Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = mesogenic-phase temperature ranges

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3150 KB  
Article
Design of Near-UV Photoluminescent Liquid-Crystalline Dimers: Roles of Fluorinated Aromatic Ring Position and Flexible Linker
by Sorato Inui, Hayato Kitaoka, Yuto Eguchi, Motohiro Yasui, Tsutomu Konno and Shigeyuki Yamada
Crystals 2025, 15(10), 840; https://doi.org/10.3390/cryst15100840 - 27 Sep 2025
Cited by 1 | Viewed by 708
Abstract
Near-ultraviolet photoluminescence liquid-crystalline molecules (PLLCs) have attracted attention for temperature-responsive photoluminescence (PL) modulation and ON/OFF sensing under external stimuli. We recently developed mesogenic dimers composed of two hexyloxy-substituted, fluorinated tolane-type cores linked by alkylene-1,n-dioxy chains that exhibited near-UV PL in the [...] Read more.
Near-ultraviolet photoluminescence liquid-crystalline molecules (PLLCs) have attracted attention for temperature-responsive photoluminescence (PL) modulation and ON/OFF sensing under external stimuli. We recently developed mesogenic dimers composed of two hexyloxy-substituted, fluorinated tolane-type cores linked by alkylene-1,n-dioxy chains that exhibited near-UV PL in the solid state. However, the formation of LC phases and the temperature range of the LC state were limited. To improve LC phase stability, in this study, we extended the flexible terminal chains and repositioned the fluorinated aromatic rings from the outer to the inner core positions. Accordingly, we synthesized mesogenic dimers with even-numbered alkylene-1,n-dioxy linkers (hexylene, octylene, and decylene) and outer- or inner-ring fluorination. Outer-ring fluorination led to high melting temperatures and stable crystalline phases with limited mesophase formation. In contrast, inner-ring fluorination induced nematic phases upon heating and cooling owing to zig-zag molecular structures that disrupted crystallinity. Photophysical studies confirmed near-UV PL in solution and solid states; however, the quantum yield of the solution PL was low (<0.01). In the solid state, the PL efficiencies and wavelengths were influenced by the fluorinated aromatic ring position and linker length. This study provides important molecular design criteria for developing stable LC materials with tunable near-UV luminescence for temperature-responsive optical devices. Full article
(This article belongs to the Special Issue State-of-the-Art Liquid Crystals Research in Japan (2nd Edition))
Show Figures

Figure 1

13 pages, 3036 KB  
Article
Asymmetric Imidazolium-Based Ionic Liquid Crystal with Enhanced Ionic Conductivity in Low-Temperature Smectic Phases
by Yuna Kim, Alagan Jeevika, Tomoya Suwa, Kazuya Kubo and Ken-ichi Iimura
Crystals 2024, 14(12), 1053; https://doi.org/10.3390/cryst14121053 - 3 Dec 2024
Cited by 1 | Viewed by 1915
Abstract
We report the synthesis and characterization of a novel asymmetric imidazolium-based ionic liquid crystal (ILC) dimer exhibiting stable smectic phases over a wide temperature range, including room temperature. This unique molecular structure, combining two distinct mesogenic cores, reduces packing density, which enhances ion [...] Read more.
We report the synthesis and characterization of a novel asymmetric imidazolium-based ionic liquid crystal (ILC) dimer exhibiting stable smectic phases over a wide temperature range, including room temperature. This unique molecular structure, combining two distinct mesogenic cores, reduces packing density, which enhances ion mobility and achieves high ionic conductivity in the smectic phase (0.1 mS cm−1 at 40 °C). Electrochemical impedance spectroscopy (EIS) confirmed improved ionic conductivity at lower temperatures, along with a stable electrochemical window of ±3 V. Application as a solid-state electrolyte in an electrochromic device demonstrated effective switching behavior and reversible redox cycles. These findings suggest that this asymmetric imidazolium-based ILC is a viable candidate for advanced electrochemical applications due to its structural stability and anisotropic ionic pathways. Full article
(This article belongs to the Special Issue Liquid Crystal Materials and Devices)
Show Figures

Figure 1

11 pages, 1343 KB  
Article
Low-Temperature Metallomesogen Model Structures and Mixtures as Potential Materials for Application in Commercial Liquid Crystal Devices
by Hassanali Hakemi
Physchem 2024, 4(4), 447-457; https://doi.org/10.3390/physchem4040031 - 5 Nov 2024
Cited by 1 | Viewed by 1422
Abstract
The present work was the preliminary study of phase diagrams and miscibilities of low-temperature metallomesogen (MOM) model structures based on rod-like palladium (Pd) alkyl/alkoxy-azobenzene metal complexes and their mixtures with commercial liquid crystal materials for potential application. The initial results indicated the accessible [...] Read more.
The present work was the preliminary study of phase diagrams and miscibilities of low-temperature metallomesogen (MOM) model structures based on rod-like palladium (Pd) alkyl/alkoxy-azobenzene metal complexes and their mixtures with commercial liquid crystal materials for potential application. The initial results indicated the accessible temperature range and mesgenic miscibility between parent ligand, MOMs and commercial liquid crystal mixtures. The eutectic ligand/MOM composition with other MOMs and commercial nematic liquid crystal materials exhibited complete mesogenic miscibility and wide low-temperature mesogenic stability for eventual utilization in commercial liquid crystal devices. Full article
(This article belongs to the Section Physical Organic Chemistry)
Show Figures

Figure 1

20 pages, 5608 KB  
Article
Synthesis and Characterization of Azo-Based Cyclotriphosphazene Compounds: Liquid Crystalline and Dielectric Properties
by Samerah Habil, Zuhair Jamain and Mohamad Zul Hilmey Makmud
ChemEngineering 2024, 8(4), 71; https://doi.org/10.3390/chemengineering8040071 - 11 Jul 2024
Cited by 5 | Viewed by 2162
Abstract
The study examined the chemical structure of azo-based liquid crystalline compounds that were altered to form a branch of cyclotriphosphazene. Moreover, the research explored the interplay between their mesomorphic and dielectric properties. The structures of the compounds were defined by Fourier transform infrared [...] Read more.
The study examined the chemical structure of azo-based liquid crystalline compounds that were altered to form a branch of cyclotriphosphazene. Moreover, the research explored the interplay between their mesomorphic and dielectric properties. The structures of the compounds were defined by Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and CHN elemental analysis. Only intermediates 2ae and cyclotriphosphazene compounds 4de were mesogenic with smectic A (SmA) and smectic C (SmC) phases, respectively. Intermediate 2d and compound 4d were used as representative samples to determine the type of liquid crystal, which was confirmed through X-ray diffraction (XRD). The calculated d/L ratios for both compounds were 1.69 and 0.76, respectively, indicating that d was approximately equal to L (d ≈ L ≈ 1). This finding suggests that the SmA and SmC phases observed under polarized optical microscope (POM) are arranged in a monolayer. For the dielectric study, only compounds 2de and 4de were proceeded and compared for dielectric characteristics testing. The dielectric constants and dielectric loss factors of these four compounds were measured over the frequency range of 100 Hz to 0.1 MHz at room temperature. The dielectric constant trend decreased with the increasing frequency. Meanwhile, the dielectric loss showed two types of trends. The first trend was identical to the dielectric constant trend, in which the dielectric loss decreased as the frequency increased. However, in the second trend, the dielectric loss began to rise with the increase in frequency and then began to fall gradually after reaching a certain peak. Meanwhile, compounds 4d and 4e had low dielectric constants and losses due to the effect of hexasubstituted cyclotriphosphazene that had been attached as a core. Full article
Show Figures

Figure 1

13 pages, 9516 KB  
Article
Comparative Study of the Optical and Dielectric Anisotropy of a Difluoroterphenyl Dimer and Trimer Forming Two Nematic Phases
by Evangelia E. Zavvou, Chris Welch, Georg H. Mehl, Alexandros G. Vanakaras and Panagiota K. Karahaliou
Materials 2024, 17(11), 2555; https://doi.org/10.3390/ma17112555 - 25 May 2024
Cited by 1 | Viewed by 1808
Abstract
We present a comparative study of the optical and dielectric anisotropy of a laterally fluorinated liquid crystal dimer and its homologous trimer, both exhibiting two nematic phases. In the high-temperature nematic phase, both oligomers exhibit positive optical anisotropy with similar magnitude, which, however, [...] Read more.
We present a comparative study of the optical and dielectric anisotropy of a laterally fluorinated liquid crystal dimer and its homologous trimer, both exhibiting two nematic phases. In the high-temperature nematic phase, both oligomers exhibit positive optical anisotropy with similar magnitude, which, however, is lower in comparison with the optical anisotropy of the monomer. In the same temperature range, the dielectric permittivity along and perpendicular to the nematic director, measured on magnetically aligned samples, reveals negative dielectric anisotropy for both oligomers, which saturates as the temperature approaches the N–N phase transition temperature. Comparison of the dielectric anisotropies of the oligomers with the corresponding anisotropy of the monomer indicates a systematic variation of its magnitude with the number of the linked mesogenic units. Results are compared with the corresponding anisotropies of the cyanobiphenyl dimers, the archetypal compounds with two nematic phases, and are discussed in terms of the dipolar structure of the mesogens and the dipolar correlations in their nematic phases. Full article
(This article belongs to the Special Issue Structural and Physical Properties of Liquid Crystals)
Show Figures

Figure 1

17 pages, 8300 KB  
Article
The Influence of the Molecular Structure of Compounds on Their Properties and the Occurrence of Chiral Smectic Phases
by Magdalena Urbańska, Monika Zając, Paweł Perkowski and Aleksandra Deptuch
Materials 2024, 17(3), 618; https://doi.org/10.3390/ma17030618 - 27 Jan 2024
Cited by 1 | Viewed by 1774
Abstract
We have designed new chiral smectic mesogens with the -CH2O group near the chiral center. We synthesized two unique rod-like compounds. We determined the mesomorphic properties of these mesogens and confirmed the phase identification using dielectric spectroscopy. Depending on the length [...] Read more.
We have designed new chiral smectic mesogens with the -CH2O group near the chiral center. We synthesized two unique rod-like compounds. We determined the mesomorphic properties of these mesogens and confirmed the phase identification using dielectric spectroscopy. Depending on the length of the oligomethylene spacer (i.e., the number of methylene groups) in the achiral part of the molecules, the studied materials show different phase sequences. Moreover, the temperature ranges of the observed smectic phases are different. It can be seen that as the length of the alkyl chain increases, the liquid crystalline material shows more mesophases. Additionally, its clearing (isotropization) temperature increases. The studied compounds are compared with the structurally similar smectogens previously synthesized. The helical pitch measurements were performed using the selective reflection method. These materials can be useful and effective as chiral components and dopants in smectic mixtures targeted for optoelectronics and photonics. Full article
(This article belongs to the Special Issue Advanced Materials for Luminescent Applications)
Show Figures

Figure 1

15 pages, 5464 KB  
Article
Effect of Mesogenic Phase and Structure of Liquid Crystals on Tribological Properties as Lubricant Additives
by Han Wu, Ying Jiang, Wenjing Hu, Sijing Feng and Jiusheng Li
Coatings 2023, 13(1), 168; https://doi.org/10.3390/coatings13010168 - 12 Jan 2023
Cited by 3 | Viewed by 2222
Abstract
To develop a high-performance additive that can meet different operating conditions, three liquid crystals (LCs) were developed as additives for a base oil. The structures and thermal stabilities of the obtained LCs were characterized by nuclear magnetic resonance (NMR), Fourier transform infrared (FT-IR) [...] Read more.
To develop a high-performance additive that can meet different operating conditions, three liquid crystals (LCs) were developed as additives for a base oil. The structures and thermal stabilities of the obtained LCs were characterized by nuclear magnetic resonance (NMR), Fourier transform infrared (FT-IR) spectroscopy, mass spectroscopy (MS), and thermogravimetric analysis (TGA). The effects of mesogenic-phase temperature ranges on tribological properties were analyzed using differential scanning calorimetry (DSC) and polarized optical microscopy (POM). UMT-TriboLab friction and wear tester was used to study the friction-reducing properties of LCs. The width of wear marks was observed by a Contour GT-K 3D profiler to illustrate the anti-wear performance of LCs. The friction surface was characterized by scanning electron microscopy (SEM) and Raman spectroscopy. It was demonstrated that, in comparison with the base oil, the addition of LCs caused a remarkable reduction in the coefficient of friction (21.57%) and wear width (31.82%). In addition, LCs show better tribological abilities in the mesogenic-phase temperature ranges. According to the results, we demonstrated that LCs can be used as lubricant additives, especially for several operating conditions under specific temperatures. Full article
Show Figures

Figure 1

17 pages, 3074 KB  
Article
Gold Nanoparticles Modification with Liquid Crystalline Polybenzylic Dendrons via 1,3-Dipolar Cycloaddition
by José Antonio Ulloa, Joaquín Barberá and José Luis Serrano
Nanomaterials 2022, 12(22), 4026; https://doi.org/10.3390/nano12224026 - 16 Nov 2022
Cited by 2 | Viewed by 2215
Abstract
A series of six polybenzylic dendrons with an alkynyl focal point were synthesized for their incorporation to gold nanoparticles. Five of these compounds showed columnar mesomorphism in a wide range of temperatures. These dendrons were reacted with gold nanoparticles stabilized with a combination [...] Read more.
A series of six polybenzylic dendrons with an alkynyl focal point were synthesized for their incorporation to gold nanoparticles. Five of these compounds showed columnar mesomorphism in a wide range of temperatures. These dendrons were reacted with gold nanoparticles stabilized with a combination of a dodecanethiol and 11-azidoundecane-1-thiol. The azido group of the last compound allowed the functionalization of the nanoparticles with the six polybenzylic dendrons by 1,3-dipolar cycloaddition between their alkynyl groups and the terminal azido groups of the thiols. A high efficiency of the cycloaddition process (47–69%) was confirmed by several experimental techniques and no decomposition or aggregation phenomena were detected in the dendron-coated nanoparticles. The involved mechanism and the resulting percentage composition of the final materials are discussed. The results of the ulterior growth of the nanoparticles by thermal treatment are influenced by the size and the shape of the dendron and the temperature of the process. The structures of the final nanoparticles were investigated by TEM, DSC, TGA, NMR and UV-Vis spectroscopy. These nanoparticles do not show liquid crystal properties. However, a melting process between a crystalline and a fluid phase is observed. In the solid phase, the nanomaterials prepared show a short-range interaction between nanoparticles with a 2D local hexagonal order. A near-field effect was observed in the UV-vis spectra by coupling of different surface plasmon resonance bands (SPR) probably due to the short-range interactions. The main novelty of this work lies in the scarcity of previous studies of gold nanoparticles coated with dendrons forming themselves columnar mesophases. Most of the studies reported in the literature deal with gold nanoparticles coated with calamitic mesogens. Additionally, the effect of the thermal treatment, which in a previous paper was shown to increase the mean size of the nanoparticles without increasing their size polydispersity, has been studied in these materials. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Graphical abstract

13 pages, 2431 KB  
Article
Investigation of Thermal-Induced Changes in Molecular Order on Photopolymerization and Performance Properties of a Nematic Liquid-Crystal Diacrylate
by Qian Wang, Stephen T. Wellinghoff and Henry Ralph Rawls
Materials 2022, 15(13), 4605; https://doi.org/10.3390/ma15134605 - 30 Jun 2022
Viewed by 1983
Abstract
Polymerization shrinkage and associated stresses are the main reasons for dental restorative failure. We developed a series of liquid crystal diacrylates and dimethacrylates which have markedly low polymerization shrinkage. In order to fully understand the effects of temperature-induced changes of molecular order on [...] Read more.
Polymerization shrinkage and associated stresses are the main reasons for dental restorative failure. We developed a series of liquid crystal diacrylates and dimethacrylates which have markedly low polymerization shrinkage. In order to fully understand the effects of temperature-induced changes of molecular order on the photopolymerization process and performance properties of the generated polymers, the photopolymerization of a difunctional acrylate, 2-t-butyl-1,4-phenylene bis (4-(6-(acryloyloxy)hexyloxy)benzoate), which exists in the nematic liquid crystalline phase at room temperature, was investigated as a function of photopolymerization temperature over the nematic to isotropic range. Morphological studies suggested that a mesogenic phase was immediately formed in the polymer even if polymerization in thin films occurred above the nematic-to-isotropic (N→I) transition temperature of the monomer (Tn-i = 45.8 °C). Dynamic mechanical analysis of 2 × 2 mm cross-section bar samples polymerized at 60 °C showed reduced elastic moduli, increased glass transition temperature and formation of a more crosslinked network, in comparison to polymers formed at lower polymerization temperatures. Fractography analysis showed that polymers generated from the nematic liquid crystalline phase underwent a different fracture pattern in comparison to those generated from the isotropic phase. Volumetric shrinkage (2.2%) found in polymer polymerized from the nematic liquid crystalline phase at room temperature was substantially less than the 6.0% observed in polymer polymerized from an initial isotropic phase at 60 °C, indicating that an organized monomer can greatly contribute to reducing cure shrinkage. Full article
(This article belongs to the Special Issue Advanced Materials for Restorative Dental Sciences)
Show Figures

Figure 1

13 pages, 7901 KB  
Article
Polymer Functionalized Nanoparticles in Blue Phase LC: Effect of Particle Shape
by Manlin Zhang, Michael Lindner-D’Addario, Mahdi Roohnikan, Violeta Toader, Robert Bruce Lennox and Linda Reven
Nanomaterials 2022, 12(1), 91; https://doi.org/10.3390/nano12010091 - 29 Dec 2021
Cited by 1 | Viewed by 2324
Abstract
Ethylene oxide oligomers and polymers, free and tethered to gold nanoparticles, were dispersed in blue phase liquid crystals (BPLC). Gold nanospheres (AuNPs) and nanorods (AuNRs) were functionalized with thiolated ethylene oxide ligands with molecular weights ranging from 200 to 5000 g/mol. The BPLC [...] Read more.
Ethylene oxide oligomers and polymers, free and tethered to gold nanoparticles, were dispersed in blue phase liquid crystals (BPLC). Gold nanospheres (AuNPs) and nanorods (AuNRs) were functionalized with thiolated ethylene oxide ligands with molecular weights ranging from 200 to 5000 g/mol. The BPLC mixture (ΔTBP ~6 °C) was based on the mesogenic acid heterodimers, n-hexylbenzoic acid (6BA) and n-trans-butylcyclohexylcarboxylic acid (4-BCHA) with the chiral dopant (R)-2-octyl 4-[4-(hexyloxy)benzoyloxy]benzoate. The lowest molecular weight oligomer lowered and widened the BP range but adding AuNPs functionalized with the same ligand had little effect. Higher concentrations or molecular weights of the ligands, free or tethered to the AuNPs, completely destabilized the BP. Mini-AuNRs functionalized with the same ligands lowered and widened the BP temperature range with longer mini-AuNRs having a larger effect. In contrast to the AuNPs, the mini-AuNRs with the higher molecular weight ligands widened rather than destabilized the BP, though the lowest MW ligand yielded the largest BP range, (ΔTBP > 13 °C). The different effects on the BP may be due to the AuNPs accumulating at singular defect sites whereas the mini-AuNRs, with diameters smaller than that of the disclination lines, can more efficiently fill in the BP defects. Full article
Show Figures

Graphical abstract

10 pages, 1720 KB  
Article
Thermal and Mesomorphic Investigations of 1:1 Supramolecular Assemblies of 4-[(4-(n-Alkoxy)phenylimino)methyl]benzoic Acids Having Symmetrical and Un-Symmetrical Terminal Chain Lengths
by Fowzia S. Alamro, Hoda A. Ahmed, Ayman M. Mostafa and Magdi M. Naoum
Symmetry 2021, 13(10), 1785; https://doi.org/10.3390/sym13101785 - 25 Sep 2021
Cited by 9 | Viewed by 2607
Abstract
Thermal and mesomorphic properties of possible 1:1 supramolecular complexes (SMCs) (Im/In) designed from two members of 4-[(4-(n-alkoxy)phenylimino)methyl]benzoic acid with symmetrical or un-symmetrical alkoxy terminal flexible chains (carbons of m and n = 6, 8 and 16), were analyzed [...] Read more.
Thermal and mesomorphic properties of possible 1:1 supramolecular complexes (SMCs) (Im/In) designed from two members of 4-[(4-(n-alkoxy)phenylimino)methyl]benzoic acid with symmetrical or un-symmetrical alkoxy terminal flexible chains (carbons of m and n = 6, 8 and 16), were analyzed by differential scan-calorimetry (DSC), thermogravemetric (TG) analysis, and their mesophases identified by polarized optical microscopy (POM). The equimolecular mixtures of the two acids possess symmetrical and un-symmetrical terminal lengths. The mesomorphic properties of the binary mixtures were examined as a function of the total alkoxy chain length on both sides. Results revealed that the nematic mesophase temperature range increases as the total terminal length increases for all designed un-symmetrical mixtures. A comparison was constructed between the formed SMCs and of those of the previously prepared 4-n-alkoxyphenylazo benzoic acids as well as the 4-n-alkoxy benzoic acids, to examine the impact of mesogenic core on the mesomorphic properties. The comparison indicated that as the mesogenic portion lengthens the thermal mesophase stability exhibits higher values of phase transition temperatures; whereas, the azo and Schiff base moieties exhibited near thermal properties. Full article
(This article belongs to the Section Chemistry: Symmetry/Asymmetry)
Show Figures

Figure 1

16 pages, 4116 KB  
Article
Design and Self-Assembling Behaviour of Calamitic Reactive Mesogens with Lateral Methyl and Methoxy Substituents and Vinyl Terminal Group
by Alexej Bubnov, Martin Cigl, Deyvid Penkov, Marek Otruba, Damian Pociecha, Hsiu-Hui Chen and Věra Hamplová
Polymers 2021, 13(13), 2156; https://doi.org/10.3390/polym13132156 - 30 Jun 2021
Cited by 6 | Viewed by 2581
Abstract
Smart self-organising systems attract considerable attention in the scientific community. In order to control and stabilise the liquid crystalline behaviour, and hence the self-organisation, the polymerisation process can be effectively used. Mesogenic units incorporated into the backbones as functional side chains of weakly [...] Read more.
Smart self-organising systems attract considerable attention in the scientific community. In order to control and stabilise the liquid crystalline behaviour, and hence the self-organisation, the polymerisation process can be effectively used. Mesogenic units incorporated into the backbones as functional side chains of weakly cross-linked macromolecules can become orientationally ordered. Several new calamitic reactive mesogens possessing the vinyl terminal group with varying flexible chain lengths and with/without lateral substitution by the methyl (methoxy) groups have been designed and studied. Depending on the molecular structure, namely, the type and position of the lateral substituents, the resulting materials form the nematic, the orthogonal SmA and the tilted SmC phases in a reasonably broad temperature range, and the structure of the mesophases was confirmed by X-ray diffraction experiments. The main objective of this work is to contribute to better understanding of the molecular structure–mesomorphic property relationship for new functional reactive mesogens, aiming at further design of smart self-assembling macromolecular materials for novel sensor systems. Full article
(This article belongs to the Special Issue Polymer-Based Sensors)
Show Figures

Graphical abstract

16 pages, 3539 KB  
Article
Thermal and Emission Properties of a Series of Lanthanides Complexes with N-Biphenyl-Alkylated-4-Pyridone Ligands: Crystal Structure of a Terbium Complex with N-Benzyl-4-Pyridone
by Florentina L. Chiriac, Monica Iliş, Augustin Madalan, Doina Manaila-Maximean, Mihail Secu and Viorel Cîrcu
Molecules 2021, 26(7), 2017; https://doi.org/10.3390/molecules26072017 - 1 Apr 2021
Cited by 7 | Viewed by 3261
Abstract
This work focuses on the investigation of the liquid crystalline behavior and luminescence properties of the lanthanide complexes of Eu(III), Sm(III) and Tb(III) with N-biphenyl-alkylated-4-pyridone ligands. The organic ligands having a biphenyl group attached via a long flexible spacer with either 9 [...] Read more.
This work focuses on the investigation of the liquid crystalline behavior and luminescence properties of the lanthanide complexes of Eu(III), Sm(III) and Tb(III) with N-biphenyl-alkylated-4-pyridone ligands. The organic ligands having a biphenyl group attached via a long flexible spacer with either 9 or 10 carbon atoms were synthesized by the reaction between 4-hydroxypyridine and the corresponding bromide compounds. The chemical structures of the organic and lanthanide complexes were assigned based on elemental analysis, single-crystal X-ray diffraction, 1H, 13C NMR and IR spectroscopies, and thermogravimetric analysis (TGA). The X-ray diffraction analysis of a parent compound shows that the lanthanide ions are surrounded by three monodentate pyridone ligands and three bidentate nitrate ions, giving a 9-coordinate environment. The mesogenic behavior and the type of liquid crystalline phases exhibited by the new complexes were analyzed by differential scanning calorimetry (DSC) and polarizing optical microscopy (POM), and powder X-ray diffraction (XRD) studies. Only the lanthanide complexes with longer spacer (10) display a monotropic SmA phase, typically on a short thermal range (less than 10 °C). The complexes with shorter flexible chains (9) show no liquid crystalline properties with melting temperatures lower than their analogs with longer spacers. The emission spectra recorded in solid state at room temperatures show typical emission bands for each lanthanide ion employed (Eu(III), Tb(III) and Sm(III)). Full article
(This article belongs to the Special Issue Inorganic Luminescent Materials: From Fundamental to Applications)
Show Figures

Figure 1

29 pages, 12796 KB  
Review
Nanostructure of Unconventional Liquid Crystals Investigated by Synchrotron Radiation
by Francesco Vita, Fabrizio Corrado Adamo, Michela Pisani and Oriano Francescangeli
Nanomaterials 2020, 10(9), 1679; https://doi.org/10.3390/nano10091679 - 26 Aug 2020
Cited by 4 | Viewed by 4395
Abstract
The macroscopic properties of novel liquid crystal (LC) systems—LCs with unconventional molecular structure as well as conventional LCs in unconventional geometries—directly descend from their mesoscopic structural organization. While X-ray diffraction (XRD) is an obvious choice to investigate their nanoscale structure, conventional diffractometry is [...] Read more.
The macroscopic properties of novel liquid crystal (LC) systems—LCs with unconventional molecular structure as well as conventional LCs in unconventional geometries—directly descend from their mesoscopic structural organization. While X-ray diffraction (XRD) is an obvious choice to investigate their nanoscale structure, conventional diffractometry is often hampered by experimental difficulties: the low scattering power and short-range positional order of the materials, resulting in weak and diffuse diffraction features; the need to perform measurements in challenging conditions, e.g., under magnetic and/or electric fields, on thin films, or at high temperatures; and the necessity to probe micron-sized volumes to tell the local structural properties from their macroscopic average. Synchrotron XRD allows these problems to be circumvented thanks to the superior diffraction capabilities (brilliance, q-range, energy and space resolution) and advanced sample environment available at synchrotron beamlines. Here, we highlight the potentiality of synchrotron XRD in the field of LCs by reviewing a selection of experiments on three unconventional LC systems: the potentially biaxial and polar nematic phase of bent-core mesogens; the very high-temperature nematic phase of all-aromatic LCs; and polymer-dispersed liquid crystals. In all these cases, synchrotron XRD unveils subtle nanostructural features that are reflected into macroscopic properties of great interest from both fundamental and technological points of view. Full article
Show Figures

Graphical abstract

15 pages, 5382 KB  
Article
Comparative 2H NMR and X-Ray Diffraction Investigation of a Bent-Core Liquid Crystal Showing a Nematic Phase
by Maria Ghilardi, Fabrizio C. Adamo, Francesco Vita, Oriano Francescangeli and Valentina Domenici
Crystals 2020, 10(4), 284; https://doi.org/10.3390/cryst10040284 - 9 Apr 2020
Cited by 6 | Viewed by 4541
Abstract
Bent-core liquid crystals showing a nematic phase stable at low temperatures are very attractive for applicative purposes in view of the inherent biaxial nature of the nematic phase. In this work, a typical five-ring bent-core mesogen was investigated by means of 2H [...] Read more.
Bent-core liquid crystals showing a nematic phase stable at low temperatures are very attractive for applicative purposes in view of the inherent biaxial nature of the nematic phase. In this work, a typical five-ring bent-core mesogen was investigated by means of 2H NMR spectroscopy and X-ray diffraction (XRD) methods. These techniques provide complementary information on the structural properties of the nematic phase and the average mesogen conformation: small-angle XRD reveals the presence of short-range positional order in the form of skewed cybotaxis, while a comparison of the orientational order parameters measured by wide-angle XRD and NMR provides an estimate of the molecule bend angle. In addition, 2H NMR puts in evidence the occurrence of an unexpected transition to a low-temperature tilted phase, having a crystalline or smectic-like character. The results were compared with those of previous 13C NMR investigations. Full article
(This article belongs to the Special Issue Nuclear Magnetic Resonance of Liquid Crystals)
Show Figures

Graphical abstract

Back to TopTop