek, Krzysztof Tyrała and Ewelina Błońska-Sikora
Appl. Sci. 2025, 15(19), 10784; https://doi.org/10.3390/app151910784 - 7 Oct 2025
Viewed by 1749
Abstract
X-ray absorption spectroscopy (XAS) and X-ray emission spectroscopy (XES) are analytical techniques enabling precise analysis of the electronic structure and local atomic environment in chemical compounds and materials. Their application spans materials science, chemistry, biology, and environmental sciences, supporting studies on catalytic mechanisms, [...] Read more.
X-ray absorption spectroscopy (XAS) and X-ray emission spectroscopy (XES) are analytical techniques enabling precise analysis of the electronic structure and local atomic environment in chemical compounds and materials. Their application spans materials science, chemistry, biology, and environmental sciences, supporting studies on catalytic mechanisms, redox processes, and metal speciation. A key advantage of both techniques is element selectivity, allowing the analysis of specific elements without matrix interference. Their high sensitivity to chemical state and coordination enables determination of oxidation states, electronic configuration, and local geometry. These methods are applicable to solids, liquids, and gases without special sample preparation. Modern XAS and XES studies are typically performed using synchrotron radiation, which provides an intense, monochromatic X-ray source and allows advanced in situ and operando experiments. Sub-techniques such as XANES (X-ray absorption near-edge structure), EXAFS (Extended X-ray Absorption Fine Structure), and RIXS (resonant inelastic X-ray scattering) offer enhanced insights into oxidation states, local structure, and electronic excitations. Despite their broad scientific use, applications in pharmaceutical research remain limited. Nevertheless, recent studies highlight their potential in analyzing crystalline active pharmaceutical ingredients (APIs), drug–biomolecule interactions, and differences in drug activity. This review introduces the fundamental aspects of XAS and XES, with an emphasis on practical considerations for pharmaceutical applications, including experimental design and basic spectral interpretation. Full article
(This article belongs to the Special Issue Contemporary Pharmacy: Advances and Challenges)
Show Figures

Figure 1

13 pages, 1421 KB  
Article
Structural Insights into Ni(II), Cu(II), and Zn(II) Coordination Complexes of Arylazoformamide and Arylazothioformamide Ligands
by Laxmi Tiwari, Jake Nelson and Kristopher V. Waynant
Crystals 2025, 15(10), 869; https://doi.org/10.3390/cryst15100869 - 4 Oct 2025
Viewed by 566
Abstract
Understanding how redox-active ligands coordinate to metal centers of different oxidation states is essential for applications ranging from metal remediation and recycling to drug discovery. In this study, coordination complexes of nickel(II), copper(II), and zinc(II) chloride salts were synthesized by mixing the salts [...] Read more.
Understanding how redox-active ligands coordinate to metal centers of different oxidation states is essential for applications ranging from metal remediation and recycling to drug discovery. In this study, coordination complexes of nickel(II), copper(II), and zinc(II) chloride salts were synthesized by mixing the salts with either arylazoformamide (AAF) or arylazothioformamide (ATF) ligands in toluene or methanol. The AAF and ATF ligands coordinate through their 1,3-heterodienes, N=N–C=O and N=N–C=S, respectively, and, due to their known strong binding, the piperidine and pyrrolidine formamide units were selected, as was the electron-donating methoxy group on the aryl ring. A total of 12 complexes were obtained, representing potential chelation events from ligand-driven oxidation of zerovalent metals and/or coordination of oxidized metal salts. The X-ray crystallography revealed a range of coordination patterns. Notably, the Cu(II)Cl2 complexes, in the presence of ATF, produce [ATF-CuCl]2 dimers, supporting a potential reduction event at the copper, while other metals with ATF and all metals with AAF remain in the 2+ oxidation state. Hirshfeld analysis was performed on all complexes, and it was found that most interactions across the complexes were dominated by H…H, followed by Cl…H/H…Cl, with metals showing very little to no interaction with other atoms. Spectroscopic techniques such as UV–VIS absorption, NMR (when diamagnetic), and FTIR, in addition to electrochemical studies support the metal–ligand coordination. Full article
Show Figures

Figure 1

21 pages, 2757 KB  
Article
Process Parameter Screening Through Fractional Factorial Design for the Synthesis of Gold Nanoparticles
by Harshilkumar Jani, Ketan Ranch, Vijay R. Chidrawar, Popat Mohite and Sudarshan Singh
Processes 2025, 13(10), 3157; https://doi.org/10.3390/pr13103157 - 2 Oct 2025
Viewed by 832
Abstract
Nanoparticles (NPs) of noble metals such as gold have garnered significant attention due to their novel optical and catalytic properties, their theranostic properties, as they are biocompatible, and they attract considerable interest in a range of applications including targeted drug delivery. In this [...] Read more.
Nanoparticles (NPs) of noble metals such as gold have garnered significant attention due to their novel optical and catalytic properties, their theranostic properties, as they are biocompatible, and they attract considerable interest in a range of applications including targeted drug delivery. In this study, a fractional factorial design (FFD) is applied to systematically investigate the influence of key synthesis parameters (independent variables) at a low level (−1) and a high level (+1), including the reducing agent type (chitosan or trisodium citrate), concentration of reducing agent (10 to 40 mg), pH (3.5 to 8.5), temperature (60 to 100 °C), agitation time (5 to 15 min), and agitation speed (400 to 1200 rpm), on the dependent parameters—particle size and polydispersity index of gold nanoparticles (GNPs). The goal of this study was to provide a comprehensive understanding of the interplay between these parameters and their interaction effect on the characteristics of gold nanoparticles. A fractional factorial design allowed for efficient screening of the parameter space while minimizing the number of experiments required. The results demonstrated that pH, reducing agent, reducing agent–concentration, reducing agent–concentration of reducing agent–pH, and reducing agent–temperature interactions played significant roles in determining the particle size of the synthesized GNPs. Moreover, pH and reducing agent–concentration were identified as the major factors influencing the dispersity of the NPs. This study sheds light on the complex relationships between synthesis parameters and NP characteristics, offering an insight into the capacity for optimizing the synthesis process in order to tailor the desired properties of GNPs. The findings contribute to the growing field of NP synthesis and advance the understanding of the underlying mechanisms governing the formation of GNPs with specific size and dispersity characteristics. Full article
Show Figures

Figure 1

25 pages, 3464 KB  
Review
The Role of Metallodrugs in Enhancing Neuroendocrine Neoplasm Therapies: The Promising Anticancer Potential of Ruthenium-Based Complexes
by Erika Stefàno, Federica De Castro, Asjad Ali, Michele Benedetti and Francesco Paolo Fanizzi
Molecules 2025, 30(18), 3828; https://doi.org/10.3390/molecules30183828 - 21 Sep 2025
Viewed by 900
Abstract
Neuroendocrine neoplasms (NENs) represent a small and heterogeneous group of tumors that share a common phenotype, originating from cells within the endocrine and nervous systems. Metallodrugs have had a significant impact on the treatment of NENs, as platinum-based chemotherapy is the first-line therapy [...] Read more.
Neuroendocrine neoplasms (NENs) represent a small and heterogeneous group of tumors that share a common phenotype, originating from cells within the endocrine and nervous systems. Metallodrugs have had a significant impact on the treatment of NENs, as platinum-based chemotherapy is the first-line therapy approved for managing these types of tumors. Currently, medicinal inorganic chemistry is investigating new metal-based drugs to mitigate the side effects of existing agents, including cisplatin and its derivative compounds. Among the emerging alternatives to platinum-based drugs, ruthenium-based complexes garnered attention as potential chemotherapeutics due to their notable antineoplastic and antimetastatic activity. This review focuses on the promising antitumor effects of certain Ru compounds in NEN therapy, emphasizing their potential in NEN treatment through interaction with new potential targets. Among these, IT-139 (also known as KP-1339 or NKP-1339), which has already entered clinical trials, and other new Ru compounds are highlighted. Full article
(This article belongs to the Special Issue Metal-Based Drugs: Past, Present and Future, 3rd Edition)
Show Figures

Figure 1

17 pages, 3726 KB  
Perspective
Recent Advances in Elucidating the Mechanism of the NADPH–Cytochrome P450 Reductase-Mediated Electron Transfer Cycle: Experimental and Computational Perspectives
by Songyan Xia and Hajime Hirao
Molecules 2025, 30(18), 3733; https://doi.org/10.3390/molecules30183733 - 13 Sep 2025
Viewed by 1152
Abstract
NADPH–cytochrome P450 reductase (CPR) is an essential redox partner for a wide range of metal-containing proteins, mediating the stepwise transfer of two electrons from nicotinamide adenine dinucleotide phosphate (NADPH) to the redox centers of its partner proteins. This Perspective summarizes recent advances in [...] Read more.
NADPH–cytochrome P450 reductase (CPR) is an essential redox partner for a wide range of metal-containing proteins, mediating the stepwise transfer of two electrons from nicotinamide adenine dinucleotide phosphate (NADPH) to the redox centers of its partner proteins. This Perspective summarizes recent advances in understanding the mechanisms underlying the CPR-mediated electron transfer (ET) cycle. Emphasis is placed on human and other mammalian CPRs, which provide critical insights into human biology and drug metabolism. Recent experimental and computational approaches that have deepened our mechanistic understanding of CPR function are highlighted. Selected studies are reviewed to illustrate progress in elucidating the interflavin ET within CPR, the interplay between its redox states and structural dynamics, and its protein–protein interactions with redox partners, along with the associated ET pathways. Finally, the remaining challenges and future research directions are outlined. Full article
Show Figures

Figure 1

28 pages, 5916 KB  
Review
Recent Advances in Supramolecular Systems for Precision Medicine: Structural Design, Functional Integration, and Clinical Translation Challenges
by Xiaomin Ma, Yazhe Xiao, Shuyu Li, Jianghai Du, Junjie Wang and Xingzhou Peng
Pharmaceutics 2025, 17(9), 1192; https://doi.org/10.3390/pharmaceutics17091192 - 13 Sep 2025
Viewed by 1162
Abstract
Non-covalent and dynamic covalent interactions enable supramolecular systems to function as adaptive platforms in biomedical research, offering novel strategies for precision medicine applications. This review examines five-year developments in supramolecular applications across precision medical domains, including disease diagnosis, bioimaging, targeted drug delivery, tissue [...] Read more.
Non-covalent and dynamic covalent interactions enable supramolecular systems to function as adaptive platforms in biomedical research, offering novel strategies for precision medicine applications. This review examines five-year developments in supramolecular applications across precision medical domains, including disease diagnosis, bioimaging, targeted drug delivery, tissue engineering, and gene therapy. The review begins by systematically categorizing supramolecular structures into dynamic covalent systems (e.g., disulfide bonds, boronate esters, and hydrazone bonds) and dynamic non-covalent systems (e.g., host–guest interactions, hydrogen-bond networks, metal coordination, and π–π stacking), highlighting current strategies employed to optimize their responsiveness, stability, and targeting efficiency. Representative case studies, such as cyclodextrin-based nanocarriers and metal–organic frameworks (MOFs), are thoroughly analyzed to illustrate how supramolecular systems can enhance precision in drug delivery and improve biocompatibility. Furthermore, this article critically discusses major challenges faced during clinical translation, encompassing structural instability, inadequate specificity of environmental responsiveness, pharmacokinetic and toxicity concerns, and difficulties in scalable manufacturing. Potential future directions to overcome these barriers are proposed, emphasizing biomimetic interface engineering and dynamic crosslinking strategies. Collectively, the continued evolution in structural optimization and functional integration within supramolecular systems holds great promise for achieving personalized diagnostic and therapeutic platforms, thereby accelerating their translation into clinical practice and profoundly shaping the future landscape of precision medicine. Full article
Show Figures

Figure 1

20 pages, 1413 KB  
Article
Multifunctional Tacrine–Quinoline Hybrids as Cholinesterase Inhibitors, Aβ Aggregation Blockers, and Metal Chelators for Alzheimer’s Therapy
by Xiaohua Wang, Minglan Ma, Yalan Feng, Jian Liu and Gang Wang
Molecules 2025, 30(17), 3489; https://doi.org/10.3390/molecules30173489 - 25 Aug 2025
Viewed by 1070
Abstract
A novel series of multifunctional tacrine–quinoline hybrids were designed, synthesized, and evaluated as potential anti-Alzheimer’s agents. These compounds incorporate tacrine for cholinesterase’s inhibition and 8-hydroxyquinoline for metal chelation. Piperazine was selected as a linker to provide conformational flexibility and to create favorable cation–π [...] Read more.
A novel series of multifunctional tacrine–quinoline hybrids were designed, synthesized, and evaluated as potential anti-Alzheimer’s agents. These compounds incorporate tacrine for cholinesterase’s inhibition and 8-hydroxyquinoline for metal chelation. Piperazine was selected as a linker to provide conformational flexibility and to create favorable cation–π interactions with residues in the mid-gorge region of AChE, enhancing dual-site binding with AChE to inhibit Aβ aggregation. In vitro studies demonstrated submicromolar inhibitory activity toward both AChE and BuChE, particularly for compounds 16e (IC50 = 0.10 μM for AChE, 0.043 μM for BuChE) and 16h (IC50 = 0.21 μM for AChE, 0.10 μM for BuChE). These compounds also exhibited potent inhibition of self-induced Aβ1–42 aggregation (16e: 80.5% ± 4.4%, 16h: 93.2% ± 3.9% at 20 μM). Kinetic analyses revealed mixed-type inhibition, suggesting dual binding to both CAS and PAS of AChE. UV–vis spectrometry confirmed the chelation of Cu2+ and Zn2+ ions by the 8-hydroxyquinoline moiety. These findings highlight the tacrine–quinoline scaffold as a promising platform for the discovery of a multitarget-directed anti-AD drug. Full article
(This article belongs to the Special Issue Advances in Medicinal Chemistry for Age-Related Diseases)
Show Figures

Figure 1

11 pages, 2601 KB  
Article
Degradation of the Vaccine Additive Thimerosal by L-Glutathione and L-Cysteine at Physiological pH
by Manon Fanny Degorge, Silas Mertz and Jürgen Gailer
Inorganics 2025, 13(9), 280; https://doi.org/10.3390/inorganics13090280 - 23 Aug 2025
Cited by 1 | Viewed by 973
Abstract
Humans are being exposed to a variety of potentially toxic metal compounds through the diet and/or the intravenous administration of metal-containing medicinal drugs. The organomercurial thimerosal (THI) is a bactericidal that is present in vaccines, but its potential degradation by biomolecules in vivo [...] Read more.
Humans are being exposed to a variety of potentially toxic metal compounds through the diet and/or the intravenous administration of metal-containing medicinal drugs. The organomercurial thimerosal (THI) is a bactericidal that is present in vaccines, but its potential degradation by biomolecules in vivo is incompletely understood. To probe its interaction with low-molecular-weight thiols that are highly abundant within cells, we have employed an LC-based analytical approach in conjunction with a mercury-specific detector. The injection of THI into a C18-HPLC column equilibrated with mobile phases that contained increasing concentrations of up to 15 mM of glutathione (GSH) and 30% acetonitrile revealed the elution of a GS-EtHg adduct in conjunction with THI, as evidenced by electrospray ionization mass spectrometry. These results were confirmed by 199Hg-NMR spectroscopy. While these results imply a rapid degradation of THI by GSH at physiological pH, it is important to point out that our results were obtained in aqueous solutions containing 30% (v:v) acetonitrile. Further studies need to confirm if the GS-EtHg adduct is also formed in biological fluids. Our results nevertheless demonstrate that GSH and L-cysteine (Cys) are potential targets of THI at physiological pH, which is relevant to better understand its side effects, including previously reported effects on Ca2+ channels. Full article
(This article belongs to the Special Issue Biological Activity of Metal Complexes)
Show Figures

Figure 1

26 pages, 970 KB  
Review
A Review on the Degradation of Antibiotic Resistance Genes During Composting of Livestock Manure
by Enwang Zhao, Yongchao Li, Jin Zhang and Bing Geng
Toxics 2025, 13(8), 667; https://doi.org/10.3390/toxics13080667 - 8 Aug 2025
Cited by 1 | Viewed by 2335
Abstract
As emerging pollutants, antibiotic resistance genes (ARGs) have been recognized as originating from diverse sources. Among these, the use of livestock feed and veterinary drugs was identified as the primary source of ARGs in livestock manure. ARGs were found to be widely distributed [...] Read more.
As emerging pollutants, antibiotic resistance genes (ARGs) have been recognized as originating from diverse sources. Among these, the use of livestock feed and veterinary drugs was identified as the primary source of ARGs in livestock manure. ARGs were found to be widely distributed in global environments, particularly in agriculture-related soils, water bodies, and the atmosphere, posing potential threats to ecological environments and human health. This paper reviewed the degradation mechanisms of ARGs during aerobic composting of livestock manure and the safety evaluation of compost products. Aerobic composting was demonstrated to be an effective method for degrading ARGs, primarily through mechanisms such as high-temperature elimination of ARG-carrying microorganisms, reduction in host bacterial abundance, and inhibition of horizontal gene transfer. Factors including the physicochemical properties of the composting substrate, the use of additives, and the presence of antibiotic and heavy metal residues were shown to influence the degradation efficiency of ARGs, with compost temperature being the core factor. The safety of organic fertilizers encompassed multiple aspects, including heavy metal content, seed germination index, and risk assessments based on ARG residues. The analysis indicated that deficiencies existed in areas such as the persistence of thermotolerant bacteria carrying ARGs, the dissemination of extracellular antibiotic resistance genes (eARGs), and virus-mediated gene transfer. Future research should focus on (1) the removal of thermotolerant bacteria harboring ARGs; (2) the decomposition of eARGs or the blocking of their transmission pathways; (3) the optimization of ultra-high temperature composting parameters; and (4) the analysis of interactions between viruses and resistant hosts. This study reviews the mechanisms, influencing factors, and safety assessment of aerobic composting for degrading ARGs in livestock manure. It not only deepens the understanding of this important environmental biotechnology process but also provides a crucial knowledge base and practical guidance for effectively controlling ARG pollution, ensuring agricultural environmental safety, and protecting public health. Additionally, it clearly outlines the key paths for future technological optimization, thus holding significant implications for the environment, agriculture, and public health. Full article
(This article belongs to the Special Issue Antibiotics and Resistance Genes in Environment)
Show Figures

Graphical abstract

Back to TopTop