Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = mature seed-derived calli

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 3568 KB  
Communication
CRISPR-Editing AsDREBL Improved Creeping Bentgrass Abiotic Stress Tolerance
by Rong Di, Sreshta Ravikumar, Ryan Daddio and Stacy Bonos
Int. J. Plant Biol. 2025, 16(3), 89; https://doi.org/10.3390/ijpb16030089 - 14 Aug 2025
Viewed by 915
Abstract
Cool-season creeping bentgrass (Agrostis stolonifera L., As) is extensively used on golf courses worldwide and is negatively affected by several fungal diseases and abiotic stresses including drought and salinity. CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated) gene editing technology was employed [...] Read more.
Cool-season creeping bentgrass (Agrostis stolonifera L., As) is extensively used on golf courses worldwide and is negatively affected by several fungal diseases and abiotic stresses including drought and salinity. CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated) gene editing technology was employed in this project to knock out the AsDREBL (dehydration responsive element binding-like factor) gene, a potential negative regulator in stress tolerance. With our established single guide RNA (sgRNA)-based CRISPR-editing vector and optimized creeping bentgrass tissue culture system using mature seed-derived embryogenic calli of cv. Crenshaw as explant, more than 20 transgenic plants were produced by gene gun bombardment. Fifteen confirmed AsDREBL mutant plants were tested for drought and salinity tolerance by withholding water and applying salt spray in greenhouse settings. Some of the mutants were shown to be more tolerant of drought and salinity stress compared to the non-edited, wild type Crenshaw plants. Our results demonstrate that CRISPR-gene editing technology can be successfully applied to improve the agronomical traits of turfgrass. Full article
(This article belongs to the Section Plant Response to Stresses)
Show Figures

Figure 1

12 pages, 18548 KB  
Article
Marker-Free Rice (Oryza sativa L. cv. IR 64) Overexpressing PDH45 Gene Confers Salinity Tolerance by Maintaining Photosynthesis and Antioxidant Machinery
by Ranjan Kumar Sahoo, Renu Tuteja, Ritu Gill, Juan Francisco Jiménez Bremont, Sarvajeet Singh Gill and Narendra Tuteja
Antioxidants 2022, 11(4), 770; https://doi.org/10.3390/antiox11040770 - 12 Apr 2022
Cited by 6 | Viewed by 3281
Abstract
Helicases function as key enzymes in salinity stress tolerance, and the role and function of PDH45 (pea DNA helicase 45) in stress tolerance have been reported in different crops with selectable markers, raising public and regulatory concerns. In the present study, we developed [...] Read more.
Helicases function as key enzymes in salinity stress tolerance, and the role and function of PDH45 (pea DNA helicase 45) in stress tolerance have been reported in different crops with selectable markers, raising public and regulatory concerns. In the present study, we developed five lines of marker-free PDH45-overexpressing transgenic lines of rice (Oryza sativa L. cv. IR64). The overexpression of PDH45 driven by CaMV35S promoter in transgenic rice conferred high salinity (200 mM NaCl) tolerance in the T1 generation. Molecular attributes such as PCR, RT-PCR, and Southern and Western blot analyses confirmed stable integration and expression of the PDH45 gene in the PDH45-overexpressing lines. We observed higher endogenous levels of sugars (glucose and fructose) and hormones (GA, zeatin, and IAA) in the transgenic lines in comparison to control plants (empty vector (VC) and wild type (WT)) under salt treatments. Furthermore, photosynthetic characteristics such as net photosynthetic rate (Pn), stomatal conductance (gs), intercellular CO2 (Ci), and chlorophyll (Chl) content were significantly higher in transgenic lines under salinity stress as compared to control plants. However, the maximum primary photochemical efficiency of PSII, as an estimated from variable to maximum chlorophyll a fluorescence (Fv/Fm), was identical in the transgenics to that in the control plants. The activities of antioxidant enzymes, such as catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), and guaiacol peroxidase (GPX), were significantly higher in transgenic lines in comparison to control plants, which helped in keeping the oxidative stress burden (MDA and H2O2) lesser on transgenic lines, thus protecting the growth and photosynthetic efficiency of the plants. Overall, the present research reports the development of marker-free PDH45-overexpressing transgenic lines for salt tolerance that can potentially avoid public and biosafety concerns and facilitate the commercialization of genetically engineered crop plants. Full article
Show Figures

Figure 1

14 pages, 3580 KB  
Article
Improved Transformation and Regeneration of Indica Rice: Disruption of SUB1A as a Test Case via CRISPR-Cas9
by Yuya Liang, Sudip Biswas, Backki Kim, Julia Bailey-Serres and Endang M. Septiningsih
Int. J. Mol. Sci. 2021, 22(13), 6989; https://doi.org/10.3390/ijms22136989 - 29 Jun 2021
Cited by 25 | Viewed by 6074
Abstract
Gene editing by use of clustered regularly interspaced short palindromic repeats (CRISPR) has become a powerful tool for crop improvement. However, a common bottleneck in the application of this approach to grain crops, including rice (Oryza sativa), is efficient vector delivery [...] Read more.
Gene editing by use of clustered regularly interspaced short palindromic repeats (CRISPR) has become a powerful tool for crop improvement. However, a common bottleneck in the application of this approach to grain crops, including rice (Oryza sativa), is efficient vector delivery and calli regeneration, which can be hampered by genotype-dependent requirements for plant regeneration. Here, methods for Agrobacterium-mediated and biolistic transformation and regeneration of indica rice were optimized using CRISPR-Cas9 gene-editing of the submergence tolerance regulator SUBMERGENCE 1A-1 gene of the cultivar Ciherang-Sub1. Callus induction and plantlet regeneration methods were optimized for embryogenic calli derived from immature embryos and mature seed-derived calli. Optimized regeneration (95%) and maximal editing efficiency (100%) were obtained from the immature embryo-derived calli. Phenotyping of T1 seeds derived from the edited T0 plants under submergence stress demonstrated inferior phenotype compared to their controls, which phenotypically validates the disruption of SUB1A-1 function. The methods pave the way for rapid CRISPR-Cas9 gene editing of recalcitrant indica rice cultivars. Full article
(This article belongs to the Special Issue Plant Genomics and Genome Editing)
Show Figures

Figure 1

15 pages, 4607 KB  
Article
Somatic Embryogenesis from Mature Embryos of Olea europaea L. cv. ‘Galega Vulgar’ and Long-Term Management of Calli Morphogenic Capacity
by Rita Pires, Hélia Cardoso, Augusto Ribeiro, Augusto Peixe and António Cordeiro
Plants 2020, 9(6), 758; https://doi.org/10.3390/plants9060758 - 17 Jun 2020
Cited by 16 | Viewed by 5113
Abstract
Several olive cultivars, characterized by high-quality olive oil show agronomical issues such as excessive vigor, high susceptibility to biotic and abiotic stresses, and low propagation ability. They are strong candidates for breeding based on new technologies to improve their performance in a short [...] Read more.
Several olive cultivars, characterized by high-quality olive oil show agronomical issues such as excessive vigor, high susceptibility to biotic and abiotic stresses, and low propagation ability. They are strong candidates for breeding based on new technologies to improve their performance in a short period of time. For this reason, the first step is developing efficient somatic embryogenesis (SE) protocols. Somatic embryogenesis in olive is highly genotype-dependent for both adult tissues and mature embryos as initial explants, requiring the development of specific protocols for each genotype. Trials using cotyledons and radicles as initial explants, isolated from ripe seeds from the Portuguese olive cv. ‘Galega vulgar’, gave more than 95% calli development. Radicles proved to be the most responsive tissue for SE induction, with an average of 2 embryos per callus after callus transfer to expression medium, and 14 embryos per callus after subculture on the olive cyclic embryogenesis medium (ECO). Embryogenic competence could be recovered after several subcultures on ECO medium that maintained cyclic embryogenesis for an indeterminate period of time. Embryo conversion and plant acclimatization were also attained with high success rates. Media management for cyclic embryogenesis maintenance is of general importance for SE protocols in any olive genotype. Somatic embryogenesis was thus attained for the first time in embryo-derived explants of cv. ‘Galega vulgar’. Full article
(This article belongs to the Special Issue Somatic Embryogenesis in Olive)
Show Figures

Figure 1

Back to TopTop