Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = mach band effect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2221 KB  
Article
Design and Optimization of Broadband Optical Half-Band Filters Based on Cascaded MZIs
by Ke Zeng, Yu Zheng, Shu Liu, Xin Tang, Xinyu Ouyang, Keyi Fan and Chentong Yang
Photonics 2025, 12(6), 618; https://doi.org/10.3390/photonics12060618 - 18 Jun 2025
Viewed by 557
Abstract
In optical communication systems, optical half-band filters are essential for efficient spectral separation, necessitating stringent performance criteria such as a wide spectral range, low insertion loss, and minimal crosstalk. This paper proposes a broadband optical half-band filter based on a cascaded Mach–Zehnder Interferometer [...] Read more.
In optical communication systems, optical half-band filters are essential for efficient spectral separation, necessitating stringent performance criteria such as a wide spectral range, low insertion loss, and minimal crosstalk. This paper proposes a broadband optical half-band filter based on a cascaded Mach–Zehnder Interferometer (MZI) structure, which effectively improves spectral separation by enhancing flatness and sharpness at transition edges through the optimization of delay line length differences and phase compensation values. The results demonstrate that the proposed design achieves an insertion loss below 0.45 dB and inter-band crosstalk under −20.7 dB over a 40 nm bandwidth, with a roll-off of 2.2 dB/nm between 1517 nm and 1528 nm. The findings highlight the technical advantages of cascaded MZI structures in achieving high-precision spectral separation, offering a valuable reference for the development of future high-performance optical communication networks and integrated optical devices. Full article
Show Figures

Figure 1

18 pages, 11147 KB  
Article
Numerical Study of Wind Tunnel Wall Effects on Icing Cloud Distribution and Water Collection in Aero-Engine Nacelles
by Cong Li, Ningli Chen, Xian Yi and Qingren Lai
Aerospace 2025, 12(4), 335; https://doi.org/10.3390/aerospace12040335 - 13 Apr 2025
Viewed by 2137
Abstract
Icing wind tunnel tests play a critical role in evaluating ice accretion on aero-engine nacelles. However, the effects of the wind tunnel wall (WTW) on the dynamics of the icing cloud remain insufficiently quantified. This study employs an experimentally validated Eulerian–Eulerian multiphase approach [...] Read more.
Icing wind tunnel tests play a critical role in evaluating ice accretion on aero-engine nacelles. However, the effects of the wind tunnel wall (WTW) on the dynamics of the icing cloud remain insufficiently quantified. This study employs an experimentally validated Eulerian–Eulerian multiphase approach to quantify WTW-induced alterations in Liquid Water Content (LWC) distribution inside the nacelle and droplet collection efficiency (β) on its surfaces. The results show that the WTW-induced flow deflection redirects droplets toward the outer nacelle surface, leading to an increase in the maximum droplet collection efficiency (βmax) and the total collected water mass on the nacelle under baseline conditions (Mach Number = 0.206) and causing a banded regime of the deviation in LWC. Parametric analysis further shows that higher inflow velocities and Median Volumetric Diameters (MVDs) enhanced the WTW’s effect on the change in LWC inside the nacelle and increased the maximum droplet collection efficiency on the nacelle’s surface. However, the increase in the intake flow rates exhibits a counteracting trend for the effect of the WTW for both the deviation in LWC and the maximum droplet collection efficiency and the total collected water mass. The findings highlight the necessity of accounting for WTW effects in icing wind tunnel testing protocols to improve flight condition extrapolation accuracy. Full article
Show Figures

Figure 1

19 pages, 7836 KB  
Review
Increase in Modulation Speed of Silicon Photonics Modulator with Quantum-Well Slab Wings: New Insights from a Numerical Study
by Kensuke Ogawa
Photonics 2024, 11(6), 535; https://doi.org/10.3390/photonics11060535 - 3 Jun 2024
Cited by 1 | Viewed by 4655
Abstract
A Silicon Photonics modulator is a high-speed photonic integrated circuit for optical data transmission in high-capacity optical networks. Silicon Photonics modulators in the configuration of a Mach–Zehnder interferometer, in which a PN-junction rib-waveguide phase shifter is inserted in each arm of the interferometer, [...] Read more.
A Silicon Photonics modulator is a high-speed photonic integrated circuit for optical data transmission in high-capacity optical networks. Silicon Photonics modulators in the configuration of a Mach–Zehnder interferometer, in which a PN-junction rib-waveguide phase shifter is inserted in each arm of the interferometer, are studied in this paper because of their superior performance of high-quality optical data generation in a wide range of spectral bands and their simplicity in fabrication processes suitable to production in foundries. Design, fabrication, and fundamental characteristics of Silicon Photonics Mach–Zehnder modulators are reviewed as an introduction to these high-speed PICs on the Silicon Photonics platform. Modulation speed, or modulation bandwidth, is a key performance item, as well as optical loss, in the application to high-speed optical transmitters. Limiting factors on modulation speed are addressed in equations. Electrical resistance–capacitance coupling, which causes optical modulation bandwidth–optical loss trade-off, is the most challenging limiting factor that limits high-speed modulation. Expansion of modulation bandwidth is not possible without increasing optical loss in the conventional approaches. A new idea including quantum-mechanical effect in the design of Silicon Photonics modulators is proposed and proved in computational analysis to resolve the bandwidth loss trade-off. By adding high-mobility quantum-well overlayers to the side slab wings of the rib-waveguide phase shifter, the modulation bandwidth is doubled without increasing optical loss to achieve a 200 Gbaud modulation rate. Full article
(This article belongs to the Special Issue Novel Advances in Integrated Optics)
Show Figures

Figure 1

10 pages, 2188 KB  
Article
Microwave Photonics Broadband Doppler Velocity Simulator with High Spurious Suppression Ratio by Using Serrodyne Modulation
by Zhe Liu, Dayong Wang, Weimin Zhu, Jing Zhang, Yunxin Wang, Jinchuan Yao and Yu Zhang
Photonics 2024, 11(4), 357; https://doi.org/10.3390/photonics11040357 - 12 Apr 2024
Cited by 1 | Viewed by 1583
Abstract
A Doppler velocity simulation method based on serrodyne modulation is proposed to achieve the frequency shift from hundred hertz to megahertz. One sub-phase modulation (PM) in a dual-parallel dual-drive Mach–Zehnder modulator loads a sawtooth signal to achieve a small frequency shift of the [...] Read more.
A Doppler velocity simulation method based on serrodyne modulation is proposed to achieve the frequency shift from hundred hertz to megahertz. One sub-phase modulation (PM) in a dual-parallel dual-drive Mach–Zehnder modulator loads a sawtooth signal to achieve a small frequency shift of the optical carrier. The other three sub-PMs implement carrier-suppressed double-band modulation of the RF signal. The RF signal is directly coupled from the receiving antenna to the modulator’s RF port without any electrical devices like a 90° hybrid, which ensures a broad operational bandwidth of the system. After filtering out one of the RF modulation sidebands by an optical filter, Doppler frequency shifting (DFS) is realized through frequency beating. The half-wave voltage of modulators rapidly decreases at low frequency shifts, leading to an increase in spurious signals. In order to improve the spurious suppression ratio (SSR) of DFS, a digital pre-distortion compensation based on the measured half-wave voltage is implemented in the frequency domain. Experimental results show that SSRs are larger than 35 dB when frequency shifts range from 0.1 kHz to 1 MHz. The RF operation bandwidth covers 2–40 GHz. The effectiveness of a Doppler velocity simulator is evaluated, and the simulation velocity error is less than 0.06 km/h. The proposed method has potential applications in both broadband electronic warfare and traffic metering applications. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

13 pages, 2479 KB  
Article
Photonic-Assisted Scheme for Simultaneous Self-Interference Cancellation, Fiber Dispersion Immunity, and High-Efficiency Harmonic Down-Conversion
by He Li, Zihang Zhu, Congrui Gao, Guodong Wang, Tao Zhou, Xuan Li, Qingqing Meng, Yixiao Zhou and Shanghong Zhao
Micromachines 2023, 14(2), 339; https://doi.org/10.3390/mi14020339 - 28 Jan 2023
Cited by 2 | Viewed by 2189
Abstract
A photonic approach to the cancellation of self-interference in the optical domain with fiber dispersion immunity and harmonic frequency down-conversion function is proposed based on an integrated, dual-parallel, dual-drive Mach–Zehnder modulator (DP-DMZM). A dual-drive Mach–Zehnder modulator (DMZM) is used as an optical interference [...] Read more.
A photonic approach to the cancellation of self-interference in the optical domain with fiber dispersion immunity and harmonic frequency down-conversion function is proposed based on an integrated, dual-parallel, dual-drive Mach–Zehnder modulator (DP-DMZM). A dual-drive Mach–Zehnder modulator (DMZM) is used as an optical interference canceller, which cancels the self-interference from the impaired signal before fiber transmission to avoid the effect of fiber transmission on the cancellation performance. Another DMZM is used to provide carrier-suppressed, local-oscillation (LO)-modulated, high-order double optical sidebands for harmonic frequency down-conversion to release the strict demand for high-frequency LO sources. By regulating the DC bias of the main modulator, the signal of interest (SOI) can be down-converted to the intermediated frequency (IF) band after photoelectric conversion with improved frequency-conversion efficiency, immunity to the fiber-dispersion-induced power-fading (DIPF) effect, and effective signal recovery. Theoretical analyses and simulation results show that the desired SOI in the X and K bands with a bandwidth of 500 MHz and different modulation formats can be down-converted to the IF frequency. The self-interference noise with the 2 GHz bandwidth is canceled, and successful signal recovery is achieved after a 10 km fiber transmission. The recovery performance of down-converted signals and the self-interference cancellation depth under different interference-to-signal ratios (ISRs) is also investigated. In addition, the compensation performance of DIPF is verified, and a 6 dB improvement in frequency conversion gain is obtained compared with previous work. The proposed scheme is compact, cost-effective, and thus superior in wideband self-interference cancellation, long-range signal transmission, and effective recovery of weak desired signals. Full article
(This article belongs to the Special Issue Multi-Functional Integration Microwave Photonic Systems)
Show Figures

Figure 1

11 pages, 3288 KB  
Article
Photonic Integrated Frequency Shifter Based on Double Side Band Modulation: Performance Analysis
by Andrés Betancur-Pérez, Cristina de Dios and Pablo Acedo
Photonics 2022, 9(11), 793; https://doi.org/10.3390/photonics9110793 - 25 Oct 2022
Viewed by 3544
Abstract
In this research, we present an analysis of a photonic integrated frequency shifter as a stage for a THz dual comb generator. We studied the performance of the PIC by simulating it with standard building blocks, and aimed toward an improvement of the [...] Read more.
In this research, we present an analysis of a photonic integrated frequency shifter as a stage for a THz dual comb generator. We studied the performance of the PIC by simulating it with standard building blocks, and aimed toward an improvement of the output signal quality. We revised two approaches of the PIC by simulating two modes of generating a double side band modulation suppressed carrier (DSB-SC) with a Mach Zehnder modulator structure (MZM). One approach was using a single Electro-Optic Phase Modulator (EOPM) on an MZM structure (SE-MZM), and the other one was using Double EOPM (DE-MZM). We found a cleaner spectrum with the DE-MZM, since this structure is usually applied to reduce the chirp effect in optical communication systems. We obtained 23 dB of side mode suppression ratio SMSR with one filter, and 44 dB of SMSR with a two-stage filter. In the case of DE-MZM, we obtained a clean tone on intermediate frequency (IF) free of spurious sidebands and comb in IF frequency with 10 dB more power compared to SE-MZM. Full article
(This article belongs to the Special Issue Recent Advances in THz and Microwave Photonics)
Show Figures

Figure 1

11 pages, 4307 KB  
Article
Combining Four Gaussian Lasers Using Silicon Nitride MMI Slot Waveguide Structure
by Netanel Katash, Salman Khateeb and Dror Malka
Micromachines 2022, 13(10), 1680; https://doi.org/10.3390/mi13101680 - 6 Oct 2022
Cited by 19 | Viewed by 3148
Abstract
Transceivers that function under a high-speed rate (over 200 Gb/s) need to have more optical power ability to overcome the power losses which is a reason for using a larger RF line connected to a Mach–Zehnder modulator for obtaining high data bitrate communication. [...] Read more.
Transceivers that function under a high-speed rate (over 200 Gb/s) need to have more optical power ability to overcome the power losses which is a reason for using a larger RF line connected to a Mach–Zehnder modulator for obtaining high data bitrate communication. One option to solve this problem is to use a complex laser with a power of over 100 milliwatts. However, this option can be complicated for a photonic chip circuit due to the high cost and nonlinear effects, which can increase the system noise. Therefore, we propose a better solution to increase the power level using a 4 × 1 power combiner which is based on multimode interference (MMI) using a silicon nitride (Si3N4) slot waveguide structure. The combiner was solved using the full-vectorial beam propagation method (FV-BPM), and the key parameters were analyzed using Matlab script codes. Results show that the combiner can function well over the O-band spectrum with high combiner efficiency of at least 98.2% after a short light coupling propagation of 28.78 μm. This new study shows how it is possible to obtain a transverse electric mode solution for four Gaussian coherent sources using Si3N4 slot waveguide technology. Furthermore, the back reflection (BR) was solved using a finite difference time-domain method, and the result shows a low BR of 40.15 dB. This new technology can be utilized for combining multiple coherent sources that work with a photonic chip at the O-band range. Full article
Show Figures

Figure 1

13 pages, 3579 KB  
Article
A Microwave Photonic Converter with High in-Band Spurs Suppression Based on Microwave Pre-Upconversion
by Chaoquan Wang, Yiru Zhao, Zeping Zhao, Weijie Zhang, Wenyu Wang, Qianqian Jia and Jianguo Liu
Photonics 2022, 9(6), 388; https://doi.org/10.3390/photonics9060388 - 30 May 2022
Cited by 1 | Viewed by 3393
Abstract
A microwave photonic converter based on microwave pre-upconversion is proposed and experimentally demonstrated. Only a single Mach–Zehnder modulator (MZM) is used in the converter system so that the complexity and bandwidth limiting of the link can be reduced. The transmitted and received signals [...] Read more.
A microwave photonic converter based on microwave pre-upconversion is proposed and experimentally demonstrated. Only a single Mach–Zehnder modulator (MZM) is used in the converter system so that the complexity and bandwidth limiting of the link can be reduced. The transmitted and received signals before entering the MZM are firstly upconverted to high frequency (HF) by a microwave upconverter. The HF and local oscillator (LO) signals are combined to drive the MZM. Carrier-suppressed double-sideband (CS-DSB) modulation is introduced to the MZM for effective spectrum utilization. Then, the target signals can be obtained by photoelectric conversion and beating. Experimental results confirm that the mixing spurs including harmonics and intermodulation as well as original signals are all out of system frequency band from 0.8–18 GHz, and the in-band spurious suppression of at least 40 dBc is achieved. In addition, the spurious-free dynamic range (SFDR) reaches 86.23 dB·HZ2/3 for upconversion and 80.95 dB·HZ2/3 for downconversion. The proposed microwave photonic converter provides a wideband and high-purity alternative for the applications of radars and signal processing. Full article
(This article belongs to the Special Issue Microwave Photonics II)
Show Figures

Figure 1

7 pages, 778 KB  
Communication
The Diagnostic Relevance and Interfaces Covered by Mach Band Effect in Dentistry: An Analysis of the Literature
by Andy Wai Kan Yeung
Healthcare 2022, 10(4), 632; https://doi.org/10.3390/healthcare10040632 - 28 Mar 2022
Cited by 5 | Viewed by 3674
Abstract
This work surveyed how the Mach band effect was mentioned in the dental literature and provided a qualitative assessment of diagnostic relevance and interfaces covered. PubMed, Scopus, and Google Scholar were queried in mid-Jan 2022. The search string was (“mach band effect” OR [...] Read more.
This work surveyed how the Mach band effect was mentioned in the dental literature and provided a qualitative assessment of diagnostic relevance and interfaces covered. PubMed, Scopus, and Google Scholar were queried in mid-Jan 2022. The search string was (“mach band effect” OR “mach effect”) AND (dental OR oral OR tooth OR teeth OR maxillofacial OR orofacial). All publications returned by the searches were screened. Exclusion criteria included irrelevance (e.g., dealing with “Mach effect” that was non-radiographic or non-dental) and not written in English. Reference lists of returned publications were manually searched to identify potentially missed papers. For each included publication, the following parameters were recorded: any presentation of radiographic images showing a Mach band effect, direct investigation of the effect, relevance to which structural interfaces, diagnostic relevance, and in which parts of the publication Mach band effect was mentioned. Seventy-seven publications were included and analyzed. The majority of the publications mentioned the Mach band effect in the Discussion section about its diagnostic relevance to caries detection at the enamel-dentinal junction and the interface between restorative material and tooth structure. Eight of them presented radiographic images showing a Mach band effect. Three of them investigated the Mach band effect. Dental publications seldom covered the Mach band effect. When they covered it, most of them only mentioned it in the Discussion section without actually investigating it. Full article
(This article belongs to the Topic State-of-the-Art Dentistry and Oral Health)
Show Figures

Figure 1

17 pages, 9482 KB  
Article
Imbalanced Mach-Zehnder Modulator for Fading Suppression in Dispersion-Uncompensated Direct Detection System
by Yixiao Zhu, Xin Miao, Qi Wu, Longjie Yin and Weisheng Hu
Electronics 2021, 10(22), 2866; https://doi.org/10.3390/electronics10222866 - 21 Nov 2021
Cited by 8 | Viewed by 3509
Abstract
In this work, we systematically analyze the impact of three kinds of Mach-Zehnder modulator (MZM) imbalances, including bias deviation, amplitude mismatch, and differential time skew in intensity-modulation direct-detection (IM-DD) links. It is shown that, for power fading limited transmission, the imbalances can be [...] Read more.
In this work, we systematically analyze the impact of three kinds of Mach-Zehnder modulator (MZM) imbalances, including bias deviation, amplitude mismatch, and differential time skew in intensity-modulation direct-detection (IM-DD) links. It is shown that, for power fading limited transmission, the imbalances can be utilized as advantages rather than impairments. Specifically, the bias deviation with single-arm driven mode and amplitude mismatch with differential driven mode can increase the available bandwidth by shifting the frequency of fading notches. Meanwhile, time skew provides another way to avoid fading by shaping the double sideband (DSB) signal into a vestigial sideband (VSB) with an asymmetrical transfer function. In the transmission experiment, 34 Gbaud Nyquist 6/8-ary pulse amplitude modulation (PAM-6/8) signals are used for investigation in a 20 km dispersion-uncompensated standard single-mode fiber (SSMF) link. With the help of a Volterra nonlinear equalizer, all three kinds of imbalances can achieve bit-error rates (BERs) below the 7% and 20% hard-decision forward error correction (HD-FEC) thresholds for PAM-6 and PAM-8 signals, respectively. The received power sensitivity is also compared at the back-to-back (BTB) case and after fiber transmission. Both numerical simulation and experimental demonstration confirm that the dispersion-induced power fading can be effectively suppressed with bias, amplitude, or skew imbalance, providing a feasible solution for transmission distance extension of C-band DD links. Full article
(This article belongs to the Special Issue Advanced Photonic Technologies for High-Speed Communications)
Show Figures

Figure 1

9 pages, 8944 KB  
Article
Flexible Ultra-Wide Electro-Optic Frequency Combs for a High-Capacity Tunable 5G+ Millimeter-Wave Frequency Synthesizer
by Li Liu, Yangguang Liu, Xiao-Zhi Gao and Xiaomin Zhang
Appl. Sci. 2021, 11(22), 10742; https://doi.org/10.3390/app112210742 - 14 Nov 2021
Cited by 2 | Viewed by 2780
Abstract
This paper presents a new scheme of a cost-effective tunable millimeter-wave (MMW) frequency synthesizer based on an ultra-wideband electro-optic frequency comb. The architecture for the quasi-tunable millimeter-wave frequency synthesizer mainly consists of a compact ultra-wide flat electro-optic frequency comb and a multi-tone frequency [...] Read more.
This paper presents a new scheme of a cost-effective tunable millimeter-wave (MMW) frequency synthesizer based on an ultra-wideband electro-optic frequency comb. The architecture for the quasi-tunable millimeter-wave frequency synthesizer mainly consists of a compact ultra-wide flat electro-optic frequency comb and a multi-tone frequency generator, which only includes a quantum dot mode-locked laser, a LiNbO3 dual-driving Mach–Zehnder modulator (DD-MZM) and Uni-traveling-carrier photodiode (UTC-PD). MMW signals generated with a quasi-tunable frequency are experimentally demonstrated. The difference in power is obtained for the different frequencies. The linewidth of the quasi-tunable frequency signals is less than 273 Hz. In addition, the single side band (SSB) phase noise of the 25, 37.5, 50 and 75 GHz is measured as −115, −106, −102 and −95 dBc/Hz at an offset of 1 kHz, respectively. The proposed frequency synthesizer has ultra-low phase noise, quasi-tunable frequency and simple structure. The research results of the frequency synthesizer are applied for 5G+ transmission with radio wave working at K-band and V-band. The flexible, compact and robust MMW frequency synthesizer is suitable for the future of ultra-high capacity 5G+ communication. Full article
(This article belongs to the Special Issue Applications of Millimeter-Wave and Terahertz Technologies)
Show Figures

Figure 1

12 pages, 9653 KB  
Communication
1.1-µm Band Extended Wide-Bandwidth Wavelength-Swept Laser Based on Polygonal Scanning Wavelength Filter
by Gi Hyen Lee, Soyeon Ahn, Jinhwa Gene and Min Yong Jeon
Sensors 2021, 21(9), 3053; https://doi.org/10.3390/s21093053 - 27 Apr 2021
Cited by 11 | Viewed by 3713
Abstract
We demonstrated a 1.1-µm band extended wideband wavelength-swept laser (WSL) that combined two semiconductor optical amplifiers (SOAs) based on a polygonal scanning wavelength filter. The center wavelengths of the two SOAs were 1020 nm and 1140 nm, respectively. Two SOAs were connected in [...] Read more.
We demonstrated a 1.1-µm band extended wideband wavelength-swept laser (WSL) that combined two semiconductor optical amplifiers (SOAs) based on a polygonal scanning wavelength filter. The center wavelengths of the two SOAs were 1020 nm and 1140 nm, respectively. Two SOAs were connected in parallel in the form of a Mach-Zehnder interferometer. At a scanning speed of 1.8 kHz, the 10-dB bandwidth of the spectral output and the average power were approximately 228 nm and 16.88 mW, respectively. Owing to the nonlinear effect of the SOA, a decrease was observed in the bandwidth according to the scanning speed. Moreover, the intensity of the WSL decreased because the oscillation time was smaller than the buildup time. In addition, a cholesteric liquid crystal (CLC) cell was fabricated as an application of WSL, and the dynamic change of the first-order reflection of the CLC cell in the 1-µm band was observed using the WSL. The pitch jumps of the reflection band occurred according to the electric field applied to the CLC cell, and instantaneous changes were observed. Full article
(This article belongs to the Special Issue Fiber Optic Sensors and Fiber Lasers)
Show Figures

Figure 1

10 pages, 3334 KB  
Article
A Tunable Dual-Passband Microwave Photonic Filter Based on Optically Injected Distributed Feedback Semiconductor Lasers and Dual-Output Mach-Zehnder Modulator
by Jiayi Zhao, Jingjing Hu, Pengcheng Deng, Runze Yu, Ruoxian Liu, Mingshan Zhao and Yiying Gu
Appl. Sci. 2020, 10(10), 3631; https://doi.org/10.3390/app10103631 - 24 May 2020
Cited by 1 | Viewed by 2671
Abstract
In this paper, a novel approach to achieving a wideband tunable dual-passband microwave photonic filter (MPF) is proposed based on optical-injected distributed feedback (DFB) semiconductor lasers and a dual-output Mach–Zehnder modulator (DOMZM). The fundamental concepts for realizing the MPF are the wavelength-selective amplification [...] Read more.
In this paper, a novel approach to achieving a wideband tunable dual-passband microwave photonic filter (MPF) is proposed based on optical-injected distributed feedback (DFB) semiconductor lasers and a dual-output Mach–Zehnder modulator (DOMZM). The fundamental concepts for realizing the MPF are the wavelength-selective amplification effect and the period-one oscillation state under optically injected DFB lasers. These effects provide a widely tunable range of center frequency, along with high flexibility and low insertion loss. The proposed MPF is experimentally demonstrated, showing that the dual-passband center frequency in the MPF can be tuned independently from 19 to 37 GHz by adjusting the detuning frequency and injection ratio. Meanwhile, the insertion loss of the system is about 15 dB when there is no optical or electrical amplifier in the MPF link. The out-of-band suppression ratio of the MPF is more than 20 dB, which can be improved by adjusting the power of the two optical signals. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

22 pages, 8637 KB  
Article
Development of a Preliminary Design Method for Subsonic Splittered Blades in Highly Loaded Axial-Flow Compressors
by Baojie Liu, Du Fu and Xianjun Yu
Appl. Sci. 2017, 7(3), 283; https://doi.org/10.3390/app7030283 - 14 Mar 2017
Cited by 11 | Viewed by 8865
Abstract
This paper presents a model for predicting the reference minimum-loss incidence and deviation angles of a blade arrangement with splitter vanes, which is probably a solution for future ultra-highly loaded axial compressor designs. The motivation of the modeling is to guide the blading [...] Read more.
This paper presents a model for predicting the reference minimum-loss incidence and deviation angles of a blade arrangement with splitter vanes, which is probably a solution for future ultra-highly loaded axial compressor designs. The motivation of the modeling is to guide the blading design in splittered compressor design processes where the additional splitter vanes must be specially considered. The development of the model is based on a blade performance database from systematic numerical simulations. Basic correlations of the model are firstly proposed, which consider dominant blade geometry parameters related to blade loading, including camber angle and solidity. Secondly, geometric and aerodynamic corrections about orientation parameter, blade maximum thickness, inlet Mach number, and three-dimensional (3D) effects are empirically incorporated into the basic correlations. Eventually, a subsonic 3D splittered rotor is designed using the correlations coupled with the corrections obtained from the validation of the model. The results indicate that the model is able to achieve a good agreement within an error band of ±1.0° for the predictions of both reference minimum-loss incidence and deviation angles, and the rotor designed using the model accomplishes the desired work input and flow deflection. Full article
(This article belongs to the Special Issue Gas Turbines Propulsion and Power)
Show Figures

Figure 1

Back to TopTop