Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (697)

Search Parameters:
Keywords = metal by-products

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3580 KiB  
Review
Computational Chemistry Insights into Pollutant Behavior During Coal Gangue Utilization
by Xinyue Wang, Xuan Niu, Xinge Zhang, Xuelu Ma and Kai Zhang
Sustainability 2025, 17(15), 7135; https://doi.org/10.3390/su17157135 - 6 Aug 2025
Abstract
Coal serves as the primary energy source for China, with production anticipated to reach 4.76 billion tons in 2024. However, the mining process generates a significant amount of gangue, with approximately 800 million tons produced in 2023 alone. Currently, China faces substantial gangue [...] Read more.
Coal serves as the primary energy source for China, with production anticipated to reach 4.76 billion tons in 2024. However, the mining process generates a significant amount of gangue, with approximately 800 million tons produced in 2023 alone. Currently, China faces substantial gangue stockpiles, characterized by a low comprehensive utilization rate that fails to meet the country’s ecological and environmental protection requirements. The environmental challenges posed by the treatment and disposal of gangue are becoming increasingly severe. This review employs bibliometric analysis and theoretical perspectives to examine the latest advancements in gangue utilization, specifically focusing on the application of computational chemistry to elucidate the structural features and interaction mechanisms of coal gangue, and to collate how these insights have been leveraged in the literature to inform its potential utilization routes. The aim is to promote the effective resource utilization of this material, and key topics discussed include evaluating the risks of spontaneous combustion associated with gangue, understanding the mechanisms governing heavy metal migration, and modifying coal byproducts to enhance both economic viability and environmental sustainability. The case studies presented in this article offer valuable insights into the gangue conversion process, contributing to the development of more efficient and eco-friendly methods. By proposing a theoretical framework, this review will support ongoing initiatives aimed at the sustainable management and utilization of coal gangue, emphasizing the critical need for continued research and development in this vital area. This review uniquely combines bibliometric analysis with computational chemistry to identify new trends and gaps in coal waste utilization, providing a roadmap for future research. Full article
Show Figures

Figure 1

26 pages, 4818 KiB  
Article
Novel Anion-Exchange Resins for the Effective Recovery of Re(VII) from Simulated By-Products of Cu-Mo Ore Processing
by Piotr Cyganowski, Pawel Pohl, Szymon Pawlik and Dorota Jermakowicz-Bartkowiak
Int. J. Mol. Sci. 2025, 26(15), 7563; https://doi.org/10.3390/ijms26157563 - 5 Aug 2025
Abstract
The efficient recovery of rhenium (Re), a critical metal in high-tech industries, is essential to address its growing demand and reduce reliance on primary mining. In this study, we developed novel anion-exchange resins for the selective adsorption and recovery of Re(VII) ions from [...] Read more.
The efficient recovery of rhenium (Re), a critical metal in high-tech industries, is essential to address its growing demand and reduce reliance on primary mining. In this study, we developed novel anion-exchange resins for the selective adsorption and recovery of Re(VII) ions from acidic solutions, simulating industrial by-products. The resins were synthesized from a vinylbenzyl chloride-co-divinylbenzene copolymer modified with aliphatic, heterocyclic, and aromatic weakly basic amines, selected from among bis(3-aminopropyl)amine (BAPA), 1-(2-pyrimidinyl)piperazine (PIP), thiosemicarbazide (TSC), 2-amino-3-hydroxypyridine (AHP), 1-(2-hydroxyethyl)piperazine (HEP), 4-amino-2,6-dihydroxypyrimidine (AHPI), and 2-thiazolamine (TA). The adsorption of Re on BAPA, PIP, and HEP resins obeyed the Langmuir model, and the resins exhibited high adsorption capacities, with maximum values reaching 435.4 mg Re g−1 at pH 6. Furthermore, strong selectivity for ReO4 ions over competing species, including Mo, Cu, and V, was noted in solutions simulating the leachates of the by-products of Cu-Mo ores. Additionally, complete elution of Re was possible. The developed resins turned out to be highly suitable for the continuous-flow-mode adsorption of ReO4, revealing outstanding adsorption capacities before reaching column breakthrough. In this context, the novel anion-exchange resins developed offer a reference for further Re recovery strategies. Full article
Show Figures

Figure 1

17 pages, 1261 KiB  
Article
Innovative Valorization of Wood Panel Waste into Activated Biochar for Efficient Phenol Adsorption
by Aziz Bentis, Laura Daniela Ceron Daza, Mamadou Dia, Ahmed Koubaa and Flavia Lega Braghiroli
Appl. Sci. 2025, 15(15), 8518; https://doi.org/10.3390/app15158518 (registering DOI) - 31 Jul 2025
Viewed by 141
Abstract
Construction and demolition byproducts include substantial amounts of wood panel waste (WPW) that pose environmental challenges. They also create opportunities for sustainable resource recovery. This study investigates the potential of WPW-derived biochar as an efficient adsorbent for phenol removal from aqueous solutions. Biochar [...] Read more.
Construction and demolition byproducts include substantial amounts of wood panel waste (WPW) that pose environmental challenges. They also create opportunities for sustainable resource recovery. This study investigates the potential of WPW-derived biochar as an efficient adsorbent for phenol removal from aqueous solutions. Biochar was produced via pyrolysis at 450 °C and subsequent activation at 750, 850, and 950 °C. The biochar’s physicochemical properties, including surface area, pore volume, and elemental composition, were characterized using advanced methods, including BET analysis, elemental analysis, and adsorption isotherm analysis. Activated biochar demonstrated up to nine times higher adsorption capacity than raw biochar, with a maximum of 171.9 mg/g at 950 °C under optimal conditions: pH of 6 at 25 °C, initial phenol concentration of 200 mg/L, and biochar dosage of 1 g/L of solution for 48 h. Kinetic and isotherm studies revealed that phenol adsorption followed a pseudo-second-order model and fit the Langmuir isotherm, indicating chemisorption and monolayer adsorption mechanisms. Leaching tests confirmed the biochar’s environmental safety, with heavy metal concentrations well below regulatory limits. Based on these findings, WPW biochar offers a promising, eco-friendly solution for wastewater treatment in line with circular economy and green chemistry principles. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

15 pages, 1273 KiB  
Article
Fungal Pretreatment of Alperujo for Bioproduct Recovery and Detoxification: Comparison of Two White Rot Fungi
by Viviana Benavides, Gustavo Ciudad, Fernanda Pinto-Ibieta, Elisabet Aranda, Victor Ramos-Muñoz, Maria A. Rao and Antonio Serrano
Agronomy 2025, 15(8), 1851; https://doi.org/10.3390/agronomy15081851 - 31 Jul 2025
Viewed by 198
Abstract
Alperujo, a solid by-product from the two-phase olive oil extraction process, poses significant environmental challenges due to its high organic load, phytotoxicity, and phenolic content. At the same time, it represents a promising feedstock for recovering value-added compounds such as phenols and volatile [...] Read more.
Alperujo, a solid by-product from the two-phase olive oil extraction process, poses significant environmental challenges due to its high organic load, phytotoxicity, and phenolic content. At the same time, it represents a promising feedstock for recovering value-added compounds such as phenols and volatile fatty acids (VFAs). When used as a substrate for white rot fungi (WRF), it also produces ligninolytic enzymes. This study explores the use of two native WRF, Anthracophyllum discolor and Stereum hirsutum, for the biotransformation of alperujo under solid-state fermentation conditions, with and without supplementation of copper and manganese, two cofactors known to enhance fungal enzymatic activity. S. hirsutum stood out for its ability to release high concentrations of phenolic compounds (up to 6001 ± 236 mg gallic acid eq L−1) and VFAs (up to 1627 ± 325 mg L−1) into the aqueous extract, particularly with metal supplementation. In contrast, A. discolor was more effective in degrading phenolic compounds within the solid matrix, achieving a 41% reduction over a 30-day period. However, its ability to accumulate phenolics and VFAs in the extract was limited. Both WRF exhibited increased enzymatic activities (particularly Laccase and Manganese Peroxidase) with the addition of Cu-Mn, highlighting the potential of the aqueous extract as a natural source of biocatalysts. Phytotoxicity assays using Solanum lycopersicum seeds confirmed a partial detoxification of the treated alperujo. However, none of the fungi could entirely eliminate inhibitory effects on their own, suggesting the need for complementary stabilization steps before agricultural reuse. Overall, the results indicate that S. hirsutum, especially when combined with metal supplementation, is better suited for valorizing alperujo through the recovery of bioactive compounds. Meanwhile, A. discolor may be more suitable for detoxifying the solid phase strategies. These findings support the integration of fungal pretreatment into biorefinery schemes that valorize agroindustrial residues while mitigating environmental issues. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

14 pages, 1948 KiB  
Article
Molecular Responses of Saccharomyces cerevisiae to Growth Under Conditions of Increasing Corn Syrup and Decreasing Molasses
by Binbin Chen, Yu Chyuan Heng, Sharifah Nora Ahmad Almunawar, Elvy Riani Wanjaya, Untzizu Elejalde and Sandra Kittelmann
Fermentation 2025, 11(8), 432; https://doi.org/10.3390/fermentation11080432 - 28 Jul 2025
Viewed by 248
Abstract
Molasses, a by-product of raw sugar production, is widely used as a cost-effective carbon and nutrient source for industrial fermentations, including the production of baker’s yeast (Saccharomyces cerevisiae). Due to the cost and limited availability of molasses, efforts have been made [...] Read more.
Molasses, a by-product of raw sugar production, is widely used as a cost-effective carbon and nutrient source for industrial fermentations, including the production of baker’s yeast (Saccharomyces cerevisiae). Due to the cost and limited availability of molasses, efforts have been made to replace molasses with cheaper and more readily available substrates such as corn syrup. However, the quality of dry yeast drops following the replacement of molasses with corn syrup, despite the same amount of total sugar being provided. Our understanding of how molasses replacement affects yeast physiology, especially during the dehydration step, is limited. Here, we examined changes in gene expression of a strain of baker’s yeast during fermentation with increasing corn syrup to molasses ratios at the transcriptomic level. Our findings revealed that the limited availability of the key metal ions copper, iron, and zinc, as well as sulfur from corn syrup (i) reduced their intracellular storage, (ii) impaired the synthesis of unsaturated fatty acids and ergosterol, as evidenced by the decreasing proportions of these important membrane components with higher proportions of corn syrup, and (iii) inactivated oxidative stress response enzymes. Taken together, the molecular and metabolic changes observed suggest a potential reduction in nutrient reserves for fermentation and a possible compromise in cell viability during the drying process, which may ultimately impact the quality of the final dry yeast product. These findings emphasize the importance of precise nutrient supplementation when substituting molasses with cheaper substrates. Full article
(This article belongs to the Section Yeast)
Show Figures

Figure 1

15 pages, 3051 KiB  
Article
Study on the Kinetics of Carbothermic Reduction of Stainless Steel Dust by Walnut Shell Biochar
by Guoyu Cui, Xiang Zhang, Yanghui Xu, Guojun Ma, Dingli Zheng and Ju Xu
Metals 2025, 15(8), 835; https://doi.org/10.3390/met15080835 - 26 Jul 2025
Viewed by 222
Abstract
Stainless steel dust (SSD) is a by-product generated during the smelting process of stainless steel, which is rich in valuable metals such as Fe, Cr, Ni, and Mn. To optimize the carbothermic reduction process of SSD, this study first conducted the thermodynamic analysis [...] Read more.
Stainless steel dust (SSD) is a by-product generated during the smelting process of stainless steel, which is rich in valuable metals such as Fe, Cr, Ni, and Mn. To optimize the carbothermic reduction process of SSD, this study first conducted the thermodynamic analysis of the carbothermic reduction of SSD and then employed walnut shell biochar as a reductant with non-isothermal thermogravimetric analysis with linear heating rates of 5 °C/min, 10 °C/min, 15 °C/min, and 20 °C/min. The activation energies of the carbothermic reduction reactions were calculated using the FWO method, KAS method, and Friedman method, respectively. Subsequently, the corresponding kinetic models were fitted and matched using the Málek method. The results indicate that before 600 °C, the direct reduction of SSD by carbon plays a dominant role. As the temperature increases, the indirect reduction becomes the main reduction reaction for SSD due to the generation of CO. The activation energies calculated by the Flynn–Wall–Ozawa (FWO) method, Kissinger–Akahira–Sunose (KAS) method, and Friedman method are 412.120 kJ/mol, 416.930 kJ/mol, and 411.778 kJ/mol, respectively, showing close values and a general trend of increasing activation energy as the conversion rate increased from 10% to 90%. Moreover, the reduction reaction is staged. In the conversion range of 10% to 50%, the carbothermic reduction reaction conforms to the shrinking core model within phase boundary reactions, coded as R1/4. In the conversion range of 50% to 60%, it conforms to the shrinking core model within phase boundary reactions, coded as R1/2; in the conversion range of 60% to 90%, the carbothermic reduction reaction follows the second-order chemical reaction model, coded as F2. Full article
(This article belongs to the Special Issue Separation, Reduction, and Metal Recovery in Slag Metallurgy)
Show Figures

Figure 1

43 pages, 1282 KiB  
Review
Process Intensification Strategies for Esterification: Kinetic Modeling, Reactor Design, and Sustainable Applications
by Kim Leonie Hoff and Matthias Eisenacher
Int. J. Mol. Sci. 2025, 26(15), 7214; https://doi.org/10.3390/ijms26157214 - 25 Jul 2025
Viewed by 680
Abstract
Esterification is a key transformation in the production of lubricants, pharmaceuticals, and fine chemicals. Conventional processes employing homogeneous acid catalysts suffer from limitations such as corrosive byproducts, energy-intensive separation, and poor catalyst reusability. This review provides a comprehensive overview of heterogeneous catalytic systems, [...] Read more.
Esterification is a key transformation in the production of lubricants, pharmaceuticals, and fine chemicals. Conventional processes employing homogeneous acid catalysts suffer from limitations such as corrosive byproducts, energy-intensive separation, and poor catalyst reusability. This review provides a comprehensive overview of heterogeneous catalytic systems, including ion exchange resins, zeolites, metal oxides, mesoporous materials, and others, for improved ester synthesis. Recent advances in membrane-integrated reactors, such as pervaporation and nanofiltration, which enable continuous water removal, shifting equilibrium and increasing conversion under milder conditions, are reviewed. Dual-functional membranes that combine catalytic activity with selective separation further enhance process efficiency and reduce energy consumption. Enzymatic systems using immobilized lipases present additional opportunities for mild and selective reactions. Future directions emphasize the integration of pervaporation membranes, hybrid catalyst systems combining biocatalysts and metals, and real-time optimization through artificial intelligence. Modular plug-and-play reactor designs are identified as a promising approach to flexible, scalable, and sustainable esterification. Overall, the interaction of catalyst development, membrane technology, and digital process control offers a transformative platform for next-generation ester synthesis aligned with green chemistry and industrial scalability. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

26 pages, 10465 KiB  
Article
Potential Use of Wastewater Treatment Plant Washed Mineral Waste as Flood Embankment Materials
by Jacek Kostrzewa, Łukasz Kaczmarek, Jan Bogacki, Agnieszka Dąbska, Małgorzata Wojtkowska and Paweł Popielski
Materials 2025, 18(14), 3384; https://doi.org/10.3390/ma18143384 - 18 Jul 2025
Viewed by 358
Abstract
Recycling washed mineral waste, generated as a byproduct of the mechanical wastewater treatment process, can be a beneficial alternative to widely used natural sand in construction. Studies on material from the Warsaw agglomeration, available in quantities sufficient for construction applications, demonstrated its high [...] Read more.
Recycling washed mineral waste, generated as a byproduct of the mechanical wastewater treatment process, can be a beneficial alternative to widely used natural sand in construction. Studies on material from the Warsaw agglomeration, available in quantities sufficient for construction applications, demonstrated its high usability in specific hydrotechnical applications. Key laboratory tests for material characterization included physical, permeability, mechanical, and chemical property analyses. The tested waste corresponds to uniformly graded medium sands (uniformity coefficient: 2.20) and weakly calcareous (calcium carbonate content: 2.25–3.29%) mineral soils with organic content ranging from 0.24% to 1.49%. The minimum heavy metal immobilization level reached 91.45%. At maximum dry density of the soil skeleton (1.78/1.79 g/cm3) and optimal moisture content (11.34/11.95%), the hydraulic conductivity reached 4.38/7.71 m/d. The mechanical parameters of washed mineral waste included internal friction angle (34.4/37.8°) and apparent cohesion (9.37/14.98 kPa). The values of the determined parameters are comparable to those of natural sands used as construction aggregates. As a result, washed mineral waste has a high potential for use as an alternative material to natural sand in the analyzed hydrotechnical applications, particularly for flood embankment construction, by applicable technical standards and construction guidelines. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

32 pages, 1689 KiB  
Review
Photocatalytic Degradation of Microplastics in Aquatic Environments: Materials, Mechanisms, Practical Challenges, and Future Perspectives
by Yelriza Yeszhan, Kalampyr Bexeitova, Samgat Yermekbayev, Zhexenbek Toktarbay, Jechan Lee, Ronny Berndtsson and Seitkhan Azat
Water 2025, 17(14), 2139; https://doi.org/10.3390/w17142139 - 18 Jul 2025
Viewed by 559
Abstract
Due to its persistence and potential negative effects on ecosystems and human health, microplastic pollution in aquatic environments has become a major worldwide concern. Photocatalytic degradation is a sustainable manner to degrade microplastics to non-toxic by-products. In this review, comprehensive discussion focuses on [...] Read more.
Due to its persistence and potential negative effects on ecosystems and human health, microplastic pollution in aquatic environments has become a major worldwide concern. Photocatalytic degradation is a sustainable manner to degrade microplastics to non-toxic by-products. In this review, comprehensive discussion focuses on the synergistic effects of various photocatalytic materials including TiO2, ZnO, WO3, graphene oxide, and metal–organic frameworks for producing heterojunctions and involving multidimensional nanostructures. Such mechanisms can include the generation of reactive oxygen species and polymer chain scission, which can lead to microplastic breakdown and mineralization. The advancements of material modifications in the (nano)structure of photocatalysts, doping, and heterojunction formation methods to promote UV and visible light-driven photocatalytic activity is discussed in this paper. Reactor designs, operational parameters, and scalability for practical applications are also reviewed. Photocatalytic systems have shown a lot of development but are hampered by shortcomings which include a lack of complete mineralization and production of intermediary secondary products; variability in performance due to the fluctuation in the intensity of solar light, limited UV light, and environmental conditions such as weather and the diurnal cycle. Future research involving multifunctional, environmentally benign photocatalytic techniques—e.g., doped composites or composite-based catalysts that involve adsorption, photocatalysis, and magnetic retrieval—are proposed to focus on the mechanism of utilizing light effectively and the environmental safety, which are necessary for successful operational and industrial-scale remediation. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

16 pages, 3177 KiB  
Article
Cadmium as the Critical Limiting Factor in the Co-Disposal of Municipal Solid Waste Incineration Fly Ash in Cement Kilns: Implications for Three-Stage Water Washing Efficiency and Safe Dosage Control
by Zhonggen Li, Qingfeng Wang, Li Tang, Liangliang Yang and Guangyi Sun
Toxics 2025, 13(7), 593; https://doi.org/10.3390/toxics13070593 - 15 Jul 2025
Viewed by 368
Abstract
The co-disposal of municipal solid waste incineration fly ash (MSWI-FA) in cement kilns is an effective method for managing incineration by-products in China. However, the presence of heavy metals in MSWI-FA raises environmental concerns. This study analyzed the Cu, Zn, Cd, Pb, Cr, [...] Read more.
The co-disposal of municipal solid waste incineration fly ash (MSWI-FA) in cement kilns is an effective method for managing incineration by-products in China. However, the presence of heavy metals in MSWI-FA raises environmental concerns. This study analyzed the Cu, Zn, Cd, Pb, Cr, and Ni concentrations in MSWI-FA from 11 representative facilities across China and assessed the efficacy of a three-stage water washing process for Cl and heavy metal removal. The results revealed significant regional variations in heavy metal content that were strongly correlated with surface soil levels, with Zn, Pb, and Cu exhibiting the highest concentrations. Elemental correlations, such as Cu-Pb and Zn-Cd synergies and Cd-Ni antagonism, suggest common waste sources and temperature-dependent volatilization during incineration. The washing process (solid–liquid ratio = 1:10) achieved 97.1 ± 2.0% Cl removal, reducing residual Cl to 0.45 ± 0.32%, but demonstrated limited heavy metal elimination (10.28–19.38% efficiency), resulting in elevated concentrations (32.5–60.8% increase) due to 43.4 ± 9.2% mass loss. Notably, the washing effluents exceeded municipal wastewater discharge limits by up to 52-fold for Pb and 38-fold for Cd, underscoring the need for advanced effluent treatment. To mitigate environmental risks, the addition of washed MSWI-FA in cement kilns should be restricted to ≤0.5%, with Cd content prioritized in pre-disposal assessments. This study provides actionable insights for optimizing MSWI-FA co-processing while ensuring compliance with ecological safety standards. Full article
(This article belongs to the Special Issue Distribution and Behavior of Trace Metals in the Environment)
Show Figures

Graphical abstract

31 pages, 860 KiB  
Systematic Review
Advances in Biotechnology in the Circular Economy: A Path to the Sustainable Use of Resources
by Pedro Carmona Marques, Pedro C. B. Fernandes, Pedro Sampaio and Joaquim Silva
Sustainability 2025, 17(14), 6391; https://doi.org/10.3390/su17146391 - 12 Jul 2025
Viewed by 697
Abstract
This article analyzes the role of biotechnologies in supporting the circular economy in various productive sectors. It highlights innovative approaches that contribute to sustainability, resource regeneration, waste recovery, and reduced dependence on fossil fuels. The text brings together relevant examples of biotechnological applications [...] Read more.
This article analyzes the role of biotechnologies in supporting the circular economy in various productive sectors. It highlights innovative approaches that contribute to sustainability, resource regeneration, waste recovery, and reduced dependence on fossil fuels. The text brings together relevant examples of biotechnological applications aimed at the production of bioplastics, bioenergy, bioproducts, and bioremediation solutions, among others of interest. In addition, it highlights the potential of using agro-industrial waste as raw material in biotechnological processes, promoting more efficient production chains with less environmental impact. The methodology was based on a comprehensive review of recent advances in industrial biotechnology. The main results reveal successful applications in the production of polyhydroxyalkanoates (PHAs) from food waste, in the microbial bioleaching of metals from electronic waste, and in the bioconversion of agricultural byproducts into functional materials, among others. The article also discusses the regulatory and social factors that influence the integration of these solutions into circular value chains. It concludes that biotechnology is a key element for the circular bioeconomy, offering scalable and environmentally efficient alternatives to conventional linear models, although its large-scale adoption depends on overcoming technological and market challenges. Full article
Show Figures

Figure 1

20 pages, 2249 KiB  
Article
Cellulolytic Potential of Newly Isolated Alcohol-Tolerant Bacillus methylotrophicus
by Anna Choińska-Pulit, Justyna Sobolczyk-Bednarek and Wojciech Łaba
Materials 2025, 18(14), 3256; https://doi.org/10.3390/ma18143256 - 10 Jul 2025
Viewed by 278
Abstract
Reprocessing lignocellulosic waste to obtain new products for industrial purposes is a vital part of circular economy. This paper reports the cellulase production by newly isolated Bacillus methylotrophicus cultured on lignocellulosic agro-industrial by-products, out of which brewer’s spent grain (BSG) was selected as [...] Read more.
Reprocessing lignocellulosic waste to obtain new products for industrial purposes is a vital part of circular economy. This paper reports the cellulase production by newly isolated Bacillus methylotrophicus cultured on lignocellulosic agro-industrial by-products, out of which brewer’s spent grain (BSG) was selected as most beneficial. Plackett–Burman design was used for screening medium components, while Box–Behnken design was further applied to model the impact of the three most influential variables. The maximum approximated cellulase activity was 0.469 U/mL (1 U = 1 µmol of reducing sugars/1 min), at 48.6 g/L substrate, 5.3 g/L ammonium sulfate, pH 6.1. The partially purified cellulase was characterized, which demonstrated broad range of optimal pH (6.5–9.4), temperature (50–60 °C), and sensitivity to metals. Changes in lignin and pentosans content was demonstrated as a result of BSG hydrolysis with a cell-free cellulase preparation. The produced enzyme was used for hydrolysis of various chemically pretreated (NaOH and H2SO4) cellulosic substrates, where for reused alkali-pretreated BSG (after microbial enzyme production) the saccharification efficiency was at a level of 25%. The cellulolytic potential of the bacterial strain, along with its resistance to ethanol, present a beneficial combination, potentially applicable to aid saccharification of lignocellulosic by-products for biofuel production. Full article
(This article belongs to the Special Issue Biomass Materials Recycling: Utilization and Valorisation)
Show Figures

Figure 1

12 pages, 2664 KiB  
Article
Heavy Metal Immobilization by Phosphate-Solubilizing Fungus and Phosphogypsum Under the Co-Existence of Pb(II) and Cd(II)
by Xu Li, Zhenyu Chao, Haoxuan Li, Jiakai Ji, Xin Sun, Yingxi Chen, Zhengda Li, Zhen Li, Chuanhao Li, Jun Yao and Lan Xiang
Agronomy 2025, 15(7), 1632; https://doi.org/10.3390/agronomy15071632 - 4 Jul 2025
Viewed by 326
Abstract
Globally, phosphogypsum (PG) is the primary by-product of the phosphorus industry. Aspergillus niger (A. niger), one of the most powerful types of phosphate-solubilizing fungi (PSF), can secrete organic acids to dissolve the phosphates in PG. This study investigated heavy metal (HM) [...] Read more.
Globally, phosphogypsum (PG) is the primary by-product of the phosphorus industry. Aspergillus niger (A. niger), one of the most powerful types of phosphate-solubilizing fungi (PSF), can secrete organic acids to dissolve the phosphates in PG. This study investigated heavy metal (HM) remediation by PG and A. niger under the co-existence of Pb and Cd. It demonstrated that 1 mmol/L Pb2+ stimulated the bioactivity of A. niger during incubation, based on the CO2 emission rate. PG successfully functioned as P source for the fungus, and promoted the growth of the fungal cells. Meanwhile, it also provided sulfates to immobilize Pb in the solution. The subsequently generated anglesite was confirmed using SEM imaging. The immobilization rate of Pb reached over 95%. Under co-existence, Pb2+ and 0.01 mmol/L Cd2+ maximized the stimulating effect of A. niger. However, the biotoxicity of Pb2+ and elevated Cd2+ (0.1 mmol/L) counterbalanced the stimulating effect. Finally, 1 mmol/L Cd2+ dramatically reduced the fungal activity. In addition, organic matters from the debris of A. niger could still bind Pb2+ and Cd2+ according to the significantly lowered water-soluble Pb and Cd concentrations. In all treatments with the addition of Cd2+, the relatively high biotoxicity of Cd2+ induced A. niger to absorb more Pb2+ to minimize the sorption of Cd2+ based on the XRD results. The functional group analysis of ATR-IR also confirmed the phenomenon. This pathway maintained the stability of Pb2+ immobilization using the fungus and PG. This study, hence, shed light on the application of A. niger and solid waste PG to remediate the pollution of Pb and Cd. Full article
Show Figures

Figure 1

18 pages, 2241 KiB  
Article
Optimization of a Monopolar Electrode Configuration for Hybrid Electrochemical Treatment of Real Washing Machine Wastewater
by Lidia C. Espinoza, Angélica Llanos, Marjorie Cepeda, Alexander Carreño, Patricia Velásquez, Brayan Cruz, Galo Ramírez, Julio Romero, Ricardo Abejón, Esteban Quijada-Maldonado, María J. Aguirre and Roxana Arce
Int. J. Mol. Sci. 2025, 26(13), 6445; https://doi.org/10.3390/ijms26136445 - 4 Jul 2025
Viewed by 317
Abstract
This study focuses on the design and optimization of a monopolar electrode configuration for the hybrid electrochemical treatment of real washing machine wastewater. A combined electrocoagulation (EC) and electro-oxidation (EO) system was optimized to maximize pollutant removal efficiency while minimizing energy consumption. The [...] Read more.
This study focuses on the design and optimization of a monopolar electrode configuration for the hybrid electrochemical treatment of real washing machine wastewater. A combined electrocoagulation (EC) and electro-oxidation (EO) system was optimized to maximize pollutant removal efficiency while minimizing energy consumption. The monopolar setup employed mixed metal oxide (MMO) and aluminum anodes, along with a stainless steel cathode, operating under controlled conditions with sodium chloride as the supporting electrolyte. An applied current density of 15 mA cm−2 achieved 90% chemical oxygen demand (COD) removal, 98% surfactant degradation, complete turbidity reduction within 120 min, and pH stabilization near 8. Additionally, electrochemical disinfection achieved <2 MPN/100 mL, with no detectable phenols and the presence of organic anions such as oxalate and acetate. These results demonstrate the effectiveness of an optimized monopolar EC–EO system as a cost-efficient and sustainable strategy for wastewater treatment and potential water reuse. Further studies should focus on refining energy consumption and monitoring reaction by-products to enhance large-scale applicability. Full article
(This article belongs to the Special Issue Ion and Molecule Transport in Membrane Systems, 6th Edition)
Show Figures

Figure 1

15 pages, 966 KiB  
Article
Isolation of a Novel Bioactive Fraction from Saffron (Crocus sativus L.) Leaf Waste: Optimized Extraction and Evaluation of Its Promising Antiproliferative and Chemoprotective Effects as a Plant-Based Antitumor Agent
by Raúl Sánchez-Vioque, Julio Girón-Calle, Manuel Alaiz, Javier Vioque-Peña, Adela Mena-Morales, Esteban García-Romero, Lourdes Marchante-Cuevas and Gonzalo Ortiz de Elguea-Culebras
Appl. Sci. 2025, 15(13), 7376; https://doi.org/10.3390/app15137376 - 30 Jun 2025
Viewed by 307
Abstract
Saffron spice is obtained from the flower’s stigmas through a labor-intensive process. However, other organs (particularly the leaves and tepals) are often regarded as waste. To investigate the health benefits of saffron leaf by-products, an optimized methodology was developed to obtain a phenol-enriched [...] Read more.
Saffron spice is obtained from the flower’s stigmas through a labor-intensive process. However, other organs (particularly the leaves and tepals) are often regarded as waste. To investigate the health benefits of saffron leaf by-products, an optimized methodology was developed to obtain a phenol-enriched fraction. The main components of this fraction were identified by HPLC-DAD/ESI-MS and the antiproliferative and metal-chelating effects on colon cancer cells (Caco-2) and Fe2+ and Cu2+ ions, respectively, were evaluated. The process involved the extraction of saffron leaves with a 70% hydroalcoholic solution, followed by purification using liquid chromatography. Chemical characterization revealed the presence of several phenolic compounds, including flavonoids (kaempferol, luteolin and quercetin glycosides) as major constituents; whereas, in vitro assays revealed a strong dose-dependent inhibition of cell proliferation. Likewise, the sample exhibited significant iron- and copper-chelating activity, suggesting its potential as a natural chelator to help mitigate the carcinogenic effects of metal accumulation in humans. In summary, this study underscores the potential of the saffron leaf fraction as a promising natural and complementary chemoprotective agent in colorectal cancer. Additionally, these results underscore the value of agricultural by-products, supporting a circular bioeconomy by reducing environmental impact and promoting the sustainable use of natural resources. Full article
Show Figures

Figure 1

Back to TopTop