Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (66)

Search Parameters:
Keywords = magnetic nanospheres

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 9209 KiB  
Article
Effects of Exchange, Anisotropic, and External Field Couplings on a Nanoscale Spin-2 and Spin-3/2 System: A Thermomagnetic Analysis
by Julio Cesar Madera, Elisabeth Restrepo-Parra and Nicolás De La Espriella
Magnetochemistry 2025, 11(7), 56; https://doi.org/10.3390/magnetochemistry11070056 - 30 Jun 2025
Viewed by 289
Abstract
In this research, an analysis of the thermomagnetic properties of a nanoscale spin-2 and spin-3/2 system is conducted. This system is modeled with as a quasi-spherical Ising-type nanoparticle with a diameter of 2 nm, in which atoms with spin-2 and spin-3/2 configured in [...] Read more.
In this research, an analysis of the thermomagnetic properties of a nanoscale spin-2 and spin-3/2 system is conducted. This system is modeled with as a quasi-spherical Ising-type nanoparticle with a diameter of 2 nm, in which atoms with spin-2 and spin-3/2 configured in body-centered cubic (BCC) lattices interact within their relevant nanostructures. To determine the thermomagnetic behaviors of the nanoparticle, numerical simulations using Monte Carlo techniques and thermal bath class algorithms are performed. The results exhibit the effects of exchange couplings (J1,J2), magnetocrystalline anisotropies (D3/2,D2), and external magnetic fields (h) on the finite-temperature phase diagrams of magnetization (MT), magnetic susceptibility (χT), and thermal energy (kBT). The influences of the exchange, anisotropic, and external field parameters are clearly reflected in the compensation, hysteretic, and pseudocritical phenomena presented by the quasi-spherical nanoparticle. When the parameter reflecting ferromagnetic second-neighbor exchanges in the nanosphere (J2) increases, for a given value of the external magnetic field, the compensation (Tcomp) and pseudocritical (Tpc) temperatures increase. Similarly, in the ranges 0<J24.5 and 15h15 at a specific temperature, an increase in J2 results in the appearance of exchange anisotropies (exchange bias) and and increased hysteresis loop areas in the nanomodel. Full article
Show Figures

Figure 1

16 pages, 5111 KiB  
Article
One-Pot Synthesis of Magnetic Core-Shell Fe3O4@C Nanospheres with Pt Nanoparticle Immobilization for Catalytic Hydrogenation of Nitroarenes
by Jun Qiao, Yang Gao, Kai Zheng, Chao Shen, Aiquan Jia and Qianfeng Zhang
Appl. Sci. 2025, 15(10), 5773; https://doi.org/10.3390/app15105773 - 21 May 2025
Viewed by 553
Abstract
Magnetic materials with intriguing structural and functional modifications demonstrate broad application potential in various fields, including drug delivery, absorption, extraction, separation, and catalysis. In particular, the catalytic hydrogenation of functionalized organic nitro compounds represents a significant research focus in contemporary catalysis studies. A [...] Read more.
Magnetic materials with intriguing structural and functional modifications demonstrate broad application potential in various fields, including drug delivery, absorption, extraction, separation, and catalysis. In particular, the catalytic hydrogenation of functionalized organic nitro compounds represents a significant research focus in contemporary catalysis studies. A facile synthesis of Fe3O4@C–Pt core-shell nanocatalysts was developed in this work through a sequential process involving (1) one-pot hydrothermal synthesis followed by N2-annealing to obtain the Fe3O4@C core and (2) subsequent solvothermal deposition of platinum nanoparticles. Comprehensive characterization was performed using FT-IR, XRD, Raman spectroscopy, TEM, XPS, BET surface area analysis, TGA, and VSM techniques. The resulting magnetic nanocatalysts exhibited uniformly dispersed Pt nanoparticles and demonstrated exceptional catalytic performance in nitroarene hydrogenation reactions. Remarkably, the system showed excellent functional group tolerance across all 20 substituted nitroarenes, consistently yielding corresponding aromatic amine products with >93% conversion efficiency. Furthermore, the magnetic responsiveness of Fe3O4@C–Pt enabled convenient catalyst recovery through simple magnetic separation, with maintained catalytic activity over 10 consecutive reuse cycles without significant performance degradation. Full article
Show Figures

Figure 1

32 pages, 5318 KiB  
Review
Towards a New Dawn for Neuro-Oncology: Nanomedicine at the Service of Drug Delivery for Primary and Secondary Brain Tumours
by Smita Khilar, Antonina Dembinska-Kenner, Helen Hall, Nikolaos Syrmos, Gianfranco K. I. Ligarotti, Puneet Plaha, Vasileios Apostolopoulos, Salvatore Chibbaro, Giuseppe Maria Vincenzo Barbagallo and Mario Ganau
Brain Sci. 2025, 15(2), 136; https://doi.org/10.3390/brainsci15020136 - 30 Jan 2025
Cited by 3 | Viewed by 1960
Abstract
(1) Background/Objectives: Primary and secondary brain tumours often hold devastating prognoses and low survival rates despite the application of maximal neurosurgical resection, and state-of-the-art radiotherapy and chemotherapy. One limiting factor in their management is that several antineoplastic agents are unable to cross the [...] Read more.
(1) Background/Objectives: Primary and secondary brain tumours often hold devastating prognoses and low survival rates despite the application of maximal neurosurgical resection, and state-of-the-art radiotherapy and chemotherapy. One limiting factor in their management is that several antineoplastic agents are unable to cross the blood–brain barrier (BBB) to reach the tumour microenvironment. Nanomedicine could hold the potential to become an effective means of drug delivery to overcome previous hurdles towards effective neuro-oncological treatments. (2) Methods: A scoping review following the PRISMA-ScR guidelines and checklist was conducted using key terms input into PubMed to find articles that reflect emerging trends in the utilisation of nanomedicine in drug delivery for primary and secondary brain tumours. (3) Results: The review highlights various strategies by which different nanoparticles can be exploited to bypass the BBB; we provide a synthesis of the literature on the ongoing contributions to therapeutic protocols based on chemotherapy, immunotherapy, focused ultrasound, radiotherapy/radiosurgery, and radio-immunotherapy. (4) Conclusions: The emerging trends summarised in this scoping review indicate encouraging advantageous properties of nanoparticles as potential effective drug delivery mechanisms; however, there are still nanotoxicity issues that largely remain to be addressed before the translation of these innovations from laboratory to clinical practice. Full article
(This article belongs to the Special Issue Advanced Clinical Technologies in Treating Neurosurgical Diseases)
Show Figures

Figure 1

13 pages, 4139 KiB  
Article
Microstructural, Morphological, and Magnetic Effects of NiFe2O4 Shell Formation Around Nanospherical ZnFe2O4 Cores
by Marija Šuljagić, Vuk Uskoković, Lukasz Kilanski, Sabina Lewinska, Abdul Khaliq, Anna Ślawska-Waniewska, Aleksandar Kremenović, Vladimir Pavlović, Dejan A. Jeremić and Ljubica Andjelković
Magnetochemistry 2025, 11(1), 2; https://doi.org/10.3390/magnetochemistry11010002 - 5 Jan 2025
Viewed by 1549
Abstract
First-row transition metal oxides have relatively modest magnetic properties compared to those of permanent magnets based on rare earth elements. However, there is a hope that this gap might be bridged via proper compositional and structural adjustments. Bi-magnetic nanostructures with homogeneous interfaces often [...] Read more.
First-row transition metal oxides have relatively modest magnetic properties compared to those of permanent magnets based on rare earth elements. However, there is a hope that this gap might be bridged via proper compositional and structural adjustments. Bi-magnetic nanostructures with homogeneous interfaces often exhibit a combination or synergy of properties of both phases, resulting in improved performance compared to their monophasic magnetic counterparts. To gain a deeper insight into these complex structures, a bi-magnetic nanostructured material composed of superparamagnetic nanoparticles comprising a zinc ferrite core and a nickel ferrite shell was synthesized using the seed-mediated growth approach. The resulting ZnFe2O4@NiFe2O4 core–shell nanoparticles were characterized using a series of experimental techniques and were compared to the ZnFe2O4 cores. Most importantly, the formation of the NiFe2O4 shell around the ZnFe2O4 core improved the net crystallinity of the material and altered the particle morphology by reducing the convexity of the surface. Simultaneously, the magnetic measurements demonstrated the coherence of the interface between the core and the shell. These effects combined led to improved spin coupling and stronger magnetism, as evidenced by higher saturation magnetization and the doubling of the blocking temperature for the ZnFe2O4@NiFe2O4 core–shell particles relative to the ZnFe2O4 cores. Full article
Show Figures

Figure 1

15 pages, 4031 KiB  
Article
Magnetic Nanoparticles with On-Site Azide and Alkyne Functionalized Polymer Coating in a Single Step through a Solvothermal Process
by Romualdo Mora-Cabello, David Fuentes-Ríos, Lidia Gago, Laura Cabeza, Ana Moscoso, Consolación Melguizo, José Prados, Francisco Sarabia and Juan Manuel López-Romero
Pharmaceutics 2024, 16(9), 1226; https://doi.org/10.3390/pharmaceutics16091226 - 19 Sep 2024
Cited by 2 | Viewed by 1933
Abstract
Background/Objectives: Magnetic Fe3O4 nanoparticles (MNPs) are becoming more important every day. We prepared MNPs in a simple one-step reaction by following the solvothermal method, assisted by azide and alkyne functionalized polyethylene glycol (PEG400) polymers, as well as by PEG6000 [...] Read more.
Background/Objectives: Magnetic Fe3O4 nanoparticles (MNPs) are becoming more important every day. We prepared MNPs in a simple one-step reaction by following the solvothermal method, assisted by azide and alkyne functionalized polyethylene glycol (PEG400) polymers, as well as by PEG6000 and the polyol β-cyclodextrin (βCD), which played a crucial role as electrostatic stabilizers, providing polymeric/polyol coatings around the magnetic cores. Methods: The composition, morphology, and magnetic properties of the nanospheres were analyzed using Transmission Electron and Atomic Force Microscopies (TEM, AFM), Nuclear Magnetic Resonance (NMR), X-ray Diffraction Diffractometry (XRD), Fourier-Transform Infrared Spectroscopy (FT-IR), Matrix-Assisted Laser Desorption/Ionization (MALDI) and Vibrating Sample Magnetometry (VSM). Results: The obtained nanoparticles (@Fe3O4-PEGs and @Fe3O4-βCD) showed diameters between 90 and 250 nm, depending on the polymer used and the Fe3O4·6H2O precursor concentration, typically, 0.13 M at 200 °C and 24 h of reaction. MNPs exhibited superparamagnetism with high saturation mass magnetization at room temperature, reaching values of 59.9 emu/g (@Fe3O4-PEG6000), and no ferromagnetism. Likewise, they showed temperature elevation after applying an alternating magnetic field (AMF), obtaining Specific Absorption Rate (SAR) values of up to 51.87 ± 2.23 W/g for @Fe3O4-PEG6000. Additionally, the formed systems are susceptible to click chemistry, as was demonstrated in the case of the cannabidiol-propargyl derivative (CBD-Pro), which was synthesized and covalently attached to the azide functionalized surface of @Fe3O4-PEG400-N3. Prepared MNPs are highly dispersible in water, PBS, and citrate buffer, remaining in suspension for over 2 weeks, and non-toxic in the T84 human colon cancer cell line, Conclusions: indicating that they are ideal candidates for biomedical applications. Full article
(This article belongs to the Special Issue Recent Advances in Biomedical Applications of Magnetic Nanomaterials)
Show Figures

Figure 1

16 pages, 4301 KiB  
Article
The Model Study of Phase-Transitional Magnetic-Driven Micromotors for Sealing Gastric Perforation via Mg-Based Micropower Traction
by Kang Xiong and Leilei Xu
Nanomaterials 2024, 14(10), 865; https://doi.org/10.3390/nano14100865 - 16 May 2024
Viewed by 1857
Abstract
Gastric perforation refers to the complete rupture of the gastric wall, leading to the extravasation of gastric contents into the thoracic cavity or peritoneum. Without timely intervention, the expulsion of gastric contents may culminate in profound discomfort, exacerbating the inflammatory process and potentially [...] Read more.
Gastric perforation refers to the complete rupture of the gastric wall, leading to the extravasation of gastric contents into the thoracic cavity or peritoneum. Without timely intervention, the expulsion of gastric contents may culminate in profound discomfort, exacerbating the inflammatory process and potentially triggering perilous sepsis. In clinical practice, surgical suturing or endoscopic closure procedures are commonly employed. Magnetic-driven microswarms have also been employed for sealing gastrointestinal perforation. However, surgical intervention entails significant risk of bleeding, while endoscopic closure poses risks of inadequate closure and the need for subsequent removal of closure clips. Moreover, the efficacy of microswarms is limited as they merely adhere to the perforated area, and their sealing effect diminishes upon removal of the magnetic field. Herein, we present a Fe&Mg@Lard-Paraffin micromotor (LPM) constructed from a mixture of lard and paraffin coated with magnesium (Mg) microspheres and iron (Fe) nanospheres for sutureless sealing gastric perforations. Under the control of a rotating magnetic field, this micromotor demonstrates precise control over its movement on gastric mucosal folds and accurately targets the gastric perforation area. The phase transition induced by the high-frequency magnetothermal effect causes the micromotor composed of a mixed oil phase of lard and paraffin to change from a solid to a liquid phase. The coated Mg microspheres are subsequently exposed to the acidic gastric acid environment to produce a magnesium protonation reaction, which in turn generates hydrogen (H2) bubble recoil. Through a Mg-based micropower traction, part of the oil phase could be pushed into the gastric perforation, and it would then solidify to seal the gastric perforation area. Experimental results show that this can achieve long-term (>2 h) gastric perforation sealing. This innovative approach holds potential for improving outcomes in gastric perforation management. Full article
(This article belongs to the Special Issue Advances in Stimuli-Responsive Nanomaterials: 2nd Edition)
Show Figures

Figure 1

14 pages, 8343 KiB  
Article
Iron–Carbon Nanospheres as Promising Material for Magnetic Assisted Adsorption and Separation of Impurities from a Liquid Phase
by Iwona Pełech, Sabina Lewinska, Monika Arciszewska, Abdul Khaliq, Anna Ślawska-Waniewska, Daniel Sibera, Piotr Staciwa and Urszula Narkiewicz
Materials 2024, 17(9), 2111; https://doi.org/10.3390/ma17092111 - 29 Apr 2024
Cited by 1 | Viewed by 1236
Abstract
The composites containing various iron compounds and highly microporous carbon spheres were produced and investigated for structural and magnetic properties. Iron citrate, nitrate and chloride were used to prepare samples and the obtained products contained iron, iron carbide or magnetite. All the produced [...] Read more.
The composites containing various iron compounds and highly microporous carbon spheres were produced and investigated for structural and magnetic properties. Iron citrate, nitrate and chloride were used to prepare samples and the obtained products contained iron, iron carbide or magnetite. All the produced samples were characterized by high porosity and good magnetic properties. The coupling of the high porosity of carbon spheres with magnetic properties of iron compounds provides a potential application of the composites to removal of impurities from water, followed by a magnetic separation of the sorbent. Full article
(This article belongs to the Special Issue Adsorption Materials and Their Applications)
Show Figures

Figure 1

13 pages, 2526 KiB  
Communication
Application of Magnetic Materials Combined with Echo® Mass Spectrometry System in Analysis of Illegal Drugs in Sewage
by Feiyu Yang, Kaijun Ma, Yichao Cao and Zhiyuan Li
Molecules 2024, 29(9), 2060; https://doi.org/10.3390/molecules29092060 - 29 Apr 2024
Viewed by 1306
Abstract
The aim of this study is to solve the problems of the complicated pretreatment and high analytical cost in the detection technology of trace drugs and their metabolites in municipal wastewater. A high-performance magnetic sorbent was fsynthesized for the enrichment of trace drugs [...] Read more.
The aim of this study is to solve the problems of the complicated pretreatment and high analytical cost in the detection technology of trace drugs and their metabolites in municipal wastewater. A high-performance magnetic sorbent was fsynthesized for the enrichment of trace drugs and their metabolites in wastewater to develop a magnetic solid-phase extraction pretreatment combined with the acoustic ejection mass spectrometry (AEMS) analytical method. The magnetic nanospheres were successfully prepared by magnetic nanoparticles modified with divinylbenzene and vinylpyrrolidone. The results showed that the linear dynamic range of 17 drugs was 1–500 ng/mL, the recovery was 44–100%, the matrix effect was more than 51%, the quantification limit was 1–2 ng/mL, and the MS measurement was fast. It can be seen that the developed magnetic solid-phase extraction (MSPE) method is a good solution to the problems of the complicated pretreatment and analytical cost in the analysis of drugs in wastewater. The developed magnetic material and acoustic excitation pretreatment coupled with mass spectrometry analysis method can realize the low-cost, efficient enrichment, and fast analysis of different kinds of drug molecules in urban sewage. Full article
(This article belongs to the Special Issue Advances and Future Trends in Mass Spectrometry)
Show Figures

Graphical abstract

24 pages, 6384 KiB  
Article
The Influence of Graphene Oxide-Fe3O4 Differently Conjugated with 10-Hydroxycampthotecin and a Rotating Magnetic Field on Adenocarcinoma Cells
by Magdalena Jedrzejczak-Silicka, Karolina Szymańska, Ewa Mijowska and Rafał Rakoczy
Int. J. Mol. Sci. 2024, 25(2), 930; https://doi.org/10.3390/ijms25020930 - 11 Jan 2024
Cited by 4 | Viewed by 2065
Abstract
Nanoparticles (e.g., graphene oxide, graphene oxide-Fe3O4 nanocomposite or hexagonal boron nitride) loaded with anti-cancer drugs and targeted at cancerous cells allowed researchers to determine the most effective in vitro conditions for anticancer treatment. For this reason, the main propose of [...] Read more.
Nanoparticles (e.g., graphene oxide, graphene oxide-Fe3O4 nanocomposite or hexagonal boron nitride) loaded with anti-cancer drugs and targeted at cancerous cells allowed researchers to determine the most effective in vitro conditions for anticancer treatment. For this reason, the main propose of the present study was to determine the effect of graphene oxide (GO) with iron oxide (Fe3O4) nanoparticles (GO-Fe3O4) covalently (c-GO-Fe3O4-HCPT) and non-covalently (nc-GO-Fe3O4-HCPT) conjugated with hydroxycamptothecin (HCPT) in the presence of a rotating magnetic field (RMF) on relative cell viability using the MCF-7 breast cancer cell line. The obtained GO-Fe3O4 nanocomposites demonstrated the uniform coverage of the graphene flakes with the nanospheres, with the thickness of the flakes estimated as ca. 1.2 nm. The XRD pattern of GO–Fe3O4 indicates that the crystal structure of the magnetite remained stable during the functionalization with HCPT that was confirmed with FTIR spectra. After 24 h, approx. 49% and 34% of the anti-cancer drug was released from nc-GO-Fe3O4-HCPT and c-GO-Fe3O4-HCPT, respectively. The stronger bonds in the c-GO-Fe3O4-HCPT resulted in a slower release of a smaller drug amount from the nanocomposite. The combined impact of the novel nanocomposites and a rotating magnetic field on MCF-7 cells was revealed and the efficiency of this novel approach has been confirmed. However, MCF-7 cells were more significantly affected by nc-GO-Fe3O4-HCPT. In the present study, it was found that the concentration of nc-GO-Fe3O4-HCPT and a RMF has the highest statistically significant influence on MCF-7 cell viability. The obtained novel nanocomposites and rotating magnetic field were found to affect the MCF-7 cells in a dose-dependent manner. The presented results may have potential clinical applications, but still, more in-depth analyses need to be performed. Full article
(This article belongs to the Collection Feature Papers in Materials Science)
Show Figures

Figure 1

23 pages, 9391 KiB  
Article
Superparamagnetic Hybrid Nanospheres Based on Chitosan Obtained by Double Crosslinking in a Reverse Emulsion for Cancer Treatment
by Mohammed Dellali, Kheira Zanoune, Mihaela Hamcerencu, Corina-Lenuța Logigan, Marcel Popa and Hacene Mahmoudi
Polymers 2023, 15(23), 4493; https://doi.org/10.3390/polym15234493 - 22 Nov 2023
Cited by 1 | Viewed by 1326
Abstract
Nowadays, the Magnetically Targeted Drug Delivery System (MTDDS) is among the most attractive and promising strategies for delivering drugs to the target site. The present study aimed to obtain a biopolymer–magnetite–drug nanosystem via a double crosslinking (ionic and covalent) technique in reverse emulsion, [...] Read more.
Nowadays, the Magnetically Targeted Drug Delivery System (MTDDS) is among the most attractive and promising strategies for delivering drugs to the target site. The present study aimed to obtain a biopolymer–magnetite–drug nanosystem via a double crosslinking (ionic and covalent) technique in reverse emulsion, which ensures the mechanical stability of the polymer support in the form of original hybrid nanospheres (NSMs) loaded with biologically active principles (the 5-Fluorouracil (5-FU)) as a potential treatment for cancer. Obtained NSMs were characterized in terms of structure (FT-IR), size (DLS), morphology (SEM), swelling, and 5-FU entrapment/release properties, which were dependent on the synthesis parameters (polymer concentration, dispersion speed, and amount of ionic crosslinking agent). SEM analysis results revealed that NSMs presented a spherical shape and are homogeneous and separated. Moreover, NSMs’ ability to load/release 5-FU was tested in vitro, the results confirming, as expected, their dependence on the varied synthesis process and NSM swelling ability in physiological liquids. The drug transport mechanism through the polymer matrix of its release is the Fickian type. The morphological, bio-material characteristics and the ability to include and release an antitumor drug highlight the utility of the NSMs obtained for targeting and treating some tumor diseases. Full article
(This article belongs to the Special Issue Progress in Polymer Networks)
Show Figures

Figure 1

14 pages, 2823 KiB  
Article
Visible-Light-Driven Photocatalytic Degradation of High-Concentration Ammonia Nitrogen Wastewater by Magnetic Ferrite Nanosphere Photocatalysts
by Xianyong Guo, Fan Gao, Haoxuan Cui, Jiaxuan Liu, Hairong Wang, Lixin Liang, Yinghai Wu, Li Wan, Jing Wang, Cuiya Zhang and Guangjing Xu
Water 2023, 15(20), 3638; https://doi.org/10.3390/w15203638 - 17 Oct 2023
Cited by 2 | Viewed by 2177
Abstract
In this study, magnetic CuFe2O4, MgFe2O4, and ZnFe2O4 nanosphere photocatalysts were prepared by the sol–gel method at 300 °C, 400 °C, and 500 °C, respectively (named as CF300, CF400, CF500, MF300, MF400, [...] Read more.
In this study, magnetic CuFe2O4, MgFe2O4, and ZnFe2O4 nanosphere photocatalysts were prepared by the sol–gel method at 300 °C, 400 °C, and 500 °C, respectively (named as CF300, CF400, CF500, MF300, MF400, MF500, ZF300, ZF400, and ZF500). The characterization by X-ray diffraction (XRD) revealed that the optimal calcination temperature was 400 °C. Then, CF400, MF400, and ZF400 were used to treat high-concentration ammonia nitrogen wastewater (HCAW, 1000 mg/L) at different pH levels. The result showed that the optimal pH for CF400, MF400 and ZF400 to degrade HCAW was 9.0, and CF400 required a shorter illumination time (80 min) than MF400 and ZF400 (120 min) to completely remove ammonia nitrogen from HCAW. However, CF400 was unstable and decomposed, and a blue substance was observed during the magnetic recovery experiment. The recovery rate of ZF400 (66.7%) was higher than MF400 (53.2%) with no decomposition phenomenon, and the ammonia nitrogen removal rate of ZF400 remained above 90% after five cycles. Additionally, the ammonia nitrogen removal rate of ZF400 could reach 80.2% when the ammonia nitrogen concentration was as high as 5000 mg/L. Therefore, compared with CF400 and MF400, ZF400 was more suitable for treating HCAW. Full article
(This article belongs to the Special Issue Wastewater Treatment Methods, Techniques and Processes)
Show Figures

Figure 1

8 pages, 213 KiB  
Editorial
Adsorption Technology for Water and Wastewater Treatments
by Hai Nguyen Tran
Water 2023, 15(15), 2857; https://doi.org/10.3390/w15152857 - 7 Aug 2023
Cited by 26 | Viewed by 8317
Abstract
This Special Issue includes 12 research papers on the development of various materials for adsorbing different contaminants in water, such as Sb, Cr(VI), Cu(II), Zn(II), fluorine, phenol, dyes (indigo carmine, Congo red, methylene blue, and crystal violet), and drugs (dlevofloxacin, captopril, and diclofenac, [...] Read more.
This Special Issue includes 12 research papers on the development of various materials for adsorbing different contaminants in water, such as Sb, Cr(VI), Cu(II), Zn(II), fluorine, phenol, dyes (indigo carmine, Congo red, methylene blue, and crystal violet), and drugs (dlevofloxacin, captopril, and diclofenac, and paracetamol). The commercial, natural, and synthetic materials used as adsorbents comprise commercial activated carbon, natural clay and montmorillonite, biosorbent based on sugarcane bagasse or algal, graphene oxide, graphene oxide-based magnetic nanomaterial, mesoporous Zr-G-C3N4 nanomaterial, nitrogen-doped core–shell mesoporous carbonaceous nano-sphere, magnetic Fe-C-N composite, polyaniline-immobilized ZnO nanorod, and hydroxy-iron/acid–base-modified sepiolite composite. Various operational conditions are evaluated under batch adsorption experiments, such as pH, NaCl, solid/liquid ratio, stirring speed, contact time, solution temperature, initial adsorbate concentration. The re-usability of laden materials is evaluated through adsorption–desorption cycles. Adsorption kinetics, isotherm, thermodynamics, and mechanisms are studied and discussed. Machine learning processes and statistical physics models are also applied in the field of adsorption science and technology. Full article
(This article belongs to the Special Issue Adsorption Technology for Water and Wastewater Treatments)
19 pages, 3286 KiB  
Article
Ultra-High Adsorption Capacity of Core–Shell-Derived Magnetic Zeolite Imidazolate Framework-67 as Adsorbent for Selective Extraction of Theophylline
by Ling-Xiao Chen, Shi-Jun Yin, Tong-Qing Chai, Jia-Li Wang, Guo-Ying Chen, Xi Zhou and Feng-Qing Yang
Molecules 2023, 28(14), 5573; https://doi.org/10.3390/molecules28145573 - 21 Jul 2023
Cited by 8 | Viewed by 2214
Abstract
A core–shell-derived structural magnetic zeolite imidazolate framework-67 (Fe3O4-COOH@ZIF-67) nanocomposite was fabricated through a single-step coating of zeolite imidazolate framework-67 on glutaric anhydride-functionalized Fe3O4 nanosphere for the magnetic solid-phase extraction (MSPE) of theophylline (TP). The Fe3 [...] Read more.
A core–shell-derived structural magnetic zeolite imidazolate framework-67 (Fe3O4-COOH@ZIF-67) nanocomposite was fabricated through a single-step coating of zeolite imidazolate framework-67 on glutaric anhydride-functionalized Fe3O4 nanosphere for the magnetic solid-phase extraction (MSPE) of theophylline (TP). The Fe3O4-COOH@ZIF-67 nanocomposite was characterized through scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectrometry, Fourier transform infrared spectroscopy, Zeta potential analysis, X-ray diffraction, Brunauer–Emmett–Teller, and vibrating sample magnetometer. The material has a high specific surface area and good magnetism, which maintains the regular dodecahedron structure of ZIF-67 without being destroyed by the addition of Fe3O4-COOH nanospheres. The Fe3O4-COOH@ZIF-67 can rapidly adsorb TP mainly through the strong coordination interaction between undercoordinated Co2+ on ZIF-67 and –NH from imidazole of TP. The adsorption and desorption conditions, such as the amount of adsorbent, adsorption time, pH value, and elution solvent, were optimized. The kinetics of TP adsorption on Fe3O4-COOH@ZIF-67 was found to follow pseudo-second-order kinetics. The Langmuir model fits the adsorption data well and the maximum adsorption capacity is 1764 mg/g. Finally, the developed MSPE-HPLC method was applied in the enrichment and analysis of TP in four tea samples and rabbit plasma. TP was not detected in oolong tea and rabbit plasma, and its contents in jasmine tea, black tea, and green tea are 5.80, 4.31, and 1.53 μg/g, respectively. The recoveries of spiked samples are between 74.41% and 86.07% with RSD in the range of 0.81–3.83%. The adsorption performance of Fe3O4-COOH@ZIF-67 nanocomposite was nearly unchanged after being stored at room temperature for at least 80 days and two consecutive adsorption–desorption cycles. The results demonstrate that Fe3O4-COOH@ZIF-67 nanocomposite is a promising magnetic adsorbent for the preconcentration of TP in complex samples. Full article
Show Figures

Figure 1

29 pages, 7457 KiB  
Article
Effect of the Size and Shape of Dendronized Iron Oxide Nanoparticles Bearing a Targeting Ligand on MRI, Magnetic Hyperthermia, and Photothermia Properties—From Suspension to In Vitro Studies
by Barbara Freis, Maria De Los Angeles Ramirez, Céline Kiefer, Sébastien Harlepp, Cristian Iacovita, Céline Henoumont, Christine Affolter-Zbaraszczuk, Florent Meyer, Damien Mertz, Anne Boos, Mariana Tasso, Sonia Furgiuele, Fabrice Journe, Sven Saussez, Sylvie Bégin-Colin and Sophie Laurent
Pharmaceutics 2023, 15(4), 1104; https://doi.org/10.3390/pharmaceutics15041104 - 30 Mar 2023
Cited by 19 | Viewed by 3871
Abstract
Functionalized iron oxide nanoparticles (IONPs) are increasingly being designed as a theranostic nanoplatform combining specific targeting, diagnosis by magnetic resonance imaging (MRI), and multimodal therapy by hyperthermia. The effect of the size and the shape of IONPs is of tremendous importance to develop [...] Read more.
Functionalized iron oxide nanoparticles (IONPs) are increasingly being designed as a theranostic nanoplatform combining specific targeting, diagnosis by magnetic resonance imaging (MRI), and multimodal therapy by hyperthermia. The effect of the size and the shape of IONPs is of tremendous importance to develop theranostic nanoobjects displaying efficient MRI contrast agents and hyperthermia agent via the combination of magnetic hyperthermia (MH) and/or photothermia (PTT). Another key parameter is that the amount of accumulation of IONPs in cancerous cells is sufficiently high, which often requires the grafting of specific targeting ligands (TLs). Herein, IONPs with nanoplate and nanocube shapes, which are promising to combine magnetic hyperthermia (MH) and photothermia (PTT), were synthesized by the thermal decomposition method and coated with a designed dendron molecule to ensure their biocompatibility and colloidal stability in suspension. Then, the efficiency of these dendronized IONPs as contrast agents (CAs) for MRI and their ability to heat via MH or PTT were investigated. The 22 nm nanospheres and the 19 nm nanocubes presented the most promising theranostic properties (respectively, r2 = 416 s−1·mM−1, SARMH = 580 W·g−1, SARPTT = 800 W·g−1; and r2 = 407 s−1·mM−1, SARMH = 899 W·g−1, SARPTT = 300 W·g−1). MH experiments have proven that the heating power mainly originates from Brownian relaxation and that SAR values can remain high if IONPs are prealigned with a magnet. This raises hope that heating will maintain efficient even in a confined environment, such as in cells or in tumors. Preliminary in vitro MH and PTT experiments have shown the promising effect of the cubic shaped IONPs, even though the experiments should be repeated with an improved set-up. Finally, the grafting of a specific peptide (P22) as a TL for head and neck cancers (HNCs) has shown the positive impact of the TL to enhance IONP accumulation in cells. Full article
(This article belongs to the Special Issue Applications of Dendrimers in Biomedicine)
Show Figures

Figure 1

11 pages, 2751 KiB  
Article
Detection of Alpha Fetoprotein Based on AIEgen Nanosphere Labeled Aptamer Combined with Sandwich Structure of Magnetic Gold Nanocomposites
by Lei Liu, Huixing Wang, Husseini Sulemana, Bing Xie and Li Gao
Biosensors 2023, 13(3), 351; https://doi.org/10.3390/bios13030351 - 6 Mar 2023
Cited by 4 | Viewed by 2495
Abstract
As a biomarker, alpha-fetoprotein (AFP) is valuable for detecting some tumors in men, non-pregnant women, and children. However, the detection sensitivity in some methods needs to be improved. Therefore, developing a simple, reliable, and sensitive detection method for AFP is important for non-malignant [...] Read more.
As a biomarker, alpha-fetoprotein (AFP) is valuable for detecting some tumors in men, non-pregnant women, and children. However, the detection sensitivity in some methods needs to be improved. Therefore, developing a simple, reliable, and sensitive detection method for AFP is important for non-malignant diseases. An aptamer binding was developed based on aggregation-induced emission luminogen (AIEgen) nanosphere labeled with Fe3O4@MPTMS@AuNPs. AFP was detected with a sandwich structure of AuNPs magnetic composite particles. An aggregation-induced emission (AIE) molecule and polystyrene (PS) nanosphere complex were assembled, enhancing the fluorescence and improving the sensitivity of detection. The limit of detection (LOD) was at a given level of 1.429 pg/mL, which can best be achieved in serum samples. Finally, the results obtained showed the complex to be promising in practical applications. Full article
Show Figures

Figure 1

Back to TopTop