Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (161)

Search Parameters:
Keywords = meadows protection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3293 KiB  
Article
Does Beach Sand Nourishment Have a Negative Effect on Natural Recovery of a Posidonia oceanica Seagrass Fringing Reef? The Case of La Vieille Beach (Saint-Mandrier-sur-Mer) in the North-Western Mediterranean
by Dominique Calmet, Pierre Calmet and Charles-François Boudouresque
Water 2025, 17(15), 2287; https://doi.org/10.3390/w17152287 - 1 Aug 2025
Viewed by 307
Abstract
Posidonia oceanica seagrass, endemic to the Mediterranean Sea, provides ecological goods and ecosystem services of paramount importance. In shallow and sheltered bays, P. oceanica meadows can reach the sea surface, with leaf tips slightly emerging, forming fringing and barrier reefs. During the 20th [...] Read more.
Posidonia oceanica seagrass, endemic to the Mediterranean Sea, provides ecological goods and ecosystem services of paramount importance. In shallow and sheltered bays, P. oceanica meadows can reach the sea surface, with leaf tips slightly emerging, forming fringing and barrier reefs. During the 20th century, P. oceanica declined conspicuously in the vicinity of large ports and urbanized areas, particularly in the north-western Mediterranean. The main causes of decline are land reclamation, anchoring, bottom trawling, turbidity and pollution. Artificial sand nourishment of beaches has also been called into question, with sand flowing into the sea, burying and destroying neighbouring meadows. A fringing reef of P. oceanica, located at Saint-Mandrier-sur-Mer, near the port of Toulon (Provence, France), is severely degraded. Analysis of aerial photos shows that, since the beginning of the 2000s, it has remained stable in some parts or continued to decline in others. This contrasts with the trend towards recovery, observed in France, thanks to e.g., the legally protected status of P. oceanica, and the reduction of pollution and coastal developments. The sand nourishment of the study beach, renewed every year, with the sand being washed or blown very quickly (within a few months) from the beach into the sea, burying the P. oceanica meadow, seems the most likely explanation. Other factors, such as pollution, trampling by beachgoers and overgrazing, may also play a role in the decline. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

25 pages, 5461 KiB  
Article
Spaceborne LiDAR Reveals Anthropogenic and Biophysical Drivers Shaping the Spatial Distribution of Forest Aboveground Biomass in Eastern Himalayas
by Abhilash Dutta Roy, Abraham Ranglong, Sandeep Timilsina, Sumit Kumar Das, Michael S. Watt, Sergio de-Miguel, Sourabh Deb, Uttam Kumar Sahoo and Midhun Mohan
Land 2025, 14(8), 1540; https://doi.org/10.3390/land14081540 - 27 Jul 2025
Viewed by 410
Abstract
The distribution of forest aboveground biomass density (AGBD) is a key indicator of carbon stock and ecosystem health in the Eastern Himalayas, which represents a global biodiversity hotspot that sustains diverse forest types across an elevation gradient from lowland rainforests to alpine meadows [...] Read more.
The distribution of forest aboveground biomass density (AGBD) is a key indicator of carbon stock and ecosystem health in the Eastern Himalayas, which represents a global biodiversity hotspot that sustains diverse forest types across an elevation gradient from lowland rainforests to alpine meadows and contributes to the livelihoods of more than 200 distinct indigenous communities. This study aimed to identify the key factors influencing forest AGBD across this region by analyzing the underlying biophysical and anthropogenic drivers through machine learning (random forest). We processed AGBD data from the Global Ecosystem Dynamics Investigation (GEDI) spaceborne LiDAR and applied filtering to retain 30,257 high-quality footprints across ten ecoregions. We then analyzed the relationship between AGBD and 17 climatic, topographic, soil, and anthropogenic variables using random forest regression models. The results revealed significant spatial variability in AGBD (149.6 ± 79.5 Mg ha−1) across the region. State-wise, Sikkim recorded the highest mean AGBD (218 Mg ha−1) and Manipur the lowest (102.8 Mg ha−1). Within individual ecoregions, the Himalayan subtropical pine forests exhibited the highest mean AGBD (245.5 Mg ha−1). Topographic factors, particularly elevation and latitude, were strong determinants of biomass distribution, with AGBD increasing up to elevations of 2000 m before declining. Protected areas (PAs) consistently showed higher AGBD than unprotected forests for all ecoregions, while proximity to urban and agricultural areas resulted in lower AGBD, pointing towards negative anthropogenic impacts. Our full model explained 41% of AGBD variance across the Eastern Himalayas, with better performance in individual ecoregions like the Northeast India-Myanmar pine forests (R2 = 0.59). While limited by the absence of regionally explicit stand-level forest structure data (age, stand density, species composition), our results provide valuable evidence for conservation policy development, including expansion of PAs, compensating avoided deforestation and modifications in shifting cultivation. Future research should integrate field measurements with remote sensing and use high-resolution LiDAR with locally derived allometric models to enhance biomass estimation and GEDI data validation. Full article
Show Figures

Figure 1

19 pages, 23863 KiB  
Article
Topographic Habitat Drive the Change of Soil Fungal Community and Vegetation Soil Characteristics in the Rhizosphere of Kengyilia thoroldiana in the Sanjiangyuan Region
by Liangyu Lyu, Pei Gao, Zongcheng Cai, Fayi Li and Jianjun Shi
J. Fungi 2025, 11(7), 531; https://doi.org/10.3390/jof11070531 - 17 Jul 2025
Viewed by 361
Abstract
This study aims to reveal the impact mechanisms of five typical topographic habitats in the Sanjiangyuan region (sunny slope, depression, shady slope, mountain pass, and transitional zone) on the characteristics and functions of rhizosphere soil fungal communities of Kengyilia thoroldiana, and to [...] Read more.
This study aims to reveal the impact mechanisms of five typical topographic habitats in the Sanjiangyuan region (sunny slope, depression, shady slope, mountain pass, and transitional zone) on the characteristics and functions of rhizosphere soil fungal communities of Kengyilia thoroldiana, and to elucidate the association patterns between these communities and soil physicochemical factors. The species composition, diversity, molecular co-occurrence network, and FUNGuild function of microbial communities were investigated based on high-throughput sequencing technology. By combining the Mantel test and RDA analysis, the key habitat factors affecting the structure of the soil fungal community in the rhizosphere zone of Kengyilia thoroldiana were explored. The results showed that: ① The composition of the soil fungal community in the rhizosphere of Kengyilia thoroldiana in five topographical habitats showed significant differentiation characteristics: the number of OTUs in H2 (depression) and H5 (transitional zone) habitats was the highest (336 and 326, respectively). Habitats H2 showed a significant increase in the abundance of Ascomycota and Mortierellomycota and a significant decrease in the abundance of Basidiomycota compared to the other topographical habitats. ② The diversity and aggregation degree of the soil fungal community in the rhizosphere of Kengyilia thoroldiana in five topographical habitats showed differences. ③ Cluster analysis showed that the rhizosphere soil fungi in five topographical habitats of Kengyilia thoroldiana could be divided into two groups, with H2, H4 (mountain pass), and H5 habitats as one group (group 1) and H1 and H3 (shady slope) as one group (group 2). ④ The characteristics of the Kengyilia thoroldiana community and the physical and chemical properties of rhizosphere soil in five topographical habitats were significantly different, and the height, coverage, biomass, and soil nutrient content were the highest in H2 and H5 habitats, while lower in H1 and H3 habitats, with significant differences (p < 0.05). ⑤ Redundancy analysis showed that soil water content was the main driving factor to change the structure and function of the soil fungal community in the rhizosphere of Kengyilia thoroldiana in five topographic habitats in the Sanjiangyuan region. This study demonstrated that topographic habitats affected the species composition, functional pattern, and ecosystem service efficiency of the Kengyilia thoroldiana rhizosphere fungal community by mediating soil environmental heterogeneity, which provides microbial mechanistic insights for alpine meadow ecosystem protection. Full article
(This article belongs to the Special Issue Fungal Communities in Various Environments, 2nd Edition)
Show Figures

Figure 1

14 pages, 12231 KiB  
Article
Habitat Requirements of the Grey-Headed Woodpecker in Lowland Areas of NE Poland: Evidence from the Playback Experiment
by Grzegorz Zawadzki and Dorota Zawadzka
Birds 2025, 6(3), 32; https://doi.org/10.3390/birds6030032 - 20 Jun 2025
Viewed by 488
Abstract
The grey-headed woodpecker (Picus canus) (GHW) is one of the least-studied European woodpeckers, listed in Annex I of the Birds Directive. We examined the key environmental characteristics that determine the possibility of GHW occurrence in vast forests in northeast Poland. Woodpeckers [...] Read more.
The grey-headed woodpecker (Picus canus) (GHW) is one of the least-studied European woodpeckers, listed in Annex I of the Birds Directive. We examined the key environmental characteristics that determine the possibility of GHW occurrence in vast forests in northeast Poland. Woodpeckers were inventoried in spring on 54 study plots (4 km2) covering 20% of the forest area. Active territories were detected and mapped using the playback experiment of territorial voices and drumming. The generalized linear model GLM, random forest RF, and Boosting were used for modeling. GLM was used to indicate the most critical factors affecting the abundance of GHW. The number of territories in a single study plot ranged from 0 to 3; the most frequent were areas without woodpeckers. The probability of the nesting of the GHW was increasing at plots with watercourses, a bigger share of mixed forest area, and a proportion of stands over 120 years old. The calculation for all 400 quadrats allowed us to estimate the population size at approximately 180–200 breeding pairs. The overall density of GHW in the study area was assessed at 0.13/km2, while at the optimal quadrats, it increased to about 0.75/km2. Preference for watercourses was linked to alders growing along water banks. Near the water, there are often small meadows where the GHW can prey on ants. In turn, old-growth forests above 120 years old increased the probability of the presence of the GHW. There are more dead and dying trees in older forests, which are the ones the GHW chooses to excavate cavities. To effectively protect the habitats of the GHW, it is necessary to maintain a larger area of stands over 120 years old, mainly on wet sites. Full article
Show Figures

Figure 1

24 pages, 2856 KiB  
Article
Comprehensive Evaluation of Soil Quality Reconstruction in Agroforestry Ecosystems of High-Altitude Areas: A Case Study of the Jiangcang Mining Area, Qinghai–Tibet Plateau
by Liya Yang, Shaohua Feng, Xusheng Shao, Jinde Zhang, Tianxiang Wang and Shuisheng Xiong
Agronomy 2025, 15(6), 1390; https://doi.org/10.3390/agronomy15061390 - 5 Jun 2025
Viewed by 547
Abstract
This study focuses on the alpine meadow ecosystem of the Qinghai–Tibet Plateau, which plays a vital role in carbon sequestration and water resource protection. However, mining activities have severely damaged the ecosystem, posing challenges for ecological restoration. The study selected the Jiangcang mining [...] Read more.
This study focuses on the alpine meadow ecosystem of the Qinghai–Tibet Plateau, which plays a vital role in carbon sequestration and water resource protection. However, mining activities have severely damaged the ecosystem, posing challenges for ecological restoration. The study selected the Jiangcang mining area and analyzed the physical, chemical, and carbon characteristics and heavy metal content of soil samples from the slag platforms and slopes (0–20 cm), which were restored in 2015 and 2020 to explore the effects of different soil reconstruction methods on soil function and ecological resilience. The results show that the minimum data set (MDS) can effectively replace the total data set (TDS) in assessing soil quality. The assessment indicates good restoration effects in 2020, with some areas rated high in soil quality. Although issues such as high bulk density, high electrical conductivity, low moisture content, nitrogen deficiency, and low organic matter limit ecological restoration, the carbon sequestration capacity of the restored soil is strong. This study provides scientific evidence for ecological restoration in cold mining areas, indicating that capping measures can enhance soil resistance to erosion, nutrient retention, and carbon sink functions. Full article
Show Figures

Figure 1

17 pages, 1527 KiB  
Review
Mechanisms Behind the Soil Organic Carbon Response to Temperature Elevations
by Yonglin Wu, Haitao Li, Xinran Liang, Ming Jiang, Siteng He and Yongmei He
Agriculture 2025, 15(11), 1118; https://doi.org/10.3390/agriculture15111118 - 22 May 2025
Viewed by 698
Abstract
Soil organic carbon (SOC) represents the most dynamic component of the soil carbon pool and is pivotal in the global carbon cycle. Global temperature rise and increasing drought severity are now indisputable realities, making soil organic carbon cycling under climate warming a critical [...] Read more.
Soil organic carbon (SOC) represents the most dynamic component of the soil carbon pool and is pivotal in the global carbon cycle. Global temperature rise and increasing drought severity are now indisputable realities, making soil organic carbon cycling under climate warming a critical research priority. This review elucidates the mechanism of the SOC response to temperature increase in terms of both extrinsic and intrinsic factors. The extrinsic factors are temperature elevation methods, rainfall, and land use. Different methods of temperature increase have their own unique advantages and disadvantages. Indoor warming methods exclude other factors, making temperature the only variable, but tend to ignore carbon inputs. In situ field warming and soil displacement methods help researchers explore the response of the complete ecosystem carbon cycle to temperature increase but cannot exclude the interference of factors such as rainfall. Elevated rainfall mitigates the adverse effects of elevated temperatures on organic carbon sequestration. In addition, the response of SOC to temperature elevations vary among different land use types. The temperature sensitivity of SOC is higher in peatland (high organic matter) alpine meadows (colder regions). The intrinsic factors that affect the response of SOC to elevated temperatures are SOC components, microorganisms, SOC temperature sensitivity, and SOC stability. The SOC decomposition rate is influenced by variations in the ratios of decomposable (easily oxidizable organic carbon (EOC), dissolved organic carbon (DOC), and microbial biomass carbon (MBC)) and stabilizing (inert organic carbon (IOC), alkyl carbon, and aromatic carbon) SOC to total organic carbon (TOC). Furthermore, temperature elevations also affect the soil microenvironment, resulting in microbial community reorganization such as changes in bacterial and fungal ratios and abundance. At the same time, soil aggregates, clay minerals, and iron and aluminum oxides protect the SOC, making it difficult to be utilized by microbial decomposition. The systematic clarification of the mechanism behind the SOC response to higher temperatures is crucial for accurately predicting and modeling global carbon cycles and effectively responding to the loss of SOC pools due to global temperature elevations. Full article
Show Figures

Figure 1

17 pages, 5633 KiB  
Article
Open and Free Sentinel-2 Mowing Event Data for Austria
by Petra Miletich, Marco Kirchmair, Janik Gregory Deutscher, Alexander Schippl and Manuela Hirschmugl
Remote Sens. 2025, 17(10), 1769; https://doi.org/10.3390/rs17101769 - 19 May 2025
Viewed by 500
Abstract
The accurate detection of mowing events is important in many applications, including in agricultural contexts such as yield and fodder production, as well as biodiversity assessments, habitat modeling, and protected area monitoring. This work presents the first free and open dataset of mowing [...] Read more.
The accurate detection of mowing events is important in many applications, including in agricultural contexts such as yield and fodder production, as well as biodiversity assessments, habitat modeling, and protected area monitoring. This work presents the first free and open dataset of mowing events covering the entire Austrian territory for the year 2023 at a spatial resolution of 10 × 10 m. We use the Sentinel-2 time series of the Normalized Difference Vegetation Index (NDVI) to detect mowing events, and additionally, we use the mean of the two ShortWave InfraRed (SWIR) bands to exclude misclassification caused by remaining cloud artifacts and shadows. The validation procedure builds on a visual interpretation of the Panomax webcam archive complemented by a selection of field observations. The final validation dataset consists of 211 mowing events recorded in 85 different locations across Austria. In total, 77.73% of these mowing events were detected with a mean time delay of 4 days. The detection delay in summer was smaller than the values recorded in spring and fall. The pixel-based approach exhibited superior efficacy, especially for meadows with three or more mowing events, compared to the polygon-based approach. The results of our study are consistent with those of previous works demonstrating the capacity to produce high-quality mowing event data for various grassland areas in a fully automated manner, independent from training datasets. The results could be used in research on biodiversity or in practical applications such as agricultural policy support and control, fodder supply evaluation, or impact assessment in nature restoration efforts. Full article
Show Figures

Graphical abstract

21 pages, 4344 KiB  
Article
Development of an Index for Sustainable Use Assessment—A Case Study from Mesic Grasslands with Economic Potential in North Serbia (Vojvodina)
by Sara Pavkov, Andraž Čarni, Željko Škvorc, Nikola Delić and Mirjana Ćuk
Land 2025, 14(5), 1082; https://doi.org/10.3390/land14051082 - 16 May 2025
Viewed by 547
Abstract
The mesic grasslands of the Molinio-Arrhenatheretea Tx. 1937 in Vojvodina could play a crucial role in biodiversity conservation, but also in local economies, providing essential ecosystem services, such as habitats for diverse species and resources for agricultural and pastoral activities. However, they face [...] Read more.
The mesic grasslands of the Molinio-Arrhenatheretea Tx. 1937 in Vojvodina could play a crucial role in biodiversity conservation, but also in local economies, providing essential ecosystem services, such as habitats for diverse species and resources for agricultural and pastoral activities. However, they face growing threats from unsustainable land use, urbanization and climate change. In this study, a database comprising 716 relevés and 636 plant species was created. All meadow plots were classified into seven habitat types and evaluated for their sustainable use potential using the index developed in this study, based on economically notable species, their status of protection and total cover. Through this index, moist or wet mesotrophic to eutrophic pasture demonstrates the highest potential, whereas temperate and boreal moist or wet oligotrophic grassland shows the lowest. This index offers a decision-support tool, optimizing economic benefits while minimizing environmental impact and offering guidelines for sustainable grassland management and policy recommendations tailored to local conditions. It also serves as a framework for other regions facing similar challenges, contributing to the advancement of grassland ecosystem service valuation and its preservation. Full article
Show Figures

Figure 1

33 pages, 2794 KiB  
Article
Soil Bulk Density, Aggregates, Carbon Stabilization, Nutrients and Vegetation Traits as Affected by Manure Gradients Regimes Under Alpine Meadows of Qinghai–Tibetan Plateau Ecosystem
by Mahran Sadiq, Nasir Rahim, Majid Mahmood Tahir, Aqila Shaheen, Fu Ran, Guoxiang Chen and Xiaoming Bai
Plants 2025, 14(10), 1442; https://doi.org/10.3390/plants14101442 - 12 May 2025
Viewed by 483
Abstract
Climate change and overgrazing significantly constrain the sustainability of meadow land and vegetation in the livestock industry on the Tibetan–Plateau ecosystem. In context of climate change mitigation, grassland soil C sequestration and forage sustainability, it is important to understand how manure regimes influence [...] Read more.
Climate change and overgrazing significantly constrain the sustainability of meadow land and vegetation in the livestock industry on the Tibetan–Plateau ecosystem. In context of climate change mitigation, grassland soil C sequestration and forage sustainability, it is important to understand how manure regimes influence SOC stability, grassland soil, forage structure and nutritional quality. However, the responses of SOC fractions, soil and forage structure and quality to the influence of manure gradient practices remain unclear, particularly at Tianzhu belt, and require further investigation. A field study was undertaken to evaluate the soil bulk density, aggregate fractions and dynamics in SOC concentration, permanganate oxidizable SOC fractions, SOC stabilization and soil nutrients at the soil aggregate level under manure gradient practices. Moreover, the forage biodiversity, aboveground biomass and nutritional quality of alpine meadow plant communities were also explored. Four treatments, i.e., control (CK), sole sheep manure (SM), cow dung alone (CD) and a mixture of sheep manure and cow dung (SMCD) under five input rates, i.e., 0.54, 1.08, 1.62, 2.16 and 2.70 kg m−2, were employed under randomized complete block design with four replications. Our analysis confirmed the maximum soil bulk density (BD) (0.80 ± 0.05 g cm−3) and micro-aggregate fraction (45.27 ± 0.77%) under CK, whilst the maximum macro-aggregate fraction (40.12 ± 0.54%) was documented under 2.70 kg m−2 of SMCD. The SOC, very-labile C fraction (Cfrac1), labile C fraction (Cfrac2) and non-labile/recalcitrant C fraction (Cfrac4) increased with manure input levels, being the highest in 2.16 kg m−2 and 2.70 kg m−2 applications of sole SM and the integration of 50% SM and 50% CD (SMCD), whereas the less-labile fraction (Cfrac3) was highest under CK across aggregate fractions. However, manures under varying gradients improved SOC pools and stabilization for both macro- and micro-aggregates. A negative response of the carbon management index (CMI) in macro-aggregates was observed, whilst CMI in the micro-aggregate fraction depicted a positive response to manure addition with input rates, being the maximum under sole SM addition averaged across gradients. Higher SOC pools and CMI under the SM, CD and SMCD might be owing to the higher level of soil organic matter inputs under higher doses of manures. Moreover, the highest accumulation of soil nutrients,, for instance, TN, AN, TP, AP, TK, AK, DTPA extractable Zn, Cu, Fe and Mn, was recorded in SM, CD and SMCD under varying gradients over CK at both aggregate fractions. More nutrient accumulation was found in macro-aggregates over micro-aggregates, which might be credited to the physical protection of macro-aggregates. Overall, manure addition under varying input rates improved the plant community structure and enhanced meadow yield, plant community diversity and nutritional quality more than CK. Therefore, alpine meadows should be managed sustainably via the adoption of sole SM practice under a 2.16 kg m−2 input rate for the ecological utilization of the meadow ecosystem. The results of this study deliver an innovative perspective in understanding the response of alpine meadows’ SOC pools, SOC stabilization and nutrients at the aggregate level, as well as vegetation structure, productivity and forage nutritional quality to manure input rate practices. Moreover, this research offers valuable information for ensuring climate change mitigation and the clean production of alpine meadows in the Qinghai–Tibetan Plateau area of China. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

21 pages, 10754 KiB  
Article
Accounting of Grassland Ecosystem Assets and Assessment of Sustainable Development Potential in the Bosten Lake Basin
by Zhichao Zhang, Zhoukang Li, Zhen Zhu and Yang Wang
Sustainability 2025, 17(8), 3460; https://doi.org/10.3390/su17083460 - 13 Apr 2025
Viewed by 426
Abstract
Assessing the ecosystem service value (ESV) of grasslands is crucial for sustainable resource management and environmental conservation. This study evaluates the spatiotemporal changes in grassland ecosystem services in the Bosten Lake Basin using long-term land use data (2000–2022). Employing the Patch-generating Land Use [...] Read more.
Assessing the ecosystem service value (ESV) of grasslands is crucial for sustainable resource management and environmental conservation. This study evaluates the spatiotemporal changes in grassland ecosystem services in the Bosten Lake Basin using long-term land use data (2000–2022). Employing the Patch-generating Land Use Simulation (PLUS) model, we develop three future scenarios—natural development, ecological protection, and economic priority—to predict grassland utilization trends. The findings reveal a continuous decline in grassland area and ecosystem service values, driven by climate change and human activities. Compared with 2022, all three scenarios indicate further degradation, but ecological protection measures significantly mitigate ESV loss. This study provides scientific insights for sustainable land management and policy-making, contributing to ecological restoration strategies under climate change impacts. The findings reveal the following: (1) Over the 22-year period, the grassland area in the Bosten Lake Basin has experienced an overall decline. Notably, the area of plain desert steppe grassland expanded from 626,179.41 ha to 1,223,506.62 ha, whereas plain meadow grassland reduced from 556,784.64 ha to 118,948.23 ha. (2) The total ecosystem service value of grasslands in the basin exhibited a marginally insignificant decrease, amounting to a reduction of 5.73422 billion CNY. The values for mountain desert, mountain desert steppe, mountain typical steppe, and mountain meadow grasslands were relatively low and showed minimal change. (3) In comparison to 2022, the projected areas of grassland under the three scenarios for 2000 show a substantial reduction, particularly in plain desert and hilly desert grasslands. The ecosystem service values across all scenarios are expected to decline in tandem with varying degrees of grassland degradation. This research underscores the impact of global warming and human activities on the shrinking grassland area and the diminishing ecosystem service values in the Bosten Lake Basin. The current state of grassland resources in the study area is under threat, highlighting the urgent need for strategic planning and conservation efforts to ensure sustainable development and ecological integrity. Full article
Show Figures

Figure 1

24 pages, 2812 KiB  
Article
A Helping Hand: Fungi, as Well as Bacteria, Support Ecophysiological Descriptors to Depict the Posidonia oceanica Conservation Status
by Sara Frasca, Annamaria Alabiso, Alice Rotini, Loredana Manfra, Marlen I. Vasquez, Eleni Christoforou, Gidon Winters, Moran Kaminer, Marco Maria D’Andrea and Luciana Migliore
Water 2025, 17(8), 1151; https://doi.org/10.3390/w17081151 - 12 Apr 2025
Viewed by 669
Abstract
The crucial role of plant–microbe interactions in seagrass growth and overall fitness is widely recognized and known to influence plant response to stress. Human-induced changes in coastal ecosystems necessitate efficient descriptors for seagrass monitoring. Recently, for Posidonia oceanica meadows, an integrative approach combining [...] Read more.
The crucial role of plant–microbe interactions in seagrass growth and overall fitness is widely recognized and known to influence plant response to stress. Human-induced changes in coastal ecosystems necessitate efficient descriptors for seagrass monitoring. Recently, for Posidonia oceanica meadows, an integrative approach combining ecophysiological descriptors with bacterial communities has been successfully applied. Conversely, the mycobiota remains largely unexplored and fungal communities cannot be included yet as a putative descriptor. This study aims to evaluate the ecological status of two P. oceanica meadows in the Akrotiri Bay (Cyprus), located under different geomorphological features (depth and seabed type) and degrees of human pressure (port proximity vs. Marine Protected Area). A set of descriptors including morphometry, biochemical markers and bacterial communities collected in 2023 are compared with those collected, at the same sites, in 2017. Furthermore, the investigation of the leaf-associated microbial community included the underrepresented fungal communities, in addition to the bacterial ones, to evaluate their usefulness in evaluating the plant conservation status. Results indicated a good P. oceanica conservation status at both sites, showing an amelioration in the Limassol port meadow from 2017. In 2023, the biometrical/biochemical descriptors were found comparable across sites as the bacterial communities, differing from 2017 results. Noteworthy, fungal communities exhibited significant differences between sites, with a clear reduction, in the Limassol port meadow, of the dominant Posidoniomyces atricolor which is known as a specific colonizer of P. oceanica roots. These results confirm the strong relationship between P. atricolor and P. oceanica host, and suggest its sensitivity to environmental changes, able to keep track of ecological shifts. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

18 pages, 3633 KiB  
Article
Flying Robots Teach Floating Robots—A Machine Learning Approach for Marine Habitat Mapping Based on Combined Datasets
by Zacharias Kapelonis, Georgios Chatzigeorgiou, Manolis Ntoumas, Panos Grigoriou, Manos Pettas, Spyros Michelinakis, Ricardo Correia, Catarina Rasquilha Lemos, Luis Menezes Pinheiro, Caio Lomba, João Fortuna, Rui Loureiro, André Santos and Eva Chatzinikolaou
J. Mar. Sci. Eng. 2025, 13(3), 611; https://doi.org/10.3390/jmse13030611 - 19 Mar 2025
Viewed by 864
Abstract
Unmanned aerial and autonomous surface vehicles (UAVs and ASVs, respectively) are two emerging technologies for the mapping of coastal and marine environments. Using UAV photogrammetry, the sea-bottom composition can be resolved with very high fidelity in shallow waters. At greater depths, acoustic methodologies [...] Read more.
Unmanned aerial and autonomous surface vehicles (UAVs and ASVs, respectively) are two emerging technologies for the mapping of coastal and marine environments. Using UAV photogrammetry, the sea-bottom composition can be resolved with very high fidelity in shallow waters. At greater depths, acoustic methodologies have far better propagation properties compared to optics; therefore, ASVs equipped with multibeam echosounders (MBES) are better-suited for mapping applications in deeper waters. In this work, a sea-bottom classification methodology is presented for mapping the protected habitat of Mediterranean seagrass Posidonia oceanica (habitat code 1120) in a coastal subregion of Heraklion (Crete, Greece). The methodology implements a machine learning scheme, where knowledge obtained from UAV imagery is embedded (through training) into a classifier that utilizes acoustic backscatter intensity and features derived from the MBES data provided by an ASV. Accuracy and precision scores of greater than 85% compared with visual census ground-truth data for both optical and acoustic classifiers indicate that this hybrid mapping approach is promising to mitigate the depth-induced bias in UAV-only models. The latter is especially interesting in cases where the studied habitat boundaries extend beyond depths that can be studied via aerial devices’ optics, as is the case with P. oceanica meadows. Full article
Show Figures

Figure 1

20 pages, 21648 KiB  
Article
Spatial–Temporal Heterogeneity of Wetlands in the Alpine Mountains of the Shule River Basin on the Northeastern Edge of the Qinghai–Tibet Plateau
by Shuya Tai, Donghui Shangguan, Jinkui Wu, Rongjun Wang and Da Li
Remote Sens. 2025, 17(6), 976; https://doi.org/10.3390/rs17060976 - 10 Mar 2025
Viewed by 780
Abstract
Alpine wetland ecosystems, as important carbon sinks and water conservation areas, possess unique ecological functions. Driven by climate change and human activities, the spatial distribution changes in alpine wetlands directly affect the ecosystems and water resource management within a basin. To further refine [...] Read more.
Alpine wetland ecosystems, as important carbon sinks and water conservation areas, possess unique ecological functions. Driven by climate change and human activities, the spatial distribution changes in alpine wetlands directly affect the ecosystems and water resource management within a basin. To further refine the evolution processes of different types of alpine wetlands in different zones of a basin, this study combined multiple field surveys, unmanned aerial vehicle (UAV) flights, and high-resolution images. Based on the Google Earth Engine (GEE) cloud platform, we constructed a Random Forest model to identify and extract alpine wetlands in the Shule River Basin over a long-term period from 1987 to 2021. The results indicated that the accuracy of the extraction based on this method exceeded 90%; the main wetland types are marsh, swamp meadow, and river and lake water bodies; and the spatial–temporal distribution of each wetland type has obvious heterogeneity. In total, 90% of the swamp meadows areas were mainly scattered throughout the study area’s section 3700 to 4300 m above sea level (a.s.l.), and 80% of the marshes areas were concentrated in the Dang River source 3200 m above sea level. From 1987 to 2021, the alpine wetland in the study area showed an overall expansion trend. The total area of the wetland increased by 51,451.8 ha and the area increased by 53.5%. However, this expansion mainly occurred in the elevation zone below 4000 m after 2004, and low-altitude marsh wetland primarily dominated the expansion. The analysis of the spatial–temporal heterogeneity of alpine wetlands can provide a scientific basis for the attribution analysis of the change in alpine wetlands in inland water conservation areas, as well as for protection and rational development and utilization, and promote the healthy development of ecological environments in nature reserves. Full article
Show Figures

Figure 1

23 pages, 2682 KiB  
Article
The Impact of Agricultural Land Use Patterns on Natural Vegetation, Plant, and Livestock Diversity in the European Union
by Zsuzsanna Bacsi, Péter Szálteleki and Gabriella Bánhegyi
Heritage 2025, 8(3), 83; https://doi.org/10.3390/heritage8030083 - 20 Feb 2025
Viewed by 972
Abstract
The preservation of natural heritage is a global concern nowadays, which is equally important for climate resilience and for sustainable resource use. The present research is focused on assessing the trends of natural landscape changes, such as forests, meadows, and pastures, and the [...] Read more.
The preservation of natural heritage is a global concern nowadays, which is equally important for climate resilience and for sustainable resource use. The present research is focused on assessing the trends of natural landscape changes, such as forests, meadows, and pastures, and the preservation of locally kept traditional livestock, and plant varieties as indicators of biodiversity, in the countries of the European Union between 2012 and 2021, using secondary data. The research methodology was a panel analysis according to the Linear Mixed Model method. The results show that while larger areas allocated to agriculture generally enhance plant biodiversity, they have the opposite effect on the number of local livestock breeds. The spreading of organic farming enhances the preservation of local livestock breeds, while the spreading of forest areas is beneficial for plant biodiversity. The share of permanent meadows and pastures increases with increasing agricultural areas, and this also affects plant biodiversity positively. All biodiversity indicators increased during the analyzed period, as did well as the size of forest areas and, permanent meadows and pastures, which reflects the improvement in natural heritage and the enhancement of environmental protection awareness with time. The differences among countries show, that highly developed agriculture does not mean better preservation of natural heritage, nor the opposite, as ecological conditions and agricultural history may influence the natural vegetation and biodiversity. The protection of natural heritage in Europe differs from the rest of the world, as recent agricultural policy of the EU emphasizes the importance of environmental sustainability. The promotion of low-input use in agriculture, however, may be in conflict with the globally increasing demand for food. Full article
Show Figures

Figure 1

31 pages, 2324 KiB  
Review
Microbial Fuel Cell Technology as a New Strategy for Sustainable Management of Soil-Based Ecosystems
by Renata Toczyłowska-Mamińska, Mariusz Ł. Mamiński and Wojciech Kwasowski
Energies 2025, 18(4), 970; https://doi.org/10.3390/en18040970 - 18 Feb 2025
Viewed by 3136
Abstract
Although soil is mainly perceived as the basic component of agricultural production, it also plays a pivotal role in environmental protection and climate change mitigation. Soil ecosystems are the largest terrestrial carbon source and greenhouse gas emitters, and their degradation as a result [...] Read more.
Although soil is mainly perceived as the basic component of agricultural production, it also plays a pivotal role in environmental protection and climate change mitigation. Soil ecosystems are the largest terrestrial carbon source and greenhouse gas emitters, and their degradation as a result of aggressive human activity exacerbates the problem of climate change. Application of microbial fuel cell (MFC) technology to soil-based ecosystems such as sediments, wetlands, farmland, or meadows allows for sustainable management of these environments with energy and environmental benefits. Soil ecosystem-based MFCs enable zero-energy, environmentally friendly soil bioremediation (with efficiencies reaching even 99%), direct clean energy production from various soil-based ecosystems (with power production reaching 334 W/m2), and monitoring of soil quality or wastewater treatment in wetlands (with efficiencies of up to 99%). They are also a new strategy for greenhouse gas, soil salinity, and metal accumulation mitigation. This article reviews the current state of the art in the field of application of MFC technology to various soil-based ecosystems, including soil MFCs, sediment MFCs, plant MFCs, and CW-MFCs (constructed wetlands coupled with MFCs). Full article
Show Figures

Figure 1

Back to TopTop