Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = lower Danube River

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3636 KB  
Article
Coexistence of Hydropower Plants and Natura 2000 Fish Species: A Case Study of the Danube Longbarbel Gudgeon and Cactus Roach in the Impounded Sava River (Slovenia)
by Gorazd Urbanič, Andrej Vidmar, Davor Zanella, Marko Ćaleta, Roman Karlović, Maja Pavlin Urbanič and Andrej Kryžanowski
Sustainability 2025, 17(21), 9730; https://doi.org/10.3390/su17219730 - 31 Oct 2025
Viewed by 398
Abstract
The sustainable management of water bodies with hydropower plants (HPPs) and protected rheophilic fish species is challenging. The key question is whether impounded rivers can still provide habitat for protected rheophilic fish species, including Natura 2000 species. We investigated hydro-morphological conditions and fish [...] Read more.
The sustainable management of water bodies with hydropower plants (HPPs) and protected rheophilic fish species is challenging. The key question is whether impounded rivers can still provide habitat for protected rheophilic fish species, including Natura 2000 species. We investigated hydro-morphological conditions and fish communities, focusing on the bottom-dwelling Danube longbarbel gudgeon (Romanogobio uranoscopus) and the medium-distance migrating cactus roach (Rutilus virgo) in the Brežice HPP system on the Sava River in Slovenia. Fish sampling using an electric bottom trawl in the HPP impoundment, electrofishing in the nearshore, and video surveillance in the fish pass revealed a diverse and distinctive fish community. This community reflected rheophilic conditions in the upper impoundment and fish pass, and lentic conditions in the lower impoundment. These findings provide evidence that impounded rivers, when complemented by well-designed mitigation measures, can sustain rheophilic fish species, including the Danube longbarbel gudgeon and cactus roach. Maintaining rheophilic habitat within the impoundment, combined with a functioning river-like side channel, is crucial. However, at Brežice HPP, changes in the management of the fish pass water inflow are necessary to ensure adequate and consistent hydraulic conditions and water temperatures. Applying a knowledge co-creation approach, which requires productive interaction among scientists, managers and policy makers, could help to find the best solutions for sustainable water ecosystem management. Full article
(This article belongs to the Section Sustainability, Biodiversity and Conservation)
Show Figures

Figure 1

16 pages, 3525 KB  
Article
A Decade of Change in the Floodplain Lake: Does Zooplankton Yield or Resist?
by Anita Galir, Filip Stević, Karla Čmelar, Dubravka Špoljarić Maronić, Tanja Žuna Pfeiffer and Nikolina Bek
Water 2025, 17(17), 2638; https://doi.org/10.3390/w17172638 - 6 Sep 2025
Cited by 1 | Viewed by 1058
Abstract
Natural ecosystems, especially those regulated by floods, are sensitive to prolonged temperature fluctuations that affect hydrology and the lateral connection between the river and its floodplain. Here, we analyzed a series of zooplankton data collected monthly from 2007 to 2016 during the ice-free [...] Read more.
Natural ecosystems, especially those regulated by floods, are sensitive to prolonged temperature fluctuations that affect hydrology and the lateral connection between the river and its floodplain. Here, we analyzed a series of zooplankton data collected monthly from 2007 to 2016 during the ice-free period in Kopački Rit Nature Park in the Middle Danube, an area important as a food source and nursery area for fish stocks in the Danube. The aim was to find out how the long-term change in temperature and fluctuating environmental parameters affect the succession of zooplankton in the warmer (from April to September) and colder parts of the year (from October to March). Throughout the decade, total nitrogen concentrations showed significant differences between years, with an increase since 2012. Despite the increase in nitrogen levels and the expected increase in primary production, the higher nitrogen levels were accompanied by lower zooplankton biomass. A significant difference was found between the values of the zooplankton geometric mean index, with 73% of the variance explained by the difference between groups. In general, a trend toward a significant decrease in zooplankton biomass, with a simultaneous increase in the number of species and high turnover rates, was observed throughout the decade. Full article
(This article belongs to the Special Issue Freshwater Ecosystems—Biodiversity and Protection: 2nd Edition)
Show Figures

Figure 1

45 pages, 5732 KB  
Article
Tracing Heavy Metal Pollution in the Romanian Black Sea: A Multi-Matrix Study of Contaminant Profiles and Ecological Risk Across the Continental Shelf and Beyond
by Andra Oros, Dragos Marin, Gulten Reiz and Robert Daniel Nenita
Water 2025, 17(16), 2406; https://doi.org/10.3390/w17162406 - 14 Aug 2025
Cited by 1 | Viewed by 1423
Abstract
This study provides a comprehensive six-year assessment (2018–2023) of heavy metal contamination in the Romanian Black Sea sector, integrating data from seawater, surface sediments, and benthic mollusks. Sampling was conducted across a broad spatial gradient, including transitional, coastal, shelf, and offshore waters beyond [...] Read more.
This study provides a comprehensive six-year assessment (2018–2023) of heavy metal contamination in the Romanian Black Sea sector, integrating data from seawater, surface sediments, and benthic mollusks. Sampling was conducted across a broad spatial gradient, including transitional, coastal, shelf, and offshore waters beyond 200 m depth. Concentrations of six potentially toxic metals, including cadmium (Cd), lead (Pb), nickel (Ni), chromium (Cr), copper (Cu), and cobalt (Co), were measured to evaluate regional variability, potential sources, and ecological implications. Results indicate some exceedances of regulatory thresholds for Cd and Pb in transitional and coastal waters, associated with Danube River input and coastal pressures. Seabed substrate analysis revealed widespread enrichment in Ni, moderate levels of Cr, and sporadic Cd elevation in Danube-influenced areas, along with localized hotspots of Cu and Pb near port and industrial zones. Biological uptake patterns in mollusks (bivalves Mytilus galloprovincialis and Anadara inequivalvis and gastropod Rapana venosa) highlighted Cd among key metals of concern, with elevated Bioconcentration Factor (BCF) and Biota–Sediment Accumulation Factor (BAF). Offshore waters generally exhibited lower pollution levels. However, isolated exceedances, such as Cr outliers recorded in 2022, suggest that deep-sea inputs from atmospheric or maritime sources may be both episodic in nature and underrecognized due to limited monitoring coverage. The combined use of water, sediment, and biota data emphasize the strength of multi-matrix approaches in marine pollution evaluation, revealing persistent nearshore pressures and less predictable offshore anomalies. These findings contribute to a more complete understanding of heavy metal distribution in the northwestern Black Sea and provide a scientific basis for improving long-term environmental monitoring and risk management strategies in the region. Full article
Show Figures

Figure 1

28 pages, 2140 KB  
Article
Application of the GEV Distribution in Flood Frequency Analysis in Romania: An In-Depth Analysis
by Cristian Gabriel Anghel and Dan Ianculescu
Climate 2025, 13(7), 152; https://doi.org/10.3390/cli13070152 - 18 Jul 2025
Cited by 4 | Viewed by 2224
Abstract
This manuscript investigates the applicability and behavior of the Generalized Extreme Value (GEV) distribution in flood frequency analysis, comparing it with the Pearson III and Wakeby distributions. Traditional approaches often rely on a limited set of statistical distributions and estimation techniques, which may [...] Read more.
This manuscript investigates the applicability and behavior of the Generalized Extreme Value (GEV) distribution in flood frequency analysis, comparing it with the Pearson III and Wakeby distributions. Traditional approaches often rely on a limited set of statistical distributions and estimation techniques, which may not adequately capture the behavior of extreme events. The study focuses on four hydrometric stations in Romania, analyzing maximum discharges associated with rare and very rare events. The research employs seven parameter estimation methods: the method of ordinary moments (MOM), the maximum likelihood estimation (MLE), the L-moments, the LH-moments, the probability-weighted moments (PWMs), the least squares method (LSM), and the weighted least squares method (WLSM). Results indicate that the GEV distribution, particularly when using L-moments, consistently provides more reliable predictions for extreme events, reducing biases compared to MOM. Compared to the Wakeby distribution for an extreme event (T = 10,000 years), the GEV distribution produced smaller deviations than the Pearson III distribution, namely +7.7% (for the Danube River, Giurgiu station), +4.9% (for the Danube River, Drobeta station), and +35.3% (for the Ialomita River). In the case of the Siret River, the Pearson III distribution generated values closer to those obtained by the Wakeby distribution, being 36.7% lower than those produced by the GEV distribution. These results support the use of L-moments in national hydrological guidelines for critical infrastructure design and highlight the need for further investigation into non-stationary models and regionalization techniques. Full article
(This article belongs to the Special Issue Hydroclimatic Extremes: Modeling, Forecasting, and Assessment)
Show Figures

Figure 1

27 pages, 1953 KB  
Article
Surface Water Contaminants (Metals, Nutrients, Pharmaceutics, Endocrine Disruptors, Bacteria) in the Danube River and Black Sea Basins, SE Romania
by Antoaneta Ene, Liliana Teodorof, Carmen Lidia Chiţescu, Adrian Burada, Cristina Despina, Gabriela Elena Bahrim, Aida Mihaela Vasile, Daniela Seceleanu-Odor and Elena Enachi
Appl. Sci. 2025, 15(9), 5009; https://doi.org/10.3390/app15095009 - 30 Apr 2025
Cited by 3 | Viewed by 2178
Abstract
The assessment of surface water quality of the Danube River and Black Sea was performed taking into account the amounts determined for heavy metals (As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Zn), nutrients (compounds of N and P, chlorophyll a), emerging contaminants [...] Read more.
The assessment of surface water quality of the Danube River and Black Sea was performed taking into account the amounts determined for heavy metals (As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Zn), nutrients (compounds of N and P, chlorophyll a), emerging contaminants (CECs) (pharmaceutics and endocrine disruptors—19 quantified compounds, out of 30 targeted chemicals), heterotrophic bacteria and total coliforms, in thirty-two locations from the lower Danube sector (starting with km 375 up to the river mouths), the Danube Delta Biosphere Reserve (three Danube branches—Chilia, Sulina, and Sf. Gheorghe) and the Romanian coastal area of the Black Sea. The heavy metals levels were found in the following ranges: 3.0–6.5 μg/L As; 0.51–1.32 μg/L Cd; 21.6–61.2 μg/L Cr; 10.2–28.6 μg/L Cu; 196–351 μg/L Mn; 12.3–47.67 μg/L Ni; 5.2–15.5 μg/L Pb; 44–74 μg/L Zn; 0.01–0.08 μg/L Hg. The nutrient concentrations vary in the intervals: 0.04–0.45 mg/L N-NH4; 0.01–0.06 mg/L N-NO2; 0.07–1.9 mg/L N-NO3; 1.0–3.2 mg/L N total; 0.01–0.05 mg/L P-PO4; 0.02–0.27 mg/L P total, and 0.8–17.3 μg/L chlorophyll a. The concentrations of CECs from various classes (sulfamethoxazole, trimethoprim, ciprofloxacin, flumequine, amoxicillin, cefuroxime, dicloxacillin, carbamazepine, pravastatin, erythromycin, piroxicam, ketoprofen, diclofenac, naproxen, enilconazole (imazalil), clotrimazole, drospirenone, 17α-ethinylestradiol, and bisphenol A) were compared with values reported for European rivers and the Danube River water in various river sectors. The highest detection frequencies were registered for bisphenol A (100%), sulfamethoxazole (96%), carbamazepine and diclofenac (87%), trimethoprim (78%), pravastatin (46%), and imazalil (34%). Bisphenol A exhibited the largest concentrations (342 ng/L), followed by diclofenac (132 ng/L), carbamazepine (38 ng/L), and sulfamethoxazole (36 ng/L). For most of the contaminants, Black Sea coastal water showed lower concentrations than the Danube water and good ecological status for surface water. Correlations between CECs and total coliforms suggest insufficient treated wastewater effluents as a common contamination source and possible use of CECs as indirect fecal pollution indicator in aquatic systems. This is the first study carried out in the connected system Danube River–Danube Delta–Black Sea for a large palette of toxicants classes and microbial pollutants, which will serve as a baseline for future monitoring of water quality in the region. Full article
(This article belongs to the Special Issue Exposure Pathways and Health Implications of Environmental Chemicals)
Show Figures

Figure 1

20 pages, 17673 KB  
Article
Green Infrastructure for Climate Change Mitigation: Assessment of Carbon Sequestration and Storage in the Urban Forests of Budapest, Hungary
by Éva Király, Gábor Illés and Attila Borovics
Urban Sci. 2025, 9(5), 137; https://doi.org/10.3390/urbansci9050137 - 23 Apr 2025
Viewed by 2499
Abstract
The effects of climate change are particularly pronounced in cities, where urban green infrastructure—such as trees, parks, and green spaces—plays a vital role in both climate adaptation and mitigation. This study assesses the carbon sequestration potential of urban forests in Budapest, the capital [...] Read more.
The effects of climate change are particularly pronounced in cities, where urban green infrastructure—such as trees, parks, and green spaces—plays a vital role in both climate adaptation and mitigation. This study assesses the carbon sequestration potential of urban forests in Budapest, the capital city of Hungary, which lies at the intersection of the Great Hungarian Plain and the Buda Hills, and is traversed by the Danube River. The city is characterized by a temperate climate with hot summers and cold winters, and a diverse range of soil types, including shallow Leptosols and Cambisols in the limestone and dolomite hills of Buda, well-developed Luvisols and Regosols in the valleys, Fluvisols and Arenosols in the flood-affected areas of Pest, and Technosols found on both sides of the city. The assessment utilizes data from the National Forestry Database and the Copernicus Land Monitoring Service High Resolution Layer Tree Cover Density. The results show that Budapest’s urban forests and trees contribute an estimated annual carbon offset of −41,338 tCO2, approximately 1% of the city’s total emissions. The urban forests on the Buda and Pest sides of the city exhibit notable differences in carbon sequestration and storage, age class structure, tree species composition, and naturalness. On the Buda side, older semi-natural forests dominated by native species primarily act as in situ carbon reservoirs, with limited additional sequestration capacity due to their older age, slower growth, and longer rotation periods. In contrast, the Pest-side forests, which are primarily extensively managed introduced forests and tree plantations, contain a higher proportion of non-native species such as black locust (Robinia pseudoacacia) and hybrid poplars (Populus × euramericana). Despite harsher climatic conditions, Pest-side forests perform better in carbon sink capacity compared to those on the Buda side, as they are younger, with lower carbon stocks but higher sequestration rates. Our findings provide valuable insights for the development of climate-resilient urban forestry and planning strategies, emphasizing the importance of enhancing the long-term carbon sequestration potential of urban forests. Full article
Show Figures

Graphical abstract

24 pages, 4642 KB  
Article
Electrochemical Detection of Cd2+, Pb2+, Cu2+ and Hg2+ with Sensors Based on Carbonaceous Nanomaterials and Fe3O4 Nanoparticles
by Ancuța Dinu (Iacob), Alexandra Virginia Bounegru, Catalina Iticescu, Lucian P. Georgescu and Constantin Apetrei
Nanomaterials 2024, 14(8), 702; https://doi.org/10.3390/nano14080702 - 18 Apr 2024
Cited by 28 | Viewed by 4591
Abstract
Two electrochemical sensors were developed in this study, with their preparations using two nanomaterials with remarkable properties, namely, carbon nanofibers (CNF) modified with Fe3O4 nanoparticles and multilayer carbon nanotubes (MWCNT) modified with Fe3O4 nanoparticles. The modified screen-printed [...] Read more.
Two electrochemical sensors were developed in this study, with their preparations using two nanomaterials with remarkable properties, namely, carbon nanofibers (CNF) modified with Fe3O4 nanoparticles and multilayer carbon nanotubes (MWCNT) modified with Fe3O4 nanoparticles. The modified screen-printed electrodes (SPE) were thus named SPE/Fe3O4-CNF and SPE/Fe3O4-MWCNT and were used for the simultaneous detection of heavy metals (Cd2+, Pb2+, Cu2+ and Hg2+). The sensors have been spectrometrically and electrochemically characterized. The limits of detection of the SPE/Fe3O4-CNF sensor were 0.0615 μM, 0.0154 μM, 0.0320 μM and 0.0148 μM for Cd2+, Pb2+, Cu2+ and Hg2+, respectively, and 0.2719 μM, 0.3187 μM, 1.0436 μM and 0.9076 μM in the case of the SPE/ Fe3O4-MWCNT sensor (following optimization of the working parameters). Due to the modifying material, the results showed superior performance for the SPE/Fe3O4-CNF sensor, with extended linearity ranges and detection limits in the nanomolar range, compared to those of the SPE/Fe3O4-MWCNT sensor. For the quantification of heavy metal ions Cd2+, Pb2+, Cu2+ and Hg2+ with the SPE/Fe3O4-CNF sensor from real samples, the standard addition method was used because the values obtained for the recovery tests were good. The analysis of surface water samples from the Danube River has shown that the obtained values are significantly lower than the maximum limits allowed according to the quality standards specified by the United States Environmental Protection Agency (USEPA) and those of the World Health Organization (WHO). This research provides a complementary method based on electrochemical sensors for in situ monitoring of surface water quality, representing a useful tool in environmental studies. Full article
Show Figures

Figure 1

15 pages, 2812 KB  
Article
Electrochemical Sensing of Cadmium and Lead Ions in Water by MOF-5/PANI Composites
by Jadranka Milikić, Marjetka Savić, Aleksandra Janošević Ležaić, Biljana Šljukić and Gordana Ćirić-Marjanović
Polymers 2024, 16(5), 683; https://doi.org/10.3390/polym16050683 - 2 Mar 2024
Cited by 24 | Viewed by 4001
Abstract
For the first time, composites of metal-organic framework MOF-5 and conjugated polymer polyaniline (PANI), (MOF-5/PANI), prepared using PANI in its conducting (emeraldine salt, ES) or nonconducting form (emeraldine base, EB) at various MOF-5 and PANI mass ratios, were evaluated as electrode materials for [...] Read more.
For the first time, composites of metal-organic framework MOF-5 and conjugated polymer polyaniline (PANI), (MOF-5/PANI), prepared using PANI in its conducting (emeraldine salt, ES) or nonconducting form (emeraldine base, EB) at various MOF-5 and PANI mass ratios, were evaluated as electrode materials for the electrochemical detection of cadmium (Cd2+) and lead (Pb2+) ions in aqueous solutions. Testing of individual components of composites, PANI-ES, PANI-EB, and MOF-5, was also performed for comparison. Materials are characterized by Raman spectroscopy, scanning electron microscopy (SEM) and dynamic light scattering (DLS), and their electrochemical behavior was discussed in terms of their zeta potential, structural, morphology, and textural properties. All examined composites showed high electrocatalytic activity for the oxidation of Cd and Pb to Cd2+ and Pb2+, respectively. The MOF/EB-1 composite (71.0 wt.% MOF-5) gave the highest oxidation currents during both individual and simultaneous detection of two heavy metal ions. Current densities recorded with MOF/EB-1 were also higher than those of its individual components, reflecting the synergistic effect where MOF-5 offers high surface area for two heavy metals adsorption and PANI offers a network for electron transfer during metals’ subsequent oxidation. Limits of detection using MOF/EB-1 electrode for Cd2+ and Pb2+ sensing were found to be as low as 0.077 ppm and 0.033 ppm, respectively. Moreover, the well-defined and intense peaks of Cd oxidation to Cd2+ and somewhat lower peaks of Pb oxidation to Pb2+ were observed at voltammograms obtained for the Danube River as a real sample with no pretreatment, which implies that herein tested MOF-5/PANI electrodes could be used as electrochemical sensors for the detection of heavy metal ions in the real water samples. Full article
(This article belongs to the Special Issue Polymer Materials for Sensors and Actuators)
Show Figures

Figure 1

5 pages, 1114 KB  
Proceeding Paper
Efficacy of Fumonisin B1 Removal from Various Simulated Water Types Using UV and UV/H2O2 Treatments
by Ivana Jevtić, Sandra Jakšić, Daniela Šojić Merkulov, Szabolcs Bognár and Biljana Abramović
Biol. Life Sci. Forum 2023, 24(1), 7; https://doi.org/10.3390/IECT2023-14802 - 17 Jul 2023
Viewed by 1041
Abstract
Fumonisins are secondary metabolites of mold whose presence has been proven in water. Since fumonisin B1 (FB1) is highly toxic and has dangerous effects on the health of living organisms, in this study, the influence of various water matrices on [...] Read more.
Fumonisins are secondary metabolites of mold whose presence has been proven in water. Since fumonisin B1 (FB1) is highly toxic and has dangerous effects on the health of living organisms, in this study, the influence of various water matrices on the effectiveness of UV and UV/H2O2 treatments for its removal was investigated. Different types of water (Danube River, tap and ground water) were simulated by addition of humic acid and the main ions for each type of water into ultrapure water (UPW). The results showed lower FB1 removal efficiency in simulated water samples compared to that of UPW. Full article
(This article belongs to the Proceedings of The 2nd International Electronic Conference on Toxins)
Show Figures

Figure 1

11 pages, 1130 KB  
Article
Hydrochorous Seed Transport in the Lower Traisen River before and after Riverbed Restoration
by Leonid Rasran, Kati Vogt, Marc Trattnig and Karl-Georg Bernhardt
Plants 2023, 12(13), 2409; https://doi.org/10.3390/plants12132409 - 22 Jun 2023
Cited by 1 | Viewed by 1620
Abstract
Hydrological restoration was carried out in a Lower Traisen, a small river within the floodplain of the Danube. The main goal was the reestablishment of typical riparian plant communities by using the potential of natural dispersal processes. We studied the transport of plant [...] Read more.
Hydrological restoration was carried out in a Lower Traisen, a small river within the floodplain of the Danube. The main goal was the reestablishment of typical riparian plant communities by using the potential of natural dispersal processes. We studied the transport of plant diaspores in the river water before and after the reconstruction of the riverbed. Aquatic seed traps were placed upstream and downstream of the restoration site. We identified the transported species and tested the viability of propagules. Functional species traits were analyzed to predict the probability of successful hydrochorous dispersal and changes in the transport pool due to the restoration. One-third of the local species pool was detected as being diaspores in the river. We observed a significant increase of ruderal species and neophytes, while the competitors and stress-tolerant competitors declined. Hydrochory is an important dispersal pathway for numerous plant species in the study area, including those without specific adaptations to this vector. Hydrochorous transport appears to be a sink for large-seeded species, primarily adapted to endozoochory. Follow-up management should be recommended to control the invasive species and to improve the structural and biological diversity of the Traisen Valley by supporting target species, which are also represented in the transport pool. Full article
(This article belongs to the Special Issue Plant Dispersal Ecology)
Show Figures

Figure 1

20 pages, 7770 KB  
Article
The Spatio-Temporal Distribution of the Freshwater Bivalves Corbicula fluminea and Dreissena polymorpha in the Lower Sector of the Danube River and the Danube Delta
by Ana Bianca Pavel, Catalin Gheablau, Sylvain Kreuter, Irina Catianis, Albert Scrieciu and Alin Enache
Sustainability 2023, 15(11), 8526; https://doi.org/10.3390/su15118526 - 24 May 2023
Viewed by 3209
Abstract
The objective of this study is to provide an updated account of the distribution history of two invasive molluscs, Corbicula fluminea and Dreissena polymorpha, both in Europe and worldwide. In addition to this, the study also intends to review their ecological requirements [...] Read more.
The objective of this study is to provide an updated account of the distribution history of two invasive molluscs, Corbicula fluminea and Dreissena polymorpha, both in Europe and worldwide. In addition to this, the study also intends to review their ecological requirements to gain a better understanding of their invasive potential and distribution dynamics. Specifically, the study focuses on updating the distribution and ecological characteristics of these freshwater bivalves in the lower sector of the Danube River and the lakes of the Danube Delta. The purpose is to better understand their invasive and distribution dynamics and to develop effective measures to limit their spread in the future. To achieve this, environmental proxies such as sediment particle size and Total Organic Carbon (TOC) concentrations were used to assess their tolerances. However, the results did not show a significant correlation between the densities of these bivalves and the analyzed environmental parameters. Despite this, the species were found in high densities and formed well-developed benthic communities in some stations. The study contributes to the understanding of the invasiveness of these bivalve species and their distribution range dynamics. Nonetheless, further investigation is required to fully comprehend the role of environmental parameters in their distribution. The study covers the period between 2010 and 2020 and focuses on the lower Danube River sector and Danube Delta. Full article
(This article belongs to the Special Issue Frontiers in Wetland Ecology and Environmental Sustainability)
Show Figures

Figure 1

17 pages, 4269 KB  
Article
Surrogate Method for Suspended Sediment Concentration Monitoring on the Alluvial Reach of the River Danube (Baja, Hungary)
by László Vas and Enikő Anna Tamás
Appl. Sci. 2023, 13(10), 5826; https://doi.org/10.3390/app13105826 - 9 May 2023
Cited by 5 | Viewed by 2233
Abstract
Sediment balance is essential for understanding changes in river morphology and ecosystems and related services depending on them. However, the currently used methods to quantify riverine sediment processes are not adequate enough. We have examined the sediment regime of the Danube River, particularly [...] Read more.
Sediment balance is essential for understanding changes in river morphology and ecosystems and related services depending on them. However, the currently used methods to quantify riverine sediment processes are not adequate enough. We have examined the sediment regime of the Danube River, particularly the suspended sediment yield. This parameter can be calculated based on stage or discharge using a suspended sediment yield rating curve; however, the uncertainty of this method can reach even 150%. The suspended sediment yield of a section does not only depend on processes that take place in the riverbed; thus, it cannot be described by only one easily measurable parameter. An integrated surrogate method based on turbidity registration is tested in order to determine suspended sediment yield on the lower Hungarian (sand-bed alluvial) reach of the Danube River. The near-bank turbidity is converted into suspended sediment concentration and then into suspended sediment yield. The turbidity is measured with a built-in turbidity probe, while the suspended sediment yield is determined with traditional methods (discharge measurement, suspended sediment sampling, laboratory processing, and calculation). The traditional and integrated surrogate methods are compared based on the results of the measurements, and different aspect correlations are established between flow parameters, turbidity, and suspended load. The results achieved with the integrated method are promising, but more measurements are required in order to refine the relationships in a broader interval. Full article
(This article belongs to the Special Issue Sediment Transport)
Show Figures

Figure 1

24 pages, 10143 KB  
Article
An Evaluation of the Dynamics of Some Meteorological and Hydrological Processes along the Lower Danube
by Alina Beatrice Răileanu, Liliana Rusu and Eugen Rusu
Sustainability 2023, 15(7), 6087; https://doi.org/10.3390/su15076087 - 31 Mar 2023
Cited by 6 | Viewed by 2049
Abstract
The objective of the present work was to perform a 30-year analysis of some significant meteorological and hydrological processes along the Lower Danube. This was motivated by the fact that, due to the effects of climate change, the global configuration of the environmental [...] Read more.
The objective of the present work was to perform a 30-year analysis of some significant meteorological and hydrological processes along the Lower Danube. This was motivated by the fact that, due to the effects of climate change, the global configuration of the environmental matrix has suffered visible transformations in many places. Another important factor considered is related to the constant development noticed in the last few decades of European inland navigation, in general, and in the Lower Danube sector, in particular. From this perspective, the processes analysed were the wind speed at a 10 m height, the air temperature at a 2 m height, precipitation, and river discharge. The 30-year period of 1991–2020 was considered for analysis. The ERA5 reanalysis data were processed and analysed in the case of the first three processes, while for the river discharge, the data provided by the European Flood Awareness System were used. The emphasis was placed on the evolution of the extreme values and on the identification of the geographical locations with a higher probability of occurrence. The average values and the seasonal variations of the four processes were also considered. The results indicated that the maximum wind speed and air temperature values along the Lower Danube did not suffer significant changes in the last few decades. However, the values of the minimum air temperatures increased with an average value of about 0.8 °C per decade, and the same tendency was noticed also for the average temperatures. Regarding the precipitation, the trend indicated a tendency to decrease by about 0.5 mm per decade, while for the river discharge, a clear increase of more than 1200 m3/s corresponded to each ten-year period. Finally, it can be concluded that the present analysis provided a global and more comprehensive perspective of the recent environmental dynamics along the Lower Danube, delivering useful information for inland navigation, as well as for other human activities. Full article
Show Figures

Figure 1

18 pages, 52321 KB  
Review
An Updated Checklist of Freshwater Gastropods (Mollusca: Gastropoda) of Bosnia and Herzegovina, with Emphasis on Crenobiotic Species
by Dejan Dmitrović, Ana Savić, Goran Šukalo and Vladimir Pešić
Diversity 2023, 15(3), 357; https://doi.org/10.3390/d15030357 - 1 Mar 2023
Cited by 1 | Viewed by 3954
Abstract
An updated checklist of freshwater gastropods of Bosnia and Herzegovina, including 144 species and subspecies from 59 genera and 17 families, is presented in this paper. Hydrobiidae is the most diverse family, representing ~50% of the species richness in the country. In total, [...] Read more.
An updated checklist of freshwater gastropods of Bosnia and Herzegovina, including 144 species and subspecies from 59 genera and 17 families, is presented in this paper. Hydrobiidae is the most diverse family, representing ~50% of the species richness in the country. In total, ~38% of the recorded taxa are endemic. The highest number of species was recorded from underground waters and/or springs, followed by rivers and standing waters. This inventory includes 18 crenobiotic taxa, of which 9 are endemic to Bosnia and Herzegovina. The country is divided between the Dniester–Lower Danube and Dalmatia ecoregions. The Dalmatia ecoregion has the highest overall diversity, i.e., 82 species and subspecies. Three invasive species are recorded in Bosnia and Herzegovina. Our study reveals that most species still lack conservation assessments, and only five species are nationally protected. Full article
(This article belongs to the Special Issue Ecology, Diversity and Evolution of Aquatic Macroinvertebrates)
Show Figures

Figure 1

29 pages, 13563 KB  
Article
Climate Change Impacts on Water Resources in the Danube River Basin: A Hydrological Modelling Study Using EURO-CORDEX Climate Scenarios
by Elisabeth Probst and Wolfram Mauser
Water 2023, 15(1), 8; https://doi.org/10.3390/w15010008 - 21 Dec 2022
Cited by 27 | Viewed by 10055
Abstract
Climate change affects the hydrological cycle of river basins and strongly impacts water resource availability. The mechanistic hydrological model PROMET was driven with an ensemble of EURO-CORDEX regional climate model projections under the emission scenarios RCP2.6 and RCP8.5 to analyze changes in temperature, [...] Read more.
Climate change affects the hydrological cycle of river basins and strongly impacts water resource availability. The mechanistic hydrological model PROMET was driven with an ensemble of EURO-CORDEX regional climate model projections under the emission scenarios RCP2.6 and RCP8.5 to analyze changes in temperature, precipitation, soil water content, plant water stress, snow water equivalent (SWE) and runoff dynamics in the Danube River Basin (DRB) in the near (2031–2060) and far future (2071–2100) compared to the historical reference (1971–2000). Climate change impacts remain moderate for RCP2.6 and become severe for RCP8.5, exhibiting strong year-round warming trends in the far future with wetter winters in the Upper Danube and drier summers in the Lower Danube, leading to decreasing summer soil water contents, increasing plant water stress and decreasing SWE. Discharge seasonality of the Danube River shifts toward increasing winter runoff and decreasing summer runoff, while the risk of high flows increases along the entire Danube mainstream and the risk of low flows increases along the Lower Danube River. Our results reveal increasing climate change-induced discrepancies between water surplus and demand in space and time, likely leading to intensified upstream–downstream and inter-sectoral water competition in the DRB under climate change. Full article
(This article belongs to the Special Issue Impacts of Climate Change on Hydrology and Water Resources)
Show Figures

Figure 1

Back to TopTop