Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (84)

Search Parameters:
Keywords = low/high-rank coal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2902 KiB  
Article
Research on Thermochemical and Gas Emissions Analysis for the Sustainable Co-Combustion of Petroleum Oily Sludge and High-Alkali Lignite
by Yang Guo, Jie Zheng, Demian Wang, Pengtu Zhang, Yixin Zhang, Meng Lin and Shiling Yuan
Sustainability 2025, 17(15), 6703; https://doi.org/10.3390/su17156703 - 23 Jul 2025
Viewed by 294
Abstract
Petroleum oily sludge (OLS), a hazardous by-product of the petroleum industry, and high-alkali lignite (HAL), an underutilized low-rank coal, pose significant challenges to sustainable waste management and resource efficiency. This study systematically investigated the combustion behavior, reaction pathways, and gaseous-pollutant-release mechanisms across varying [...] Read more.
Petroleum oily sludge (OLS), a hazardous by-product of the petroleum industry, and high-alkali lignite (HAL), an underutilized low-rank coal, pose significant challenges to sustainable waste management and resource efficiency. This study systematically investigated the combustion behavior, reaction pathways, and gaseous-pollutant-release mechanisms across varying blend ratios, utilizing integrated thermogravimetric-mass spectrometry analysis (TG-MS), interaction analysis, and kinetic modeling. The key findings reveal that co-combustion significantly enhances the combustion performance compared to individual fuels. This is evidenced by reduced ignition and burnout temperatures, as well as an improved comprehensive combustion index. Notably, an interaction analysis revealed coexisting synergistic and antagonistic effects, with the synergistic effect peaking at a blending ratio of 50% OLS due to the complementary properties of the fuels. The activation energy was found to be at its minimum value of 32.5 kJ/mol at this ratio, indicating lower reaction barriers. Regarding gas emissions, co-combustion at a 50% OLS blending ratio reduces incomplete combustion products while increasing CO2, indicating a more complete reaction. Crucially, sulfur-containing pollutants (SO2, H2S) are suppressed, whereas nitrogen-containing emissions (NH3, NO2) increase but remain controllable. This study provides novel insights into the synergistic mechanisms between OLS and HAL during co-combustion, offering foundational insights for the optimization of OLS-HAL combustion systems toward efficient energy recovery and sustainable industrial waste management. Full article
(This article belongs to the Special Issue Harmless Disposal and Valorisation of Solid Waste)
Show Figures

Figure 1

17 pages, 2031 KiB  
Article
Geochemical Characteristics and Paleoenvironmental Significance of the Xishanyao Formation Coal from the Xiheishan Mining Area, Zhundong Coalfield, Xinjiang, China
by Yongjie Hou, Kaixuan Zhang, Xiangcheng Jin, Yongjia Xu, Xiaotao Xu and Xiaoyun Yan
Minerals 2025, 15(7), 686; https://doi.org/10.3390/min15070686 - 27 Jun 2025
Viewed by 261
Abstract
The eastern Junggar Basin in Xinjiang, China is a key coal-bearing region dominated by the Middle Jurassic Xishanyao Formation. Despite its significance as a major coal resource base, detailed paleoenvironmental reconstructions of its coal seams remain limited. This study investigates the B1 [...] Read more.
The eastern Junggar Basin in Xinjiang, China is a key coal-bearing region dominated by the Middle Jurassic Xishanyao Formation. Despite its significance as a major coal resource base, detailed paleoenvironmental reconstructions of its coal seams remain limited. This study investigates the B1, B2, B3, and B5 coal seams of the Xishanyao Formation using X-ray fluorescence spectroscopy (XRF) and inductively coupled plasma mass spectrometry (ICP-MS) to assess geochemical indicators of the depositional environment during coal formation. The results show that the coal samples are characterized by high inertinite content and low vitrinite reflectance, indicative of low-rank coal. Slight enrichment of strontium (Sr) was observed in the B1, B2, and B5 seams, while cobalt (Co) showed minor enrichment in B3. Redox-sensitive elemental ratios (Ni/Co, V/Cr, and Mo) suggest that the peat-forming environment ranged from oxidizing to dysoxic conditions, with relatively high oxygen availability and strong hydrodynamic activity. A vertical trend of increasing paleosalinity and a shift from warm–humid to dry–hot paleoclimatic conditions was identified from the lower (B1) to upper (B5) coal seams. Additionally, the estimated atmospheric oxygen concentration during the Middle Jurassic was approximately 28.4%, well above the threshold for wildfire combustion. These findings provide new insights into the paleoenvironmental evolution of the Xishanyao Formation and offer a valuable geochemical framework for coal exploration and the assessment of coal-associated mineral resources in the eastern Junggar Basin. Full article
Show Figures

Figure 1

23 pages, 3609 KiB  
Article
Structural Characterization of Low-Rank Coals in the Ningdong Coalfield Under the Control of the First Coalification Jump
by Xiaoyan Ji, Caifang Wu, Bin Gao, Xuezhong Lu, Bei Wang, Yongping Liang, Xiaowu Zhang and Zhifeng Zhang
Processes 2025, 13(7), 1996; https://doi.org/10.3390/pr13071996 - 24 Jun 2025
Viewed by 325
Abstract
The first coalification jump (FCJ) has a significant effect on changes in the microstructural properties of coal and plays a crucial role in understanding the efficient utilization of low-rank coal. One lignite (QSY-2), two subbituminous (MHJ-10 and YCW-2), and three high-volatile A-grade bituminous [...] Read more.
The first coalification jump (FCJ) has a significant effect on changes in the microstructural properties of coal and plays a crucial role in understanding the efficient utilization of low-rank coal. One lignite (QSY-2), two subbituminous (MHJ-10 and YCW-2), and three high-volatile A-grade bituminous coals (YX-12, JF-18, and HY-5) from the Ningdong coalfield were selected for research, avoiding the influence of regional geology. The evolution characteristics of the microstructures before and after the FCJ were investigated via spectroscopic experiments. The complex and unstable molecular structure of low-rank coal gradually decomposes and polymerizes at 350 °C. The aliphatic structure shows a V-shaped change trend as metamorphism increases. The inflection point is around an Ro of 0.6%. Demethylation and polymerization occur simultaneously during the FCJ. The reconnection of benzene substances with the aromatic ring increases the density of aromatic rings in the YCW-2 sample, significantly enhancing its aromaticity. The removal of oxygen-containing functional groups, especially methoxy and carbonyl groups, provides the possibility for the formation of CH4 and CO2 during the metamorphosis of lignite to subbituminous coal. Furthermore, high temperatures result in a loss of moisture content during the FCJ, which is the primary factor leading to a reduction in the hydroxyl content in coal. The selected samples are primarily composed of organic matter, with low levels of heteroatoms in the coal. It is preliminarily determined that coalification is not significantly affected. This study provides a theoretical foundation for investigating the molecular structure evolution of low-rank coal during the FCJ. Full article
Show Figures

Figure 1

14 pages, 3054 KiB  
Article
Occurrence Modes of Arsenic in Coal: A Case Study from the Hanshuiquan Coal Mine, Santanghu Coalfield, Xinjiang Province, China
by Bo Zhu, Wenfeng Wang, Jijun Tian, Wenlong Wang, Shuo Feng and Meng Wang
Appl. Sci. 2025, 15(13), 7092; https://doi.org/10.3390/app15137092 - 24 Jun 2025
Viewed by 306
Abstract
The high concentration of arsenic in coal does great harm to the environment. It is important to research the occurrence mode of As in coal to promote the removal of As in coal and understand the migration and transformation of As in coal. [...] Read more.
The high concentration of arsenic in coal does great harm to the environment. It is important to research the occurrence mode of As in coal to promote the removal of As in coal and understand the migration and transformation of As in coal. In this work, eleven samples from the Hanshuiquan coal mine, in the Santanghu Coalfield, were tested by X-ray diffraction (XRD) and Scanning Electron Microscopy with an Energy Dispersive Spectrometer (SEM-EDS). The results show that maximum arsenic content in the coal seam was 108.37 μg/g, which was 13 times more than that of the world coal, and 28 times more than that of the Chinese coal. Through X-ray diffraction (XRD) experiments, ojuelaite and scorodite were found in the samples. Scanning Electron Microscopy (SEM) and an Energy Dispersive Spectrometer (EDS) were used to determine the occurrence location of the arsenic elements. In combination with geochemistry and mineralogy theory, the occurrence modes of the arsenic were studied in detail. The occurrence modes of arsenic in coal from the study area are dominated by sulfide-bound arsenic. At the same time, it was found that arsenic in the study area might occur in the form of arsenate containing zinc and organic bound arsenic. Previous studies and this work have shown that (1) arsenic in coal is predominantly in the form of pyrite, and (2) arsenic in coal is associated with organic matter in low-rank coal and to a lesser extent in high-rank coal. Understanding the occurrence modes of arsenic in coal is of great significance because it has significant impacts on coal mining, preparation, combustion, and utilization, and has adverse effects on the environment and human health. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

31 pages, 2695 KiB  
Article
Multidimensional Risk Assessment in Sustainable Coal Supply Chains for China’s Low-Carbon Transition: An AHP-FCE Framework
by Yang Zhou, Ming Guo, Junfang Hao, Wanqiang Xu and Yuping Wu
Sustainability 2025, 17(13), 5689; https://doi.org/10.3390/su17135689 - 20 Jun 2025
Viewed by 582
Abstract
Driven by the global energy transition and the pursuit of “dual carbon” goals, sustainability risks within the coal supply chain have emerged as a central obstacle impeding the low-carbon transformation of high-carbon industries. To address the critical gap in systematic and multidimensional risk [...] Read more.
Driven by the global energy transition and the pursuit of “dual carbon” goals, sustainability risks within the coal supply chain have emerged as a central obstacle impeding the low-carbon transformation of high-carbon industries. To address the critical gap in systematic and multidimensional risk assessments for coal supply chains, this study proposes a hybrid framework that integrates the analytic hierarchy process (AHP) with the fuzzy comprehensive evaluation (FCE) method. Utilizing the Delphi method and the coefficient of variation technique, this study develops a risk assessment system encompassing eight primary criteria and forty sub-criteria. These indicators cover economic, operational safety, ecological and environmental, management policy, demand, sustainable supply, information technology, and social risks. An empirical analysis is conducted, using a prominent Chinese coal enterprise as a case study. The findings demonstrate that the overall risk level of the enterprise is “moderate”, with demand risk, information technology risk, and social risk ranking as the top three concerns. This underscores the substantial impact of accelerated energy substitution, digital system vulnerabilities, and stakeholder conflicts on supply chain resilience. Further analysis elucidates the transmission mechanisms of critical risk nodes, including financing constraints, equipment modernization delays, and deficiencies in end-of-pipe governance. Targeted strategies are proposed, such as constructing a diversified financing matrix, developing a blockchain-based data-sharing platform, and establishing a community co-governance mechanism. These measures offer scientific decision-making support for the coal industry’s efforts to balance “ensuring supply” with “reducing carbon emissions”, and provide a replicable risk assessment paradigm for the sustainable transformation of global high-carbon supply chains. Full article
Show Figures

Figure 1

21 pages, 2249 KiB  
Article
Multifractal Characterization of Full-Scale Pore Structure in Middle-High-Rank Coal Reservoirs: Implications for Permeability Modeling in Western Guizhou–Eastern Yunnan Basin
by Fangkai Quan, Yanhui Zhang, Wei Lu, Chongtao Wei, Xuguang Dai and Zhengyuan Qin
Processes 2025, 13(6), 1927; https://doi.org/10.3390/pr13061927 - 18 Jun 2025
Viewed by 443
Abstract
This study presents a comprehensive multifractal characterization of full-scale pore structures in middle- to high-rank coal reservoirs from the Western Guizhou–Eastern Yunnan Basin and establishes a permeability prediction model integrating fractal heterogeneity and pore throat parameters. Eight coal samples were analyzed using mercury [...] Read more.
This study presents a comprehensive multifractal characterization of full-scale pore structures in middle- to high-rank coal reservoirs from the Western Guizhou–Eastern Yunnan Basin and establishes a permeability prediction model integrating fractal heterogeneity and pore throat parameters. Eight coal samples were analyzed using mercury intrusion porosimetry (MIP), low-pressure gas adsorption (N2/CO2), and multifractal theory to quantify multiscale pore heterogeneity and its implications for fluid transport. Results reveal weak correlations (R2 < 0.39) between conventional petrophysical parameters (ash yield, volatile matter, porosity) and permeability, underscoring the inadequacy of bulk properties in predicting flow behavior. Full-scale pore characterization identified distinct pore architecture regimes: Laochang block coals exhibit microporous dominance (0.45–0.55 nm) with CO2 adsorption capacities 78% higher than Tucheng samples, while Tucheng coals display enhanced seepage pore development (100–5000 nm), yielding 2.5× greater stage pore volumes. Multifractal analysis demonstrated significant heterogeneity (Δα = 0.98–1.82), with Laochang samples showing superior pore uniformity (D1 = 0.86 vs. 0.82) but inferior connectivity (D2 = 0.69 vs. 0.71). A novel permeability model was developed through multivariate regression, integrating the heterogeneity index (Δα) and effective pore throat diameter (D10), achieving exceptional predictive accuracy. The strong negative correlation between Δα and permeability (R = −0.93) highlights how pore complexity governs flow resistance, while D10’s positive influence (R = 0.72) emphasizes throat size control on fluid migration. This work provides a paradigm shift in coal reservoir evaluation, demonstrating that multiscale fractal heterogeneity, rather than conventional bulk properties, dictates permeability in anisotropic coal systems. The model offers critical insights for optimizing hydraulic fracturing and enhanced coalbed methane recovery in structurally heterogeneous basins. Full article
Show Figures

Figure 1

21 pages, 3888 KiB  
Article
CO2-Rich Industrial Waste Gas as a Storage-Enhanced Gas: Experimental Study on Changes in Pore Structure and Methane Adsorption in Coal and Shale
by Hanxin Jiu, Dexiang Li, Gongming Xin, Yufan Zhang, Huaxue Yan and Tuo Zhou
Molecules 2025, 30(12), 2578; https://doi.org/10.3390/molecules30122578 - 13 Jun 2025
Viewed by 424
Abstract
A technology that directly injects CO2-rich industrial waste gas (CO2-rich IWG) into underground spaces for unconventional natural gas extraction and waste gas storage has received increasing attention. The pore characteristics of coal and shale in a coal-bearing rock series [...] Read more.
A technology that directly injects CO2-rich industrial waste gas (CO2-rich IWG) into underground spaces for unconventional natural gas extraction and waste gas storage has received increasing attention. The pore characteristics of coal and shale in a coal-bearing rock series before and after CO2-rich IWG treatment are closely related to gas recovery and storage. In this study, three coals ranging from low to high rank and one shale sample were collected. The samples were treated with CO2-rich IWG using a high-precision geochemical reactor. The changes in the pore volume (PV), specific surface area (SSA), and pore size distribution of micropores, mesopores, and macropores were analyzed. The correlations between the Langmuir volume and the PV and SSA of the micropores and mesopores were analyzed. It was confirmed that for micropores, SSA was the dominant factor influencing adsorption capacity. The effectively interconnected pore volume was calculated using macropores to characterize changes in the sample’s connectivity. It was found that the PV and SSA of the micropores in the coal samples increased with increasing coal rank. The CO2-rich IWG treatment increased the PV and SSA of the micropores in all of the samples. In addition, for mesopores and macropores, the treatment reduced the SSA in the coal samples but enhanced it in the shale. The results of this study improve the understanding of the mechanisms of the CO2-rich IWG treatment method and emphasize its potential in waste gas storage and natural gas extraction. Full article
Show Figures

Graphical abstract

26 pages, 2781 KiB  
Article
Pyrolysis Mechanism of Victorian Brown Coal Under Microwave and Conventional Conditions for Hydrogen-Rich Gas Production
by Quan Sun, Salman Khoshk Rish, Jianglong Yu and Arash Tahmasebi
Energies 2025, 18(11), 2863; https://doi.org/10.3390/en18112863 - 30 May 2025
Viewed by 462
Abstract
Fast microwave pyrolysis technology can effectively convert brown coal into hydrogen-rich syngas. However, the unique pyrolysis behaviour of brown coal under microwave conditions is not fully understood in comparison with conventional pyrolysis. This study used Victorian brown coal as a raw material to [...] Read more.
Fast microwave pyrolysis technology can effectively convert brown coal into hydrogen-rich syngas. However, the unique pyrolysis behaviour of brown coal under microwave conditions is not fully understood in comparison with conventional pyrolysis. This study used Victorian brown coal as a raw material to conduct pyrolysis experiments under conventional and microwave heating methods. The results demonstrate that the microwave-assisted pyrolysis of Victorian brown coal can selectively crack polar functional groups, enhancing H2 and CO production via radical-driven secondary reactions and gasification, while conventional heating favours the formation of tar containing phenols and fewer aromatic compounds. The result is a high-quality syngas (75.03 vol.%) with a hydrogen yield of 10.28 (mmol Gas/g Coal (daf)) at 700 °C under microwave heating, offering a scalable route for valorising low-rank coals. Full article
(This article belongs to the Special Issue Clean Utilization and Conversion Technologies of Coal)
Show Figures

Figure 1

16 pages, 1024 KiB  
Article
Substrate Composition Effects on the Microbial Enhancement of Biogenic Methane Production from Coal
by Liu Zhu, Wangjie Diao, Chenyao Gong, Haihan Wang, Peilin Zhu and Yi Liu
Sustainability 2025, 17(11), 4953; https://doi.org/10.3390/su17114953 - 28 May 2025
Viewed by 395
Abstract
The conversion of coal to biomethane is an environmentally friendly and sustainable method of coal utilization, and algae is a nutrient additive that enhances the economic sustainability of coal-to-biomethane production. The key regulatory factors and interaction mechanism of methane production were studied by [...] Read more.
The conversion of coal to biomethane is an environmentally friendly and sustainable method of coal utilization, and algae is a nutrient additive that enhances the economic sustainability of coal-to-biomethane production. The key regulatory factors and interaction mechanism of methane production were studied by carrying out anaerobic fermentation experiments on coal and microorganisms. Spearman correlation analysis, multiple linear regression, random forest and principal component analysis (PCA) were used to evaluate the effects of 14 coal-quality and microorganism composition parameters on methane production. The results showed that the hemicellulose content of microorganisms was significantly positively correlated with methane production, while total sugar and total fat significantly reduced the gas production. The protein content of microorganisms in a reasonable range could promote methane production. Among the coal-quality parameters, the C/H ratio (β = 0.43) and dry volatile matter (β = 0.17) had a weak positive contribution to methane production, while a high carbonization degree (C% > 80%; vitrinite reflectance > 1.2%) significantly inhibited the fermentation activity. The higher the maturity of the coal, the lower the methane production. The optimal methanogenic performance was concentrated in the combination of a low degree of coalification in coal (PC1 < −1.5) and high hemicellulose in microorganisms (PC2 > 1.8). In this study, a process optimization strategy was put forward, and the combination of low-rank coal with vitrinite reflectance < 0.5%, volatile matter > 35%, microorganisms with hemicellulose > 4.5%, and total sugar < 20% was optimized in an anaerobic fermentation experiment of coal and microorganisms. The results provide theoretical support for the directional control of anaerobic digestion of coal enhanced by microorganisms. Full article
Show Figures

Graphical abstract

18 pages, 1821 KiB  
Article
Harnessing High-Density-Polyethylene-Derived Liquid as a Model Solvent for the Co-Liquefaction of Low-Rank Coals: Toward Sustainable Mesophase Pitch for Making High-Quality Carbon Fibers from Waste Plastics
by Wenjia Wang, Adam Gallacher, Karissa Jolley, Mitchell G. Nelson and Eric Eddings
Sustainability 2025, 17(11), 4750; https://doi.org/10.3390/su17114750 - 22 May 2025
Viewed by 424
Abstract
The accumulation of polyolefin waste, particularly high-density polyethylene (HDPE), presents a growing environmental challenge due to limited recycling options and poor end-of-life recovery. This study explores a strategy to convert HDPE into mesophase pitch (MP), a valuable carbon precursor, by integrating polyolefin recycling [...] Read more.
The accumulation of polyolefin waste, particularly high-density polyethylene (HDPE), presents a growing environmental challenge due to limited recycling options and poor end-of-life recovery. This study explores a strategy to convert HDPE into mesophase pitch (MP), a valuable carbon precursor, by integrating polyolefin recycling with the mild solvolysis liquefaction (MSL) of low-rank coals. HDPE was first hydrogenolyzed into a hydrogen-rich aromatic liquid (HDPE-liquid), which was then used as the liquefaction solvent. Under identical conditions (400 °C, 60 min), Utah Sufco coal co-liquefied with HDPE-liquid produced tar that formed mesophase pitch with a higher mesophase content (84.5% vs. 78.6%) and a lower softening point (~302 °C vs. >350 °C) compared to pitch from conventional tetralin (THN). The approach was extended to Illinois #6 and Powder River Basin coals, increasing the mesophase content from 12.4% to 32.6% and 17.8% to 62.1%, respectively. These improvements are attributed to differences in tar composition: HDPE-derived tars had lower terminal methyl (Hγ) contents, reducing cross-linking during thermal upgrading. This work demonstrates that HDPE-derived liquids can act as functional solvents for coal liquefaction, enabling an effective route to recycle polyolefin waste into durable carbon products, while also reducing reliance on fossil-based solvents for mesophase pitch production. Full article
(This article belongs to the Section Sustainable Chemical Engineering and Technology)
Show Figures

Figure 1

20 pages, 2596 KiB  
Article
Adsorption Equilibria and Systematic Thermodynamics Analysis of Carbon Dioxide Sequestration on South African Coals Using Nonlinear Three-Parameter Models: Sips, Tóth, and Dubinin–Astakhov
by Major Melusi Mabuza and Mandlenkosi George Robert Mahlobo
Energies 2025, 18(10), 2646; https://doi.org/10.3390/en18102646 - 20 May 2025
Viewed by 690
Abstract
Carbon dioxide (CO2) injection into geologic formations has gained global traction, including in South Africa, to mitigate anthropogenic emissions through carbon capture, utilisation, and storage technology. These technological and technical developments require a comprehensive and reliable study of CO2 sorption [...] Read more.
Carbon dioxide (CO2) injection into geologic formations has gained global traction, including in South Africa, to mitigate anthropogenic emissions through carbon capture, utilisation, and storage technology. These technological and technical developments require a comprehensive and reliable study of CO2 sorption equilibria under in situ unmineable coal reservoir conditions. This paper presents novel findings on the study of the equilibrium adsorption of CO2 on two South African coals measured at four temperatures between 30 and 60 °C and pressures up to 9.0 MPa using the volumetric technique. Additionally, the sorption mechanism and thermodynamic nature of the process were studied by fitting the experimental data into Langmuir–Freundlich (Sips), Tóth, and Dubinin–Astakhov (DA) isotherm models, and the Clausius–Clapeyron equation. The findings indicate that the sorption process is highly exothermic, as presented by a negative temperature effect, with the maximum working capacity estimated to range between 3.46 and 4.16 mmol/g, which is also rank- and maceral composition-dependent, with high-rank vitrinite-rich coal yielding more sorption capacity than low-rank inertinite-rich coal. The experimental data fit well in Sips and Tóth models, confirming their applicability in describing the CO2 sorption behaviour of the coals under the considered conditions. The isosteric heat of adsorption varied from 7.518 to 37.408 kJ/mol for adsorbate loading ranging from 0.4 to 3.6 mmol/g. Overall, the coals studied demonstrate well-developed sorption properties that characteristically make them viable candidates for CO2 sequestration applications for environmental sustainability. Full article
(This article belongs to the Special Issue CO2 Capture, Utilization and Storage)
Show Figures

Figure 1

21 pages, 2572 KiB  
Article
A Construction Method for a Coal Mining Equipment Maintenance Large Language Model Based on Multi-Dimensional Prompt Learning and Improved LoRA
by Xiangang Cao, Xulong Wang, Luyang Shi, Xin Yang, Xinyuan Zhang and Yong Duan
Mathematics 2025, 13(10), 1638; https://doi.org/10.3390/math13101638 - 16 May 2025
Viewed by 422
Abstract
The intelligent maintenance of coal mining equipment is crucial for ensuring safe production in coal mines. Despite the rapid development of large language models (LLMs) injecting new momentum into the intelligent transformation and upgrading of coal mining, their application in coal mining equipment [...] Read more.
The intelligent maintenance of coal mining equipment is crucial for ensuring safe production in coal mines. Despite the rapid development of large language models (LLMs) injecting new momentum into the intelligent transformation and upgrading of coal mining, their application in coal mining equipment maintenance still faces challenges due to the diversity and technical complexity of the equipment. To address the scarcity of domain knowledge and poor model adaptability in multi-task scenarios within the coal mining equipment maintenance field, a method for constructing a large language model based on multi-dimensional prompt learning and improved LoRA (MPL-LoRA) is proposed. This method leverages multi-dimensional prompt learning to guide LLMs in generating high-quality multi-task datasets for coal mining equipment maintenance, ensuring dataset quality while improving construction efficiency. Additionally, a fine-tuning approach based on the joint optimization of a mixture of experts (MoE) and low-rank adaptation (LoRA) is introduced, which employs multiple expert networks and task-driven gating functions to achieve the precise modeling of different maintenance tasks. Experimental results demonstrate that the self-constructed dataset achieves fluency and professionalism comparable to manually annotated data. Compared to the base LLM, the proposed method shows significant performance improvements across all maintenance tasks, offering a novel solution for intelligent coal mining maintenance. Full article
Show Figures

Figure 1

14 pages, 4142 KiB  
Article
Mechanistic Studies of H2 Adsorption and Diffusion in Low-Rank Coals: A Discussion on Geologic Hydrogen Storage
by Xiaoxu Gao, Sixin Fu, Jinzhang Jia, Hailong Song and Hao Tian
Appl. Sci. 2025, 15(7), 3932; https://doi.org/10.3390/app15073932 - 3 Apr 2025
Viewed by 348
Abstract
An in-depth investigation of the adsorption and diffusion mechanism of hydrogen in low-rank coals is of great significance for optimizing the technical path of geological hydrogen storage and improving the efficiency of hydrogen storage. Two kinds of coal samples with a low metamorphic [...] Read more.
An in-depth investigation of the adsorption and diffusion mechanism of hydrogen in low-rank coals is of great significance for optimizing the technical path of geological hydrogen storage and improving the efficiency of hydrogen storage. Two kinds of coal samples with a low metamorphic degree from Foran Coal Mine and Sihe Coal Mine were used as adsorbents, and the metamorphic degree and molecular structure of the coal samples were determined experimentally, and the adsorption and diffusion mechanism of H2 molecules in the structure of low metamorphic coal was analyzed from the atomic level based on numerical simulation. It was found that the aliphatic carbon in the low-rank coal mainly links the aromatic ring in the form of a branched chain and exists as an aliphatic ring, side chain, or bridging carbon, and the lower the deterioration degree of the coal, the longer the length of the alkane side chain in the molecular structure. The branched structure present in the aliphatic carbon and the polybenzene ring structure present in the aromatic carbon can provide more effective adsorption sites and enhance the adsorption of H2 by the low-rank coal structure. High specific surface area and porosity will enhance the adsorption of H2 from coal samples, while the presence of oxygen-containing functional groups in low-rank coals will strengthen the interaction between the microporous structure and H2. These findings provide theoretical support for the application of low-rank coals in geological hydrogen storage. Full article
Show Figures

Graphical abstract

22 pages, 4845 KiB  
Article
Multifractal Characterization of Pore Structure of Coals Using Gas Adsorption Experiment and Mercury Intrusion Porosimetry (MIP)
by Shuaidong Wang, Fengyin Chen, Shenghui Yue, Jing Hu, Hongrui Ding and Anhuai Lu
Fractal Fract. 2025, 9(3), 183; https://doi.org/10.3390/fractalfract9030183 - 16 Mar 2025
Cited by 1 | Viewed by 567
Abstract
Efficient and safe extraction of coalbed methane is essential for reshaping China’s energy composition. This study integrates CO2 adsorption, N2 adsorption, and corrected mercury intrusion porosimetry (MIP) data to analyze the full pore size distribution (PSD) of six coal samples from [...] Read more.
Efficient and safe extraction of coalbed methane is essential for reshaping China’s energy composition. This study integrates CO2 adsorption, N2 adsorption, and corrected mercury intrusion porosimetry (MIP) data to analyze the full pore size distribution (PSD) of six coal samples from the Qinshui and Tiefa Basins. By applying multifractal theory, we identified key heterogeneity features across different coal ranks, followed by a discussion of the factors influencing these parameters. The results indicate the following: (1) Coal matrix compressibility significantly impacts MIP results when mercury intrusion pressure exceeds 10 MPa, with corrected mesopore and macropore volume reductions ranging from 59.85–96.31% and 3.11–15.53%, respectively. (2) Pore volume distribution varies with coal rank, as macropores dominate in low-rank coal, while micropores contribute most in medium- and high-rank coal, accounting for over 90% of the total specific surface area. Multifractal analysis of CO2, N2, and corrected MIP data confirms notable multifractal characteristics across the full pore size range. (3) As the degree of coalification increases, as indicated by the rise in the Ro,max value, there is a notable negative correlation observed among the multifractal parameters Dmin-D0, D0-Dmax, Δα, and H. A positive correlation exists between moisture content and volatile matter content with Dmin-D0, Δα, and H, while a significant negative correlation is shown between the concentration of minerals and Dmin-D0, Δα, and H. There exists a favorable correlation between inertinite concentration and D0-Dmax. This work presents a theoretical foundation and empirical proof for the secure and effective extraction of coalbed methane in the researched region. Full article
Show Figures

Figure 1

13 pages, 3439 KiB  
Article
New Insights for Improving Low-Rank Coal Flotation Performance via Tetrahydrofurfuryl Ester Collectors
by Xin Wang, Rui Ding, Xinyu Cui, Yonghong Qin, Gan Cheng, George Abaka-Wood and Enze Li
Minerals 2025, 15(1), 78; https://doi.org/10.3390/min15010078 - 15 Jan 2025
Cited by 3 | Viewed by 1064
Abstract
With the advancement of large-scale coal development and utilization, low-rank coal (LRC) is increasingly gaining prominence in the energy sector. Upgrading and ash reduction are key to the clean utilization of LRC. Flotation technology based on gas/liquid/solid interfacial interactions remains an effective way [...] Read more.
With the advancement of large-scale coal development and utilization, low-rank coal (LRC) is increasingly gaining prominence in the energy sector. Upgrading and ash reduction are key to the clean utilization of LRC. Flotation technology based on gas/liquid/solid interfacial interactions remains an effective way to recover combustible materials and realize the clean utilization of coal. The traditional collector, kerosene, has demonstrated its inefficiency and environmental toxicity in the flotation of LRC. In this study, four eco-friendly tetrahydrofuran ester compounds (THF-series) were investigated as novel collectors to improve the flotation performance of LRC. The flotation results showed that THF-series collectors were more effective than kerosene in enhancing the LRC flotation. Among these, tetrahydrofurfuryl butyrate (THFB) exhibited the best performance, with combustible material recovery and flotation perfection factors 79.79% and 15.05% higher than those of kerosene, respectively, at a dosage of 1.2 kg/t. Characterization results indicated that THF-series collectors rapidly adsorbed onto the LRC surface via hydrogen bonding, resulting in stronger hydrophobicity and higher electronegativity. High-speed camera and particle image velocimeter (PIV) observation further demonstrated that THFB dispersed more evenly in the flotation system, reducing the lateral movement of bubbles during their ascent, lowering the impact of bubble wakes on coal particles, and promoting the stable adhesion of bubbles to the LRC surface within a shorter time (16.65 ms), thereby preventing entrainment effects. This study provides new insights and options for the green and efficient flotation of LRC. Full article
Show Figures

Graphical abstract

Back to TopTop