Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (40,495)

Search Parameters:
Keywords = mechanical expression

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 846 KiB  
Article
Uncovering Allele-Specific Expression Patterns Associated with Sea Lice (Caligus rogercresseyi) Burden in Atlantic Salmon
by Pablo Cáceres, Paulina López, Carolina Araya, Daniela Cichero, Liane N. Bassini and José M. Yáñez
Genes 2025, 16(7), 841; https://doi.org/10.3390/genes16070841 (registering DOI) - 19 Jul 2025
Abstract
Background/Objetives: Sea lice (Caligus rogercresseyi) pose a major threat to Atlantic salmon (Salmo salar) aquaculture by compromising fish health and reducing production efficiency. While genetic variation in parasite load has been reported, the molecular mechanisms underlying this variation remain [...] Read more.
Background/Objetives: Sea lice (Caligus rogercresseyi) pose a major threat to Atlantic salmon (Salmo salar) aquaculture by compromising fish health and reducing production efficiency. While genetic variation in parasite load has been reported, the molecular mechanisms underlying this variation remain unclear. Methods: two sea lice challenge trials were conducted, achieving high infestation rates (47.5% and 43.5%). A total of 85 fish, selected based on extreme phenotypes for lice burden (42 low, 43 high), were subjected to transcriptomic analysis. Differential gene expression was integrated with allele-specific expression (ASE) analysis to uncover cis-regulatory variation influencing host response. Results: Sixty genes showed significant ASE (p < 0.05), including 33 overexpressed and 27 underexpressed. Overexpressed ASE genes included Keratin 15, Collagen IV/V, TRIM16, and Angiopoietin-1-like, which are associated with epithelial integrity, immune response, and tissue remodeling. Underexpressed ASE genes such as SOCS3, CSF3R, and Neutrophil cytosolic factor suggest individual variation in cytokine signaling and oxidative stress pathways. Conclusions: several ASE genes co-localized with previously identified QTLs for sea lice resistance, indicating that cis-regulatory variants contribute to phenotypic differences in parasite susceptibility. These results highlight ASE analysis as a powerful tool to identify functional regulatory elements and provide valuable candidates for selective breeding and genomic improvement strategies in aquaculture. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

15 pages, 2174 KiB  
Article
Weak Acids as Endogenous Inhibitors of the Proton-Activated Chloride Channel
by Inês C. A. Pombeiro Stein, Maren Schulz, Daniel Rudolf, Christine Herzog, Frank Echtermeyer, Nils Kriedemann, Robert Zweigerdt and Andreas Leffler
Cells 2025, 14(14), 1110; https://doi.org/10.3390/cells14141110 (registering DOI) - 19 Jul 2025
Abstract
The recently identified proton-activated chloride (PAC) channel is ubiquitously expressed, and it regulates several proton-sensitive physiological and pathophysiological processes. While the PAC channel is activated by strong acids due to the binding of protons to extracellular binding sites, here, we describe the way [...] Read more.
The recently identified proton-activated chloride (PAC) channel is ubiquitously expressed, and it regulates several proton-sensitive physiological and pathophysiological processes. While the PAC channel is activated by strong acids due to the binding of protons to extracellular binding sites, here, we describe the way in which weak acids inhibit the PAC channel by a mechanism involving a distinct extracellular binding site. Whole-cell patch clamp was performed on wildtype HEK293T cells, PAC-knockout HEK293 cells expressing human (h)PAC mutant constructs, and on hiPSC-derived cardiomyocytes. Proton-induced cytotoxicity was examined in HEK293T cells. Acetic acid inhibited endogenous PAC channels in HEK 293T cells in a reversible, concentration-dependent, and pH-dependent manner. The inhibition of PAC channels was also induced by lactic acid, propionic acid, itaconic acid, and β-hydroxybutyrate. Weak acids also inhibited recombinant wildtype hPAC channels and PAC-like currents in hiPSC-derived cardiomyocytes. Replacement of the extracellular arginine 93 by an alanine (hPAC–Arg93Ala) strongly reduced the inhibition by some weak acids, including arachidonic acid. Although lactic acid inhibited PAC, it did not reduce the proton-induced cytotoxicity examined in wildtype HEK 293 cells. To conclude, weak acids inhibit PAC via an extracellular mechanism involving Arg93. These data warrant further investigations into the regulation of the PAC channel by endogenous weak acids. Full article
(This article belongs to the Special Issue pH Sensing, Signaling, and Regulation in Cellular Processes)
Show Figures

Figure 1

19 pages, 1944 KiB  
Article
Impact of Polystyrene Microplastics on Human Sperm Functionality: An In Vitro Study of Cytotoxicity, Genotoxicity and Fertility-Related Genes Expression
by Filomena Mottola, Maria Carannante, Ilaria Palmieri, Lorenzo Ibello, Luigi Montano, Mariaceleste Pezzullo, Nicola Mosca, Nicoletta Potenza and Lucia Rocco
Toxics 2025, 13(7), 605; https://doi.org/10.3390/toxics13070605 (registering DOI) - 19 Jul 2025
Abstract
Polystyrene microplastics (PS-MPs) released in the environment reportedly affect the reproduction of various organisms, induced oxidative stress and apoptosis, resulting in altered sperm parameters. In this in vitro study, we tested the cytotoxicity and genotoxicity of PS-MPs by exposing human semen samples to [...] Read more.
Polystyrene microplastics (PS-MPs) released in the environment reportedly affect the reproduction of various organisms, induced oxidative stress and apoptosis, resulting in altered sperm parameters. In this in vitro study, we tested the cytotoxicity and genotoxicity of PS-MPs by exposing human semen samples to PS-MPs levels (105 and 210 μg/mL) for 30–60–90 min. Semen parameters, genome stability, sperm DNA fragmentation (SDF) and reactive oxygen species (ROS) production were analyzed before and after exposure. Moreover, we also evaluated the expression level of spermatozoa-specific expressed genes essential for the fusion with oocyte (DCST1, DCST2, IZUMO1, SPACA6, SOF1, and TMEM95). After PS-MP exposure, semen concentration and morphology did not differ, while sperm vitality and motility decreased in a time-dependent manner. In addition, sperm agglutination was observed in the groups exposed to both PS-MPs concentrations tested. A time- and concentration-dependent reduction in genomic stability, as well as increased SDF and ROS production, was also observed. Moreover, all investigated transcripts were down-regulated after PS-MP exposure. Our results confirm the oxidative stress-mediated genotoxicity and cytotoxicity of PS-MPs on human spermatozoa. The sperm agglutination observed after treatment could be due to the aggregation of PS-MPs already adhered to the sperm membranes, hindering sperm movement and fertilizing capability. Interestingly, the downregulation of genes required for sperm–oocyte fusion, resulting from data on the in vitro experimental system, suggests that PS-MP exposure may have implications for sperm functionality. While these findings highlight potential mechanisms of sperm dysfunction, further investigations using in vivo models are needed to determine their broader biological implications. Possible environmental and working exposure to pollutants should be considered during the counselling for male infertility. Full article
(This article belongs to the Section Reproductive and Developmental Toxicity)
Show Figures

Graphical abstract

12 pages, 3566 KiB  
Article
Differential Regulation of Angiogenesis, Lymphangiogenesis, and Neural Tissue in Normal and Inflamed Dental Pulp: Immunohistochemical Analysis
by Nooruldeen Ammar Alani and Bashar Hamid Abdullah
Diagnostics 2025, 15(14), 1819; https://doi.org/10.3390/diagnostics15141819 (registering DOI) - 19 Jul 2025
Abstract
Background/Objectives: Pulp inflammation impairs healing, yet the underlying vascular and neural mechanisms remain poorly understood. This study investigated the differential regulation of lymphatic vessels, blood vessels, and neural tissue in pulpitis to elucidate healing limitations in inflamed dental pulp. Methods: This study evaluated [...] Read more.
Background/Objectives: Pulp inflammation impairs healing, yet the underlying vascular and neural mechanisms remain poorly understood. This study investigated the differential regulation of lymphatic vessels, blood vessels, and neural tissue in pulpitis to elucidate healing limitations in inflamed dental pulp. Methods: This study evaluated 38 pulp samples (14 symptomatic irreversible pulpitis, 13 asymptomatic irreversible pulpitis, and 11 healthy controls) via immunohistochemistry, using D2-40 to identify lymphatic vessels, CD31 to mark blood vessels, and PGP9.5 to detect neural tissue. Vessel counts and neural tissue scoring were performed by blinded examiners and analyzed using appropriate statistical tests. Results: Dental pulp with symptomatic irreversible pulpitis exhibited significantly increased blood vessel density (50.3 vs. 39.2 in asymptomatic irreversible pulpitis and 25.8 in controls, p = 0.001, Cohen’s d = 1.82), while lymphatic vessel density remained unchanged across all groups (p ≥ 0.05), indicating impaired lymphangiogenesis despite inflammation. Neural tissue density was consistent across conditions, with a significant negative correlation between PGP9.5 expression and age (r = −0.5, p = 0.001). CD31 and D2-40 expression showed a positive correlation (r = 0.389, p = 0.016), suggesting coordinated vascular development. Conclusions: Our findings reveal a critical imbalance between enhanced angiogenesis and impaired lymphangiogenesis during pulpitis, potentially explaining the compromised healing capacity of inflamed dental pulp. This vascular dysregulation, combined with persistent neural tissue density, creates an environment in which inflammatory exudates accumulate with limited clearance. These insights indicate a need for new therapeutic strategies aimed at enhancing lymphangiogenesis to improve endodontic outcomes. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

21 pages, 1656 KiB  
Article
Metabolomic Profiling of Desiccation Response in Recalcitrant Quercus acutissima Seeds
by Haiyan Chen, Fenghou Shi, Boqiang Tong, Yizeng Lu and Yongbao Shen
Agronomy 2025, 15(7), 1738; https://doi.org/10.3390/agronomy15071738 - 18 Jul 2025
Abstract
Quercus acutissima seeds exhibit high desiccation sensitivity, posing significant challenges for long-term preservation. This study investigates the physiological and metabolic responses of soluble osmoprotectants—particularly soluble proteins and proline—during the desiccation process. Seeds were sampled at three critical moisture content levels: 38.8%, 26.8%, and [...] Read more.
Quercus acutissima seeds exhibit high desiccation sensitivity, posing significant challenges for long-term preservation. This study investigates the physiological and metabolic responses of soluble osmoprotectants—particularly soluble proteins and proline—during the desiccation process. Seeds were sampled at three critical moisture content levels: 38.8%, 26.8%, and 14.8%, corresponding to approximately 99%, 52%, and 0% germination, respectively. We measured germination ability, soluble protein content, and proline accumulation, and we performed untargeted metabolomic profiling using LC-MS. Soluble protein levels increased early but declined later during desiccation, while proline levels continuously increased for sustained osmotic adjustment. Metabolomics analysis identified a total of 2802 metabolites, with phenylpropanoids and polyketides (31.12%) and lipids and lipid-like molecules (29.05%) being the most abundant. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that differentially expressed metabolites were mainly enriched in key pathways such as amino acid metabolism, energy metabolism, and nitrogen metabolism. Notably, most amino acids decreased in content, except for proline, which showed an increasing trend. Tricarboxylic acid cycle intermediates, especially citric acid and isocitric acid, showed significantly decreased levels, indicating energy metabolism imbalance due to uncoordinated consumption without effective replenishment. The reductions in key amino acids such as glutamic acid and aspartic acid further reflected metabolic network disruption. In summary, Q. acutissima seeds fail to establish an effective desiccation tolerance mechanism. The loss of soluble protein-based protection, limited capacity for proline-mediated osmotic regulation, and widespread metabolic disruption collectively lead to irreversible cellular damage. These findings highlight the inherent metabolic vulnerabilities of recalcitrant seeds and suggest potential preservation strategies, such as supplementing critical metabolites (e.g., TCA intermediates) during storage to delay metabolic collapse and mitigate desiccation-induced damage. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
37 pages, 20768 KiB  
Article
Design, Synthesis, and Testing of 1,2,3-Triazolo-Quinobenzothiazine Hybrids for Cytotoxic and Immunomodulatory Activity
by Klaudia Giercuszkiewicz-Haśnik, Magdalena Skonieczna, Beata Morak-Młodawska and Małgorzata Jeleń
Int. J. Mol. Sci. 2025, 26(14), 6920; https://doi.org/10.3390/ijms26146920 - 18 Jul 2025
Abstract
Phenothiazines, mainly known for their antipsychotic activity, have recently attracted attention as potential compounds with anticancer and immunomodulatory activity In this study, 20 new quinobenzothiazines (MJ1MJ20) were synthesized and their effects on normal cell lines (BEAS-2B, NHDF) and cancer [...] Read more.
Phenothiazines, mainly known for their antipsychotic activity, have recently attracted attention as potential compounds with anticancer and immunomodulatory activity In this study, 20 new quinobenzothiazines (MJ1MJ20) were synthesized and their effects on normal cell lines (BEAS-2B, NHDF) and cancer cell lines (HCT116, MCF7, A549, SH-SY5Y, U2OS) were investigated. The studies included cytotoxicity assessment, analysis of the expression of genes (BCL2, AIFM2, MDM2) and pro-inflammatory cytokines (IL6, IL8) using the RT-qPCR method, and prediction of biological activity using the PASS platform. The results indicate that the compounds MJ19 and MJ20 have the greatest effect on the induction of pro-inflammatory (IL6, IL8) and antiapoptotic (BCL2, MDM2) genes, suggesting their potential use in therapies for inflammatory and autoimmune diseases. Gene expression analysis showed that compound MJ2 in BEAS-2B cells significantly induced the expression of AIFM2, a protein responsible for protecting against ferroptosis, while moderately increasing the expression of BCL2 and MDM2, suggesting a potential role for MJ2 in the modulation of protective mechanisms of healthy cells, e.g., avoiding apoptosis death. These results emphasize the potential of quinobenzothiazines as multifunctional bioactive compounds, which require further studies to determine their mechanisms of action and specificity. Full article
(This article belongs to the Special Issue Techniques and Strategies in Drug Design and Discovery, 3rd Edition)
Show Figures

Figure 1

19 pages, 4255 KiB  
Article
Impacts of Early Weaning on Lamb Gut Health and Immune Function: Short-Term and Long-Term Effects
by Chong Li, Yunfei Xu, Jiale Jia, Xiuxiu Weng, Yang Zhang, Jialin Peng, Xueming An and Guoxiu Wang
Animals 2025, 15(14), 2135; https://doi.org/10.3390/ani15142135 - 18 Jul 2025
Abstract
Despite the known impacts of weaning on animal health, the underlying molecular mechanisms remain unclear, particularly how psychological and nutritional stress differentially affect gut health and immune function over time. This study hypothesized that early weaning exerts distinct short- and long-term effects on [...] Read more.
Despite the known impacts of weaning on animal health, the underlying molecular mechanisms remain unclear, particularly how psychological and nutritional stress differentially affect gut health and immune function over time. This study hypothesized that early weaning exerts distinct short- and long-term effects on lamb stress physiology, immunity, and gut health, mediated by specific molecular pathways. Twelve pairs of full-sibling male Hu sheep lambs were assigned to control (CON) or early-weaned (EW) groups. Plasma stress/immune markers were dynamically monitored, and intestinal morphology, antioxidant capacity, apoptosis, and transcriptomic profiles were analyzed at 5 and 28 days post-weaning. Early weaning triggered transient psychological stress, elevating hypothalamic–pituitary–adrenal (HPA) axis hormones (cortisol, catecholamines) and inflammatory cytokines (TNF-α) within 1 day (p < 0.05); however, stress responses were transient and recovered by 7 days post-weaning. Sustained intestinal remodeling was observed in EW lambs, featuring reduced ileal villus height, increased crypt depth (p < 0.05), and oxidative damage (MDA levels doubled vs. CON; p < 0.01). Compensatory epithelial adaptation included increased crypt depth but paradoxically reduced villus tip apoptosis. The transcriptome analysis revealed significant changes in gene expression related to immune function, fat digestion, and metabolism. Key DEGs included APOA4, linked to lipid transport adaptation; NOS2, associated with nitric oxide-mediated immune–metabolic crosstalk; and mitochondrial gene COX1, reflecting energy metabolism dysregulation. Protein–protein interaction analysis revealed NOS2 as a hub gene interacting with IDO1 and CXCL11, connecting oxidative stress to immune cell recruitment. Early weaning exerts minimal lasting psychological stress but drives persistent gut dysfunction through transcriptome-mediated changes in metabolic and immune pathways, highlighting key genes such as APOA4, NOS2, and COX1 as potential regulators of these effects. Full article
(This article belongs to the Topic Feeding Livestock for Health Improvement)
Show Figures

Figure 1

21 pages, 4951 KiB  
Article
Copper Pyrithione Induces Hepatopancreatic Apoptosis and Metabolic Disruption in Litopenaeus vannamei: Integrated Transcriptomic, Metabolomic, and Histopathological Analysis
by Jieyu Guo, Yang Yang, Siying Yu, Cairui Jiang, Xianbin Su, Yongfeng Zou and Hui Guo
Animals 2025, 15(14), 2134; https://doi.org/10.3390/ani15142134 - 18 Jul 2025
Abstract
Copper pyrithione (CuPT), an emerging biocide used in ship antifouling coatings, may accumulate in marine sediments and pose risks to non-target organisms. However, current research on CuPT toxicity remains limited. Litopenaeus vannamei, one of the world’s most important aquaculture shrimp species, relies [...] Read more.
Copper pyrithione (CuPT), an emerging biocide used in ship antifouling coatings, may accumulate in marine sediments and pose risks to non-target organisms. However, current research on CuPT toxicity remains limited. Litopenaeus vannamei, one of the world’s most important aquaculture shrimp species, relies heavily on its hepatopancreas for energy metabolism, detoxification, and immune responses. Due to their benthic habitat, these shrimps are highly vulnerable to contamination in sediment environments. This study investigated the toxicological response in the hepatopancreas of L. vannamei exposed to CuPT (128 μg/L) for 3 and 48 h. Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL) fluorescence staining revealed increased apoptosis, deformation of hepatic tubule lumens, and the loss of stellate structures in the hepatopancreas after CuPT 48 h exposure. A large number of differentially expressed genes (DEGs) were identified by transcriptomics analysis at 3 and 48 h, respectively. Most of these DEGs were related to detoxification, glucose transport, and immunity. Metabolomic analysis identified numerous significantly different metabolites (SDMs) at both 3 and 48 h post-exposure, with most SDMs associated with energy metabolism, fatty acid metabolism, and related pathways. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of metabolomics and transcriptome revealed that both DEGs and SDMs were enriched in arachidonic acid metabolism, fatty acid biosynthesis, and glycolysis/gluconeogenesis pathways at 3 h, while at 48 h they were enriched in the starch and sucrose metabolism, amino sugar and nucleotide sugar metabolism, and galactose metabolism pathways. These results suggested that CuPT disrupts the energy and lipid homeostasis of L. vannamei. This disruption compelled L. vannamei to allocate additional energy toward sustaining basal physiological functions and consequently caused the accumulation of large amounts of reactive oxygen species (ROS) in the body, leading to apoptosis and subsequent tissue damage, and ultimately suppressed the immune system and impaired the health of L. vannamei. Our study elucidates the molecular mechanisms of CuPT-induced metabolic disruption and immunotoxicity in L. vannamei through integrated multi-omics analyses, providing new insights for ecological risk assessment of this emerging antifoulant. Full article
(This article belongs to the Special Issue Ecology of Aquatic Crustaceans: Crabs, Shrimps and Lobsters)
28 pages, 2988 KiB  
Review
Circular RNAs as Targets for Developing Anticancer Therapeutics
by Jaewhoon Jeoung, Wonho Kim, Hyein Jo and Dooil Jeoung
Cells 2025, 14(14), 1106; https://doi.org/10.3390/cells14141106 - 18 Jul 2025
Abstract
Circular RNA (CircRNA) is a single-stranded RNA arising from back splicing. CircRNAs interact with mRNA, miRNA, and proteins. These interactions regulate various life processes, including transcription, translation, cancer progression, anticancer drug resistance, and metabolism. Due to a lack of cap and poly(A) tails, [...] Read more.
Circular RNA (CircRNA) is a single-stranded RNA arising from back splicing. CircRNAs interact with mRNA, miRNA, and proteins. These interactions regulate various life processes, including transcription, translation, cancer progression, anticancer drug resistance, and metabolism. Due to a lack of cap and poly(A) tails, circRNAs show exceptional stability and resistance to RNase degradation. CircRNAs exhibit dysregulated expression patterns in various cancers and influence cancer progression. Stability and regulatory roles in cancer progression make circRNAs reliable biomarkers and targets for the development of anticancer therapeutics. The dysregulated expression of circRNAs is associated with resistance to anticancer drugs. Enhanced glycolysis by circRNAs leads to resistance to anticancer drugs. CircRNAs have been known to regulate the response to chemotherapy drugs and immune checkpoint inhibitors. Exogenous circRNAs can encode antigens that can induce both innate and adaptive immunity. CircRNA vaccines on lipid nanoparticles have been shown to enhance the sensitivity of cancer patients to immune checkpoint inhibitors. In this review, we summarize the roles and mechanisms of circRNAs in anticancer drug resistance and glycolysis. This review discusses clinical applications of circRNA vaccines to overcome anticancer drug resistance and enhance the efficacy of immune checkpoint inhibitors. The advantages and disadvantages of circRNA vaccines are also discussed. Overall, this review stresses the potential value of circRNAs as new therapeutic targets and diagnostic/prognostic biomarkers for cancer Full article
Show Figures

Figure 1

16 pages, 1323 KiB  
Article
Abscisic Acid Enhances Ex Vitro Acclimatization Performance in Hop (Humulus lupulus L.)
by Luciana Di Sario, David Navarro-Payá, María F. Zubillaga, José Tomás Matus, Patricia A. Boeri and Gastón A. Pizzio
Int. J. Mol. Sci. 2025, 26(14), 6923; https://doi.org/10.3390/ijms26146923 - 18 Jul 2025
Abstract
Humulus lupulus L. (hop) is a multipurpose crop valued for its essential role in beer production and for its bioactive compounds with recognized medicinal properties. Otherwise, climate change represents a major challenge to agriculture, particularly impacting the cultivation of crops with stenoecious characteristics, [...] Read more.
Humulus lupulus L. (hop) is a multipurpose crop valued for its essential role in beer production and for its bioactive compounds with recognized medicinal properties. Otherwise, climate change represents a major challenge to agriculture, particularly impacting the cultivation of crops with stenoecious characteristics, such as hop. This highlights the urgent need to enhance crop resilience to adverse environmental conditions. The phytohormone abscisic acid (ABA) is a key regulator of plant responses to abiotic stress, yet the ABA signaling pathway remains poorly characterized in hop. Harnessing the publicly available hop genomics resources, we identified eight members of the PYRABACTIN RESISTANCE 1 LIKE ABA receptor family (HlPYLs). Phylogenetic and gene structure analyses classified these HlPYLs into the three canonical ABA receptor subfamilies. Furthermore, all eight HlPYLs are likely functional, as suggested by the protein sequence visual analysis. Expression profiling indicates that ABA perception in hop is primarily mediated by the HlPYL1-like and HlPYL8-like subfamilies, while the HlPYL4-like group appears to play a more limited role. Structure modeling and topology predictions of HlPYL1b and HlPYL2 provided insights into their potential functional mechanisms. To assess the physiological relevance of ABA signaling in hop, we evaluated the impact of exogenous ABA application during the ex vitro acclimatization phase. ABA-treated plants exhibited more robust growth, reduced stress symptoms, and improved acclimatization success. These effects were associated with reduced leaf transpiration and enhanced stomatal closure, consistent with ABA-mediated drought tolerance mechanisms. Altogether, this study provides the first comprehensive characterization of ABA receptor components in hop and demonstrates the practical utility of ABA in improving plant performance under ex vitro conditions. These findings lay the groundwork for further functional studies and highlight ABA signaling as a promising target for enhancing stress resilience in hop, with broader implications for sustainable agriculture in the face of climate change. Full article
(This article belongs to the Special Issue The Role of Phytohormones in Plant Biotic/Abiotic Stress Tolerance)
35 pages, 4837 KiB  
Review
MicroRNA-Based Delivery Systems for Chronic Neuropathic Pain Treatment in Dorsal Root Ganglion
by Stefan Jackson, Maria Rosa Gigliobianco, Cristina Casadidio, Piera Di Martino and Roberta Censi
Pharmaceutics 2025, 17(7), 930; https://doi.org/10.3390/pharmaceutics17070930 - 18 Jul 2025
Abstract
Neuropathic pain is a significant global clinical issue that poses substantial challenges to both public health and the economy due to its complex underlying mechanisms. It has emerged as a serious health concern worldwide. Recent studies involving dorsal root ganglion (DRG) stimulation have [...] Read more.
Neuropathic pain is a significant global clinical issue that poses substantial challenges to both public health and the economy due to its complex underlying mechanisms. It has emerged as a serious health concern worldwide. Recent studies involving dorsal root ganglion (DRG) stimulation have provided strong evidence supporting its effectiveness in alleviating chronic pain and its potential for sustaining long-term pain relief. In addition to that, there has been ongoing research with clinical evidence relating to the role of small non-coding ribonucleic acids known as microRNAs in regulating gene expressions affecting pain signals. The signal pathway involves alterations in neuronal excitation, synaptic transmission, dysregulated signaling, and subsequent pro-inflammatory response activation and pain development. When microRNAs are dysregulated in the dorsal root ganglia neurons, they polarize macrophages from anti-inflammatory M2 to inflammatory M1 macrophages causing pain signal generation. By reversing this polarization, a therapeutic activity can be induced. However, the direct delivery of these nucleotides has been challenging due to limitations such as rapid clearance, degradation, and reduction in half-life. Therefore, safe and efficient carrier vehicles are fundamental for microRNA delivery. Here, we present a comprehensive analysis of miRNA-based nano-systems for chronic neuropathic pain, focusing on their impact in dorsal root ganglia. This review provides a critical evaluation of various delivery platforms, including viral, polymeric, lipid-based, and inorganic nanocarriers, emphasizing their therapeutic potential as well as their limitations in the treatment of chronic neuropathic pain. Innovative strategies such as hybrid nanocarriers and stimulus-responsive systems are also proposed to enhance the prospects for clinical translation. Serving as a roadmap for future research, this review aims to guide the development and optimization of miRNA-based therapies for effective and sustained neuropathic pain management. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Graphical abstract

13 pages, 1464 KiB  
Article
Transcriptomic Profiling Reveals Gene Expression Changes in Mouse Liver Tissue During Alveolar Echinococcosis
by Xiongying Zhang, Qing Zhang, Na Liu, Jia Liu, Huixia Cai, Cunzhe Zhao, Kemei Shi, Wen Lei, Wanli Ma, Shuai Guo, Wei Wang, Xiao Ma and Mei Wang
Genes 2025, 16(7), 839; https://doi.org/10.3390/genes16070839 - 18 Jul 2025
Abstract
Background/Objectives: Alveolar echinococcosis (AE), caused by Echinococcus multilocularis larvae, poses a significant global health concern. Primarily affecting regions in the northern hemisphere, such as northwest China, which are vital for animal husbandry, it often results in severe hepatic impairment in the host. However, [...] Read more.
Background/Objectives: Alveolar echinococcosis (AE), caused by Echinococcus multilocularis larvae, poses a significant global health concern. Primarily affecting regions in the northern hemisphere, such as northwest China, which are vital for animal husbandry, it often results in severe hepatic impairment in the host. However, there remains a dearth of knowledge concerning changes in gene expression profiles during the progression of AE. In this study, we employed transcriptome sequencing (RNA sequencing, RNA-Seq) to detect alterations in gene expression profiles in the liver tissues of mice with AE. Our aims were to understand the transcriptome differences in the liver during E. multilocularis infection and to explore the molecular mechanisms underlying the early progression of this disease. Methods: We established a mouse model of AE by intraperitoneally injecting protoscoleces of E. multilocularis. All the inoculated mice were randomly divided into four groups. Liver tissues were collected at 6, 12, 19, and 25 weeks after inoculation. Paired non-infected mouse-derived liver tissues were used as controls, and transcriptome sequencing was carried out. Results: A total of 629 differentially expressed genes (DEGs) were identified. Among them, 370 genes were upregulated and 259 genes were downregulated. Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that these DEGs were significantly associated with immune system modulation, the cell cycle, and the fibrosis process during the pathological changes. Additionally, weighted gene co-expression network analysis (WGCNA) identified several genes, including CCNA2, BIRC5, KIF2C, OTC, TLR2, and NCKAP1L. These hub genes involved in immunoinflammatory processes may be related to E. multilocularis larvae infection. Conclusions: The findings of this research provide a theoretical foundation for a more in-depth understanding of the molecular mechanisms of AE. They offer valuable insights into the molecular mechanisms and potential key factors involved in the pathogenesis of this disease. Full article
25 pages, 3349 KiB  
Article
Upregulation of the Antioxidant Response-Related microRNAs miR-146a-5p and miR-21-5p in Gestational Diabetes: An Analysis of Matched Samples of Extracellular Vesicles and PBMCs
by Jovana Stevanović, Ninoslav Mitić, Ana Penezić, Ognjen Radojičić, Daniela Ardalić, Milica Mandić, Vesna Mandić-Marković, Željko Miković, Miloš Brkušanin, Olgica Nedić and Zorana Dobrijević
Int. J. Mol. Sci. 2025, 26(14), 6902; https://doi.org/10.3390/ijms26146902 - 18 Jul 2025
Abstract
MicroRNA-based regulatory mechanisms show disturbances related to oxidative stress (OS) interconnected with inflammation (IFM), as well as impairments associated with gestational diabetes (GDM). The aim of this study was to assess the diagnostic and prognostic significance of the OS/IFM-related microRNA in GDM by [...] Read more.
MicroRNA-based regulatory mechanisms show disturbances related to oxidative stress (OS) interconnected with inflammation (IFM), as well as impairments associated with gestational diabetes (GDM). The aim of this study was to assess the diagnostic and prognostic significance of the OS/IFM-related microRNA in GDM by using peripheral blood mononuclear cells (PBMCs) and serum-derived extracellular vesicles (EVs) as biological samples. We selected the known OS/IFM-associated microRNAs miR-146a-5p, miR-155-5p, and miR-21-5p as candidates for our GDM biomarker analysis. Quantitative RT-PCR was employed for relative quantification of the selected microRNAs from paired samples of PBMCs and EVs derived from patients with GDM and healthy controls (n = 50 per group). The expression levels were analyzed for correlations with lipid and glycemic status indicators; metal ion-related parameters; serum thiol content; protein carbonyl and thiobarbituric acid-reactive substances’ (TBARS) levels; glutathione reductase (GR), Superoxide dismutase (SOD), and catalase (CAT) activity; and NRF2 expression. MiR-146a-5p and miR-21-5p were significantly upregulated in both PBMCs and EVs obtained from GDM patients. EVs-miR-21-5p showed a positive correlation with glycemic status in GDM patients, while miR-155-5p from PBMCs demonstrated correlation with iron-related parameters. The expression of selected microRNAs was found to correlate with NRF2 expression and SOD activity. The level of miR-146a-5p negatively correlated with neonatal anthropometric characteristics, while a higher level of PBMCs-miR-21-5p expression was determined in GDM patients with adverse pregnancy outcomes (p = 0.012). Our data demonstrate a disturbance of OS/IFM-microRNAs in GDM and illustrate their potential to serve as indicators of the associated OS-related changes, neonatal characteristics, and adverse pregnancy outcomes. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

23 pages, 3899 KiB  
Article
Quantitative Proteomics Reveals Fh15 as an Antagonist of TLR4 Downregulating the Activation of NF-κB, Inducible Nitric Oxide, Phagosome Signaling Pathways, and Oxidative Stress of LPS-Stimulated Macrophages
by Abersy Armina-Rodriguez, Bianca N. Valdés Fernandez, Carlimar Ocasio-Malavé, Yadira M. Cantres Rosario, Kelvin Carrasquillo Carrión, Loyda M. Meléndez, Abiel Roche Lima, Eduardo L. Tosado Rodriguez and Ana M. Espino
Int. J. Mol. Sci. 2025, 26(14), 6914; https://doi.org/10.3390/ijms26146914 - 18 Jul 2025
Abstract
There is a present need to develop alternative biotherapeutic drugs to mitigate the exacerbated inflammatory immune responses characteristic of sepsis. The potent endotoxin lipopolysaccharide (LPS), a major component of Gram-negative bacterial outer membrane, activates the immune system via Toll-like receptor 4 (TLR4), triggering [...] Read more.
There is a present need to develop alternative biotherapeutic drugs to mitigate the exacerbated inflammatory immune responses characteristic of sepsis. The potent endotoxin lipopolysaccharide (LPS), a major component of Gram-negative bacterial outer membrane, activates the immune system via Toll-like receptor 4 (TLR4), triggering macrophages and a persistent cascade of inflammatory mediators. Our previous studies have demonstrated that Fh15, a recombinant member of the Fasciola hepatica fatty acid binding protein family, can significantly increase the survival rate by suppressing many inflammatory mediators induced by LPS in a septic shock mouse model. Although Fh15 has been proposed as a TLR4 antagonist, the specific mechanisms underlying its immunomodulatory effect remained unclear. In the present study, we employed a quantitative proteomics approach using tandem mass tag (TMT) followed by LC-MS/MS analysis to identify and quantify differentially expressed proteins that participate in signaling pathways downstream TLR4 of macrophages, which can be dysregulated by Fh15. Data are available via ProteomeXchange with identifier PXD065520. Based on significant fold change (FC) cut-off of 1.5 and p-value ≤ 0.05 criteria, we focused our attention to 114 proteins that were upregulated by LPS and downregulated by Fh15. From these proteins, TNFα, IL-1α, Lck, NOS2, SOD2 and CD36 were selected for validation by Western blot on murine bone marrow-derived macrophages due to their relevant roles in the NF-κB, iNOS, oxidative stress, and phagosome signaling pathways, which are closely associated with sepsis pathogenesis. These results suggest that Fh15 exerts a broad spectrum of action by simultaneously targeting multiple downstream pathways activated by TLR4, thereby modulating various aspects of the inflammatory responses during sepsis. Full article
(This article belongs to the Special Issue From Macrophage Biology to Cell and EV-Based Immunotherapies)
19 pages, 5007 KiB  
Article
Integrated Multi-Omics Profiling Reveals That Highly Pyroptotic MDMs Contribute to Psoriasis Progression Through CXCL16
by Liping Jin, Xiaowen Xie, Mi Zhang, Wu Zhu, Guanxiong Zhang and Wangqing Chen
Biomedicines 2025, 13(7), 1763; https://doi.org/10.3390/biomedicines13071763 - 18 Jul 2025
Abstract
Background: Psoriasis, an inflammatory skin disorder, involves pyroptosis—a pro-inflammatory cell death process. However, cell-specific pyroptosis dynamics and immune microenvironment interactions remain unclear. Objective: To investigate cell-type-specific pyroptosis patterns in psoriasis and their immunoregulatory mechanisms. Methods: We integrated 21 transcriptomic datasets (from 2007 to [...] Read more.
Background: Psoriasis, an inflammatory skin disorder, involves pyroptosis—a pro-inflammatory cell death process. However, cell-specific pyroptosis dynamics and immune microenvironment interactions remain unclear. Objective: To investigate cell-type-specific pyroptosis patterns in psoriasis and their immunoregulatory mechanisms. Methods: We integrated 21 transcriptomic datasets (from 2007 to 2020) obtained from the GEO database and two single-cell RNA sequencing datasets to quantify pyroptotic activity using Gene Set Variation Analysis and AUCell algorithms. Immune cell infiltration profiles were evaluated via CIBERSORT, while cell-cell communication networks were analyzed by CellChat. In vitro and in vivo experiments were performed to validate key findings. Results: Our analysis revealed that psoriasis patients exhibited significantly elevated levels of pyroptosis compared to healthy controls, with pyroptotic activity reflecting treatment responses. Notably, monocyte-derived macrophages (MDMs) in psoriatic lesions displayed markedly heightened pyroptotic activity. In vitro experiments confirmed that MDMs derived from psoriasis patients overexpressed pyroptosis-related molecules (Caspase 1 and Caspase 4) as well as pro-inflammatory cytokines (TNFα, IL6, IL1β) when compared to healthy controls. Furthermore, these cells showed increased expression of CXCL16, which might potentially activate Th17 cells through CXCR6 signaling, thereby driving skin inflammation. Inhibition of monocyte migration in an imiquimod-induced psoriasiform dermatitis model significantly alleviated skin inflammation and reduced the proportion of M1 macrophages and Th17 cells in lesional skin. Conclusions: This study revealed that MDMs in psoriatic lesions exhibited a hyperactive pyroptotic state, which contributed to disease progression through CXCL16-mediated remodeling of the immune microenvironment. These findings highlight pyroptosis as a potential therapeutic target for psoriasis. Full article
Back to TopTop