Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (40,265)

Search Parameters:
Keywords = mechanical products

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 3377 KiB  
Article
Effect of Thuja occidentalis L. Essential Oil Combined with Diatomite Against Selected Pests
by Janina Gospodarek, Elżbieta Boligłowa, Krzysztof Gondek, Krzysztof Smoroń and Iwona B. Paśmionka
Molecules 2025, 30(15), 3300; https://doi.org/10.3390/molecules30153300 - 6 Aug 2025
Abstract
Combining products of natural origin with different mechanisms of action on insect herbivores may provide an alternative among methods of plant protection against pests that are less risky for the environment. The aim of the study was to evaluate the effectiveness of mixtures [...] Read more.
Combining products of natural origin with different mechanisms of action on insect herbivores may provide an alternative among methods of plant protection against pests that are less risky for the environment. The aim of the study was to evaluate the effectiveness of mixtures of Thuja occidentalis L. essential oil and diatomite (EO + DE) compared to each substance separately in reducing economically important pests such as black bean aphid (BBA) Aphis fabae Scop., Colorado potato beetle (CPB) Leptinotarsa decemlineata Say., and pea leaf weevil (PLW) Sitona lineatus L. The effects on mortality (all pests) and foraging intensity (CPB and PLW) were tested. The improvement in effectiveness using a mixture of EO + DE versus single components against BBA was dose- and the developmental stage-dependent. The effect of enhancing CPB foraging inhibition through DE addition was obtained at a concentration of 0.2% EO (both females and males of CPB) and 0.5% EO (males) in no-choice experiments. In choice experiments, mixtures EO + DE with both 0.2% and 0.5% EO concentrations resulted in a significant reduction in CPB foraging. A significant strengthening effect of EO 0.5% through the addition of DE at a dose of 10% against PLW males was observed in the no-choice experiment, while, when the beetles had a choice, the synergistic effect of a mixture of EO 0.5% and DE 10% was also apparent in females. In conclusion, the use of DE mixtures with EO from T. occidentalis appears to be a promising strategy. The results support the idea of not using doses of EO higher than 0.5%. Full article
19 pages, 3032 KiB  
Review
The Microstructure and Modification of the Interfacial Transition Zone in Lightweight Aggregate Concrete: A Review
by Jian Zhou, Yiding Dong, Tong Qiu, Jiaojiao Lv, Peng Guo and Xi Liu
Buildings 2025, 15(15), 2784; https://doi.org/10.3390/buildings15152784 - 6 Aug 2025
Abstract
The interfacial transition zone (ITZ) significantly influences the mechanical properties and durability of lightweight aggregate concrete (LWAC), yet existing research on the ITZ in LWAC remains fragmented due to varied characterization techniques, inconsistent definitions of ITZ thickness and porosity, and the absence of [...] Read more.
The interfacial transition zone (ITZ) significantly influences the mechanical properties and durability of lightweight aggregate concrete (LWAC), yet existing research on the ITZ in LWAC remains fragmented due to varied characterization techniques, inconsistent definitions of ITZ thickness and porosity, and the absence of standardized performance metrics. This review focuses primarily on structural LWAC produced with artificial and natural lightweight aggregates, with intended applications in high-performance civil engineering structures. This review systematically analyzes the microstructure, composition, and physical properties of the ITZ, including porosity, microhardness, and hydration product distribution. Quantitative data from recent studies are highlighted—for instance, incorporating 3% nano-silica increased ITZ bond strength by 134.12% at 3 days and 108.54% at 28 days, while using 10% metakaolin enhanced 28-day compressive strength by 24.6% and reduced chloride diffusion by 81.9%. The review categorizes current ITZ enhancement strategies such as mineral admixtures, nanomaterials, surface coatings, and aggregate pretreatment methods, evaluating their mechanisms, effectiveness, and limitations. By identifying key trends and research gaps—particularly the lack of predictive models and standardized characterization methods—this review aims to synthesize key findings and identify knowledge gaps to support future material design in LWAC. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

27 pages, 16782 KiB  
Article
Response of Grain Yield to Extreme Precipitation in Major Grain-Producing Areas of China Against the Background of Climate Change—A Case Study of Henan Province
by Keding Sheng, Rui Li, Fengqiuli Zhang, Tongde Chen, Peng Liu, Yanan Hu, Bingyin Li and Zhiyuan Song
Water 2025, 17(15), 2342; https://doi.org/10.3390/w17152342 - 6 Aug 2025
Abstract
Based on the panel data of daily meteorological stations and winter wheat yield in Henan Province from 2000 to 2023, this study comprehensively used the Mann–Kendall trend test, wavelet coherence analysis (WTC), and other methods to reveal the temporal and spatial evolution of [...] Read more.
Based on the panel data of daily meteorological stations and winter wheat yield in Henan Province from 2000 to 2023, this study comprehensively used the Mann–Kendall trend test, wavelet coherence analysis (WTC), and other methods to reveal the temporal and spatial evolution of extreme precipitation and its multi-scale stress mechanism on grain yield. The results showed the following: (1) Extreme precipitation showed the characteristics of ‘frequent fluctuation-gentle trend-strong spatial heterogeneity’, and the maximum daily precipitation in spring (RX1DAY) showed a significant uplift. The increase in rainstorm events (R95p/R99p) in the southern region during the summer is particularly prominent; at the same time, the number of consecutive drought days (CDDs > 15 d) in the middle of autumn was significantly prolonged. It was also found that 2010 is a significant mutation node. Since then, the synergistic effect of ‘increasing drought days–increasing rainstorm frequency’ has begun to appear, and the short-period coherence of super-strong precipitation (R99p) has risen to more than 0.8. (2) The spatial pattern of winter wheat in Henan is characterized by the three-level differentiation of ‘stable core area, sensitive transition zone and shrinking suburban area’, and the stability of winter wheat has improved but there are still local risks. (3) There is a multi-scale stress mechanism of extreme precipitation on winter wheat yield. The long-period (4–8 years) drought and flood events drive the system risk through a 1–2-year lag effect (short-period (0.5–2 years) medium rainstorm intensity directly impacted the production system). This study proposes a ‘sub-scale governance’ strategy, using a 1–2-year lag window to establish a rainstorm warning mechanism, and optimizing drainage facilities for high-risk areas of floods in the south to improve the climate resilience of the agricultural system against the background of climate change. Full article
(This article belongs to the Special Issue Soil Erosion and Soil and Water Conservation, 2nd Edition)
Show Figures

Figure 1

17 pages, 1007 KiB  
Article
Characterization of Natural Products as Inhibitors of Shikimate Dehydrogenase from Methicillin-Resistant Staphylococcus aureus: Kinetic and Molecular Dynamics Simulations, and Biological Activity Studies
by Noé Fabián Corral-Rodríguez, Valeria Itzel Moreno-Contreras, Erick Sierra-Campos, Mónica Valdez-Solana, Jorge Cisneros-Martínez, Alfredo Téllez-Valencia and Claudia Avitia-Domínguez
Biomolecules 2025, 15(8), 1137; https://doi.org/10.3390/biom15081137 - 6 Aug 2025
Abstract
Antibiotic resistance is considered to be one of the most complex health obstacles of our time. Methicillin-resistant Staphylococcus aureus (MRSA) represents a global health challenge due to its broad treatment resistance capacity, resulting in high mortality rates. The shikimate pathway (SP) is responsible [...] Read more.
Antibiotic resistance is considered to be one of the most complex health obstacles of our time. Methicillin-resistant Staphylococcus aureus (MRSA) represents a global health challenge due to its broad treatment resistance capacity, resulting in high mortality rates. The shikimate pathway (SP) is responsible for the biosynthesis of chorismate from glycolysis and pentose phosphate pathway intermediates. This pathway plays a crucial role in producing aromatic amino acids, folates, ubiquinone, and other secondary metabolites in bacteria. Notably, SP is absent in humans, which makes it a specific and potential therapeutic target to explore for discovering new antibiotics against MRSA. The present study characterized in vitro and in silico natural products as inhibitors of the shikimate dehydrogenase from methicillin-resistant S. aureus (SaSDH). The results showed that, from the set of compounds studied, phloridzin, rutin, and caffeic acid were the most potent inhibitors of SaSDH, with IC50 values of 140, 160, and 240 µM, respectively. Furthermore, phloridzin showed a mixed-type inhibition mechanism, whilst rutin and caffeic acid showed non-competitive mechanisms. The structural characterization of the SaSDH–inhibitor complex indicated that these compounds interacted with amino acids from the catalytic site and formed stable complexes. In biological activity studies against MRSA, caffeic acid showed an MIC of 2.2 mg/mL. Taken together, these data encourage using these compounds as a starting point for developing new antibiotics based on natural products against MRSA. Full article
23 pages, 3580 KiB  
Review
Computational Chemistry Insights into Pollutant Behavior During Coal Gangue Utilization
by Xinyue Wang, Xuan Niu, Xinge Zhang, Xuelu Ma and Kai Zhang
Sustainability 2025, 17(15), 7135; https://doi.org/10.3390/su17157135 - 6 Aug 2025
Abstract
Coal serves as the primary energy source for China, with production anticipated to reach 4.76 billion tons in 2024. However, the mining process generates a significant amount of gangue, with approximately 800 million tons produced in 2023 alone. Currently, China faces substantial gangue [...] Read more.
Coal serves as the primary energy source for China, with production anticipated to reach 4.76 billion tons in 2024. However, the mining process generates a significant amount of gangue, with approximately 800 million tons produced in 2023 alone. Currently, China faces substantial gangue stockpiles, characterized by a low comprehensive utilization rate that fails to meet the country’s ecological and environmental protection requirements. The environmental challenges posed by the treatment and disposal of gangue are becoming increasingly severe. This review employs bibliometric analysis and theoretical perspectives to examine the latest advancements in gangue utilization, specifically focusing on the application of computational chemistry to elucidate the structural features and interaction mechanisms of coal gangue, and to collate how these insights have been leveraged in the literature to inform its potential utilization routes. The aim is to promote the effective resource utilization of this material, and key topics discussed include evaluating the risks of spontaneous combustion associated with gangue, understanding the mechanisms governing heavy metal migration, and modifying coal byproducts to enhance both economic viability and environmental sustainability. The case studies presented in this article offer valuable insights into the gangue conversion process, contributing to the development of more efficient and eco-friendly methods. By proposing a theoretical framework, this review will support ongoing initiatives aimed at the sustainable management and utilization of coal gangue, emphasizing the critical need for continued research and development in this vital area. This review uniquely combines bibliometric analysis with computational chemistry to identify new trends and gaps in coal waste utilization, providing a roadmap for future research. Full article
Show Figures

Figure 1

20 pages, 1448 KiB  
Article
In Vitro Evaluation of Chemical and Microhardness Alterations in Human Enamel Induced by Three Commercial In-Office Bleaching Agents
by Berivan Laura Rebeca Buzatu, Atena Galuscan, Ramona Dumitrescu, Roxana Buzatu, Magda Mihaela Luca, Octavia Balean, Gabriela Vlase, Titus Vlase, Iasmina-Mădălina Anghel, Carmen Opris, Bianca Ioana Todor, Mihaela Adina Dumitrache and Daniela Jumanca
Dent. J. 2025, 13(8), 357; https://doi.org/10.3390/dj13080357 - 6 Aug 2025
Abstract
Background/Objectives: In-office bleaching commonly employs high concentrations of hydrogen peroxide (HP) or carbamide peroxide (CP), which may compromise enamel integrity. This in vitro paired-design study aimed to compare the chemical and mechanical effects of three commercial bleaching agents—Opalescence Boost (40% HP), Opalescence [...] Read more.
Background/Objectives: In-office bleaching commonly employs high concentrations of hydrogen peroxide (HP) or carbamide peroxide (CP), which may compromise enamel integrity. This in vitro paired-design study aimed to compare the chemical and mechanical effects of three commercial bleaching agents—Opalescence Boost (40% HP), Opalescence Quick (45% CP), and BlancOne Ultra+ (35% HP)—on human enamel. The null hypothesis assumed no significant differences between the control and treated samples. Given the ongoing debate over pH, active ingredients, and enamel impact, comparing whitening systems remains clinically important. Methods: Forty-two extracted teeth were assigned to three experimental groups (n = 14) with matched controls. Each underwent a single bleaching session per manufacturer protocol: Opalescence Boost (≤60 min), Opalescence Quick (15–30 min), and BlancOne Ultra+ (three light-activated cycles of 8–10 min). Enamel chemical changes were analyzed by Fourier transform infrared (FTIR) spectroscopy (phosphate and carbonate bands), and surface hardness by Vickers microhardness testing. Paired t-tests (α = 0.05) assessed statistical significance. Results: FTIR analysis revealed alterations in phosphate and carbonate bands for all agents, most notably for Opalescence Boost and BlancOne Ultra+. Microhardness testing showed significant reductions in enamel hardness for Opalescence Boost (control: 37.21 ± 1.74 Hv; treated: 34.63 ± 1.70 Hv; p = 0.00) and Opalescence Quick (control: 45.82 ± 1.71 Hv; treated: 39.34 ± 1.94 Hv; p < 0.0001), whereas BlancOne Ultra+ showed no significant difference (control: 51.64 ± 1.59 HV; treated: 51.60 ± 2.34 Hv; p = 0.95). Conclusions: HP-based agents, particularly at higher concentrations, caused greater enamel alterations than CP-based products. While clinically relevant, the results should be interpreted cautiously due to in vitro limitations and natural enamel variability. Full article
(This article belongs to the Special Issue Advances in Esthetic Dentistry)
Show Figures

Graphical abstract

42 pages, 1579 KiB  
Review
Antimicrobial Potential of Bee-Derived Products: Insights into Honey, Propolis and Bee Venom
by Agnieszka Grinn-Gofroń, Maciej Kołodziejczak, Rafał Hrynkiewicz, Filip Lewandowski, Dominika Bębnowska, Cezary Adamski and Paulina Niedźwiedzka-Rystwej
Pathogens 2025, 14(8), 780; https://doi.org/10.3390/pathogens14080780 - 6 Aug 2025
Abstract
Bee products, in particular honey, propolis and bee venom, are of growing scientific interest due to their broad spectrum of antimicrobial activity. In the face of increasing antibiotic resistance and the limitations of conventional therapies, natural bee-derived substances offer a promising alternative or [...] Read more.
Bee products, in particular honey, propolis and bee venom, are of growing scientific interest due to their broad spectrum of antimicrobial activity. In the face of increasing antibiotic resistance and the limitations of conventional therapies, natural bee-derived substances offer a promising alternative or support for the treatment of infections. This paper summarizes the current state of knowledge on the chemical composition, biological properties and antimicrobial activity of key bee products. The main mechanisms of action of honey, propolis and bee venom are presented, and their potential applications in the prevention and treatment of bacterial, viral and fungal infections are discussed. Data on their synergy with conventional drugs and prospects for use in medicine and pharmacology are also included. The available findings suggest that, with appropriate standardization and further preclinical and clinical analyses, bee products could become an effective support for the treatment of infections, especially those caused by pathogens resistant to standard therapies. Full article
15 pages, 1458 KiB  
Article
Effect of Precipitation Change on Desert Steppe Aboveground Productivity
by Yonghong Luo, Jiming Cheng, Ziyu Cao, Haixiang Zhang, Pengcuo Danba, Jiazhi Wang, Ying Wang, Rong Zhang, Chao Zhang, Yingqun Feng and Shuhua Wei
Biology 2025, 14(8), 1010; https://doi.org/10.3390/biology14081010 - 6 Aug 2025
Abstract
Precipitation changes have significant impacts on biodiversity and ecosystem productivity. However, the effects of precipitation changes on species diversity have been the focus of most previous studies. Little is known about the contributions of different dimensions of biodiversity (species, functional, and phylogenetic diversity) [...] Read more.
Precipitation changes have significant impacts on biodiversity and ecosystem productivity. However, the effects of precipitation changes on species diversity have been the focus of most previous studies. Little is known about the contributions of different dimensions of biodiversity (species, functional, and phylogenetic diversity) in linking long-term precipitation changes to ecosystem functions. In this study, a randomized design was conducted in the desert steppes of Ningxia, which included three treatments: natural rainfall, precipitation reduced by 50%, and precipitation increased by 50%. After 4 years of treatment, the effects of precipitation changes on aboveground productivity and its underlying mechanisms were explored. The results showed that (1) reduced precipitation significantly decreased phylogenetic diversity and species diversity, but had no significant effect on functional diversity; (2) reduced precipitation significantly decreased aboveground productivity, while increased precipitation significantly enhanced aboveground productivity; and (3) changes in precipitation primarily regulated aboveground productivity by altering soil nitrogen availability and the size of dominant plant species. This study provides important theoretical and practical guidance for the protection and management of desert steppe vegetation under future climate change. Full article
(This article belongs to the Section Ecology)
Show Figures

Figure 1

15 pages, 1952 KiB  
Article
Processing of Secondary Raw Materials from Ferrochrome Production via Agglomeration and Study of Their Mechanical Properties
by Yerlan Zhumagaliyev, Yerbol Shabanov, Maral Almagambetov, Maulen Jundibayev, Nursultan Ulmaganbetov, Salamat Laikhan, Akgul Jundibayeva, Aigerim Abilberikova, Nurbala Ubaidulayeva and Rysgul Adaibayeva
Metals 2025, 15(8), 878; https://doi.org/10.3390/met15080878 (registering DOI) - 6 Aug 2025
Abstract
In the process of producing ferroalloys, a large amount of secondary raw materials is formed, including slag, aspiration dusts and sludge. The recycling of secondary raw materials can create resources and bring environmental and economic benefits. Wet secondary raw materials (WSRMs) are characterized [...] Read more.
In the process of producing ferroalloys, a large amount of secondary raw materials is formed, including slag, aspiration dusts and sludge. The recycling of secondary raw materials can create resources and bring environmental and economic benefits. Wet secondary raw materials (WSRMs) are characterized by a high chromium oxide content (averaging 24%), but due to their high moisture levels, they cannot be directly used in arc furnaces. As a strategic approach, mixing WSRMs with drier, more chromium-rich dusts (up to 45% Cr2O3) has been proposed. This not only reduces the overall moisture content of the mixture but also enhances the metallurgical value of the charge material. This paper presents the results of laboratory studies on the agglomeration of secondary wet raw materials using briquetting, extrusion and pelletizing methods. The main factors influencing the quality of the resulting product were analyzed, including the method of agglomeration, the composition of the mixture, as well as the type and dosage of the binder component. The strength characteristics of the finished agglomerated samples were evaluated in terms of resistance to splitting, impact loads and falling. Notably, the selected binders are organic and polymer substances capable of complete combustion under metallurgical smelting conditions. Full article
Show Figures

Figure 1

23 pages, 3036 KiB  
Article
Research on the Synergistic Mechanism Design of Electricity-CET-TGC Markets and Transaction Strategies for Multiple Entities
by Zhenjiang Shi, Mengmeng Zhang, Lei An, Yan Lu, Daoshun Zha, Lili Liu and Tiantian Feng
Sustainability 2025, 17(15), 7130; https://doi.org/10.3390/su17157130 - 6 Aug 2025
Abstract
In the context of the global response to climate change and the active promotion of energy transformation, a number of low-carbon policies coupled with the development of synergies to help power system transformation is an important initiative. However, the insufficient articulation of the [...] Read more.
In the context of the global response to climate change and the active promotion of energy transformation, a number of low-carbon policies coupled with the development of synergies to help power system transformation is an important initiative. However, the insufficient articulation of the green power market, tradable green certificate (TGC) market, and carbon emission trading (CET) mechanism, and the ambiguous policy boundaries affect the trading decisions made by its market participants. Therefore, this paper systematically analyses the composition of the main players in the electricity-CET-TGC markets and their relationship with each other, and designs the synergistic mechanism of the electricity-CET-TGC markets, based on which, it constructs the optimal profit model of the thermal power plant operators, renewable energy manufacturers, power grid enterprises, power users and load aggregators under the electricity-CET-TGC markets synergy, and analyses the behavioural decision-making of the main players in the electricity-CET-TGC markets as well as the electric power system to optimise the trading strategy of each player. The results of the study show that: (1) The synergistic mechanism of electricity-CET-TGC markets can increase the proportion of green power grid-connected in the new type of power system. (2) In the selection of different environmental rights and benefits products, the direct participation of green power in the market-oriented trading is the main way, followed by applying for conversion of green power into China certified emission reduction (CCER). (3) The development of independent energy storage technology can produce greater economic and environmental benefits. This study provides policy support to promote the synergistic development of the electricity-CET-TGC markets and assist the low-carbon transformation of the power industry. Full article
Show Figures

Figure 1

14 pages, 4458 KiB  
Article
The Effect of Crevice Structure on Corrosion Behavior of P110 Carbon Steel in a Carbonated Simulated Concrete Environment
by Fanghai Ling, Chen Li, Hailin Guo and Yong Xiang
Coatings 2025, 15(8), 919; https://doi.org/10.3390/coatings15080919 (registering DOI) - 6 Aug 2025
Abstract
This study systematically investigated the corrosion behavior of P110 pipeline steel in simulated carbonated concrete environments through a combination of electrochemical testing and multiphysics simulation, with particular focus on revealing the evolution mechanisms of corrosion product deposition and ion concentration distribution under half [...] Read more.
This study systematically investigated the corrosion behavior of P110 pipeline steel in simulated carbonated concrete environments through a combination of electrochemical testing and multiphysics simulation, with particular focus on revealing the evolution mechanisms of corrosion product deposition and ion concentration distribution under half crevice structures, providing new insights into localized corrosion in concealed areas. Experimental results showed that no significant corrosion occurred on the P110 steel surface in uncarbonated simulated pore solution. Conversely, the half crevice structure significantly promoted the development of localized corrosion in carbonated simulated pore solution, with the most severe corrosion and substantial accumulation of corrosion products observed at the crevice mouth region. COMSOL Multiphysics simulations demonstrated that this phenomenon was primarily attributed to local enrichment of Cl and H+ ions, leading to peak corrosion current density, and directional migration of Fe2+ ions toward the crevice mouth, causing preferential deposition of corrosion products at this location. This “electrochemical acceleration-corrosion product deposition” multiphysics coupling analysis of corrosion product deposition patterns within crevices represents a new perspective not captured by traditional crevice corrosion models. The established ion migration-corrosion product deposition model provides new theoretical foundations for understanding crevice corrosion mechanisms and predicting the service life of buried concrete pipelines. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Graphical abstract

10 pages, 2260 KiB  
Article
Multi-Elemental Analysis for the Determination of the Geographic Origin of Tropical Timber from the Brazilian Legal Amazon
by Marcos David Gusmao Gomes, Fábio José Viana Costa, Clesia Cristina Nascentes, Luiz Antonio Martinelli and Gabriela Bielefeld Nardoto
Forests 2025, 16(8), 1284; https://doi.org/10.3390/f16081284 - 6 Aug 2025
Abstract
Illegal logging is a major threat to tropical forests; however, control mechanisms and efforts to combat illegal logging have not effectively curbed fraud in the production chain, highlighting the need for effective methods to verify the geographic origin of timber. This study investigates [...] Read more.
Illegal logging is a major threat to tropical forests; however, control mechanisms and efforts to combat illegal logging have not effectively curbed fraud in the production chain, highlighting the need for effective methods to verify the geographic origin of timber. This study investigates the application of multi-elemental analysis combined with Principal Component Analysis (PCA) to discriminate the provenance of tropical timber in the Brazilian Legal Amazon. Wood samples of Hymenaea courbaril L. (Jatobá), Handroanthus sp. (Ipê), and Manilkara huberi (Ducke) A. Chevalier. (Maçaranduba) were taken from multiple sites. Elemental concentrations were determined via Inductively Coupled Plasma Mass Spectrometry (ICP-MS), and CA was applied to evaluate geographic differentiation. Significant differences in elemental profiles were found among locations, particularly when using the intermediate disk portions (25% to 75%), and especially the average of all five sampled portions, which proved most effective in geographic discrimination of the trunk. Elements such as Ca, Sr, Cr, Cu, Zn, and B were especially important for spatial discrimination. These findings underscore the forensic potential of multi-elemental wood profiling as a tool to support law enforcement and environmental monitoring by providing scientifically grounded evidence of timber origin. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

23 pages, 3314 KiB  
Article
Functional Express Proteomics for Search and Identification of Differentially Regulated Proteins Involved in the Reaction of Wheat (Triticum aestivum L.) to Nanopriming by Gold Nanoparticles
by Natalia Naraikina, Tomiris Kussainova, Andrey Shelepchikov, Alexey Tretyakov, Alexander Deryabin, Kseniya Zhukova, Valery Popov, Irina Tarasova, Lev Dykman and Yuliya Venzhik
Int. J. Mol. Sci. 2025, 26(15), 7608; https://doi.org/10.3390/ijms26157608 - 6 Aug 2025
Abstract
Proteomic profiling using ultrafast chromatography–mass spectrometry provides valuable insights into plant responses to abiotic factors by linking molecular changes with physiological outcomes. Nanopriming, a novel approach involving the treatment of seeds with nanoparticles, has demonstrated potential for enhancing plant metabolism and productivity. However, [...] Read more.
Proteomic profiling using ultrafast chromatography–mass spectrometry provides valuable insights into plant responses to abiotic factors by linking molecular changes with physiological outcomes. Nanopriming, a novel approach involving the treatment of seeds with nanoparticles, has demonstrated potential for enhancing plant metabolism and productivity. However, the molecular mechanisms underlying nanoparticle-induced effects remain poorly understood. In this study, we investigated the impact of gold nanoparticle (Au-NP) seed priming on the proteome of wheat (Triticum aestivum L.) seedlings. Differentially regulated proteins (DRPs) were identified, revealing a pronounced reorganization of the photosynthetic apparatus (PSA). Both the light-dependent reactions and the Calvin cycle were affected, with significant upregulation of chloroplast-associated protein complexes, including PsbC (CP43), chlorophyll a/b-binding proteins, Photosystem I subunits (PsaA and PsaB), and the γ-subunit of ATP synthase. The large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo) exhibited over a threefold increase in expression in Au-NP-treated seedlings. The proteomic changes in the large subunit RuBisCo L were corroborated by transcriptomic data. Importantly, the proteomic changes were supported by physiological and biochemical analyses, ultrastructural modifications in chloroplasts, and increased photosynthetic activity. Our findings suggest that Au-NP nanopriming triggers coordinated molecular responses, enhancing the functional activity of the PSA. Identified DRPs may serve as potential biomarkers for further elucidation of nanopriming mechanisms and for the development of precision strategies to improve crop productivity. Full article
(This article belongs to the Special Issue Molecular Research and Applications of Nanomaterials)
Show Figures

Figure 1

12 pages, 1432 KiB  
Article
Optimizing Gear Selection and Engine Speed to Reduce CO2 Emissions in Agricultural Tractors
by Murilo Battistuzzi Martins, Jessé Santarém Conceição, Aldir Carpes Marques Filho, Bruno Lucas Alves, Diego Miguel Blanco Bertolo, Cássio de Castro Seron, João Flávio Floriano Borges Gomides and Eduardo Pradi Vendruscolo
AgriEngineering 2025, 7(8), 250; https://doi.org/10.3390/agriengineering7080250 - 6 Aug 2025
Abstract
In modern agriculture, tractors play a crucial role in powering tools and implements. Proper operation of agricultural tractors in mechanized field operations can support sustainable agriculture and reduce emissions of pollutants such as carbon dioxide (CO2). This has been a recurring [...] Read more.
In modern agriculture, tractors play a crucial role in powering tools and implements. Proper operation of agricultural tractors in mechanized field operations can support sustainable agriculture and reduce emissions of pollutants such as carbon dioxide (CO2). This has been a recurring concern associated with agricultural intensification for food production. This study aimed to evaluate the optimization of tractor gears and engine speed during crop operations to minimize CO2 emissions and promote sustainability. The experiment was conducted using a strip plot design with subdivided sections and six replications, following a double factorial structure. The first factor evaluated was the type of agricultural implement (disc harrow, subsoiler, or sprayer), while the second factor was the engine speed setting (nominal or reduced). Operational and energy performance metrics were analyzed, including fuel consumption and CO2 emissions, travel speed, effective working time, wheel slippage, and working depth. Optimized gear selection and engine speeds resulted in a 20 to 40% reduction in fuel consumption and CO2 emissions. However, other evaluated parameters remain unaffected by the reduced engine speed, regardless of the implement used, ensuring the operation’s quality. Thus, optimizing operator training or configuring machines allows for environmental impact reduction, making agricultural practices more sustainable. Full article
(This article belongs to the Collection Research Progress of Agricultural Machinery Testing)
Show Figures

Figure 1

18 pages, 4127 KiB  
Article
Sustainable Use of Volcanic Ash in Mortars as a Replacement for Cement or Sand: Shrinkage and Physical and Mechanical Properties
by Luisa María Gil-Martín, Miguel José Oliveira, Manuel Alejandro Fernández-Ruiz, Fernando G. Branco and Enrique Hernández-Montes
Materials 2025, 18(15), 3694; https://doi.org/10.3390/ma18153694 - 6 Aug 2025
Abstract
The eruption of the Cumbre Vieja volcano on 19 September 2021 resulted in the deposition of over 20 million cubic meters of tephra, posing significant environmental and logistical challenges in the affected areas. This study aimed to explore the valorization of volcanic ash [...] Read more.
The eruption of the Cumbre Vieja volcano on 19 September 2021 resulted in the deposition of over 20 million cubic meters of tephra, posing significant environmental and logistical challenges in the affected areas. This study aimed to explore the valorization of volcanic ash (VA) by evaluating its potential use in producing sustainable mortar by incorporating it as a replacement for cement or sand. Various experimental mixtures were prepared with different proportions of VA which substituted either cement or sand, and these mixes were characterized through a mechanical and microstructural campaign. Additionally, shrinkage was evaluated for the mixtures which showed good mechanical results. The results suggest that partially replacing cement with up to 15% ground VA as well as substituting sand with up to 25% VA are promising strategies for the production of sustainable mortar mixes. This research contributes to the understanding of the influence of VA in cementitious matrices and offers a novel approach for integrating locally available geomaterials into infrastructure design in volcanic active regions. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

Back to TopTop