Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (543)

Search Parameters:
Keywords = local outliers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 4141 KiB  
Article
Automated Quality Control of Candle Jars via Anomaly Detection Using OCSVM and CNN-Based Feature Extraction
by Azeddine Mjahad and Alfredo Rosado-Muñoz
Mathematics 2025, 13(15), 2507; https://doi.org/10.3390/math13152507 - 4 Aug 2025
Abstract
Automated quality control plays a critical role in modern industries, particularly in environments that handle large volumes of packaged products requiring fast, accurate, and consistent inspections. This work presents an anomaly detection system for candle jars commonly used in industrial and commercial applications, [...] Read more.
Automated quality control plays a critical role in modern industries, particularly in environments that handle large volumes of packaged products requiring fast, accurate, and consistent inspections. This work presents an anomaly detection system for candle jars commonly used in industrial and commercial applications, where obtaining labeled defective samples is challenging. Two anomaly detection strategies are explored: (1) a baseline model using convolutional neural networks (CNNs) as an end-to-end classifier and (2) a hybrid approach where features extracted by CNNs are fed into One-Class classification (OCC) algorithms, including One-Class SVM (OCSVM), One-Class Isolation Forest (OCIF), One-Class Local Outlier Factor (OCLOF), One-Class Elliptic Envelope (OCEE), One-Class Autoencoder (OCAutoencoder), and Support Vector Data Description (SVDD). Both strategies are trained primarily on non-defective samples, with only a limited number of anomalous examples used for evaluation. Experimental results show that both the pure CNN model and the hybrid methods achieve excellent classification performance. The end-to-end CNN reached 100% accuracy, precision, recall, F1-score, and AUC. The best-performing hybrid model CNN-based feature extraction followed by OCIF also achieved 100% across all evaluation metrics, confirming the effectiveness and robustness of the proposed approach. Other OCC algorithms consistently delivered strong results, with all metrics above 95%, indicating solid generalization from predominantly normal data. This approach demonstrates strong potential for quality inspection tasks in scenarios with scarce defective data. Its ability to generalize effectively from mostly normal samples makes it a practical and valuable solution for real-world industrial inspection systems. Future work will focus on optimizing real-time inference and exploring advanced feature extraction techniques to further enhance detection performance. Full article
Show Figures

Figure 1

25 pages, 2859 KiB  
Article
Feature-Based Normality Models for Anomaly Detection
by Hui Yie Teh, Kevin I-Kai Wang and Andreas W. Kempa-Liehr
Sensors 2025, 25(15), 4757; https://doi.org/10.3390/s25154757 - 1 Aug 2025
Viewed by 238
Abstract
Detecting previously unseen anomalies in sensor data is a challenging problem for artificial intelligence when sensor-specific and deployment-specific characteristics of the time series need to be learned from a short calibration period. From the application point of view, this challenge becomes increasingly important [...] Read more.
Detecting previously unseen anomalies in sensor data is a challenging problem for artificial intelligence when sensor-specific and deployment-specific characteristics of the time series need to be learned from a short calibration period. From the application point of view, this challenge becomes increasingly important because many applications are gravitating towards utilising low-cost sensors for Internet of Things deployments. While these sensors offer cost-effectiveness and customisation, their data quality does not match that of their high-end counterparts. To improve sensor data quality while addressing the challenges of anomaly detection in Internet of Things applications, we present an anomaly detection framework that learns a normality model of sensor data. The framework models the typical behaviour of individual sensors, which is crucial for the reliable detection of sensor data anomalies, especially when dealing with sensors observing significantly different signal characteristics. Our framework learns sensor-specific normality models from a small set of anomaly-free training data while employing an unsupervised feature engineering approach to select statistically significant features. The selected features are subsequently used to train a Local Outlier Factor anomaly detection model, which adaptively determines the boundary separating normal data from anomalies. The proposed anomaly detection framework is evaluated on three real-world public environmental monitoring datasets with heterogeneous sensor readings. The sensor-specific normality models are learned from extremely short calibration periods (as short as the first 3 days or 10% of the total recorded data) and outperform four other state-of-the-art anomaly detection approaches with respect to F1-score (between 5.4% and 9.3% better) and Matthews correlation coefficient (between 4.0% and 7.6% better). Full article
(This article belongs to the Special Issue Innovative Approaches to Cybersecurity for IoT and Wireless Networks)
Show Figures

Figure 1

20 pages, 2619 KiB  
Article
Fatigue Life Prediction of CFRP-FBG Sensor-Reinforced RC Beams Enabled by LSTM-Based Deep Learning
by Minrui Jia, Chenxia Zhou, Xiaoyuan Pei, Zhiwei Xu, Wen Xu and Zhenkai Wan
Polymers 2025, 17(15), 2112; https://doi.org/10.3390/polym17152112 - 31 Jul 2025
Viewed by 227
Abstract
Amidst the escalating demand for high-precision structural health monitoring in large-scale engineering applications, carbon fiber-reinforced polymer fiber Bragg grating (CFRP-FBG) sensors have emerged as a pivotal technology for fatigue life evaluation, owing to their exceptional sensitivity and intrinsic immunity to electromagnetic interference. A [...] Read more.
Amidst the escalating demand for high-precision structural health monitoring in large-scale engineering applications, carbon fiber-reinforced polymer fiber Bragg grating (CFRP-FBG) sensors have emerged as a pivotal technology for fatigue life evaluation, owing to their exceptional sensitivity and intrinsic immunity to electromagnetic interference. A time-series predictive architecture based on long short-term memory (LSTM) networks is developed in this work to facilitate intelligent fatigue life assessment of structures subjected to complex cyclic loading by capturing and modeling critical spectral characteristics of CFRP-FBG sensors, specifically the side-mode suppression ratio and main-lobe peak-to-valley ratio. To enhance model robustness and generalization, Principal Component Analysis (PCA) was employed to isolate the most salient spectral features, followed by data preprocessing via normalization and model optimization through the integration of the Adam optimizer and Dropout regularization strategy. Relative to conventional Backpropagation (BP) neural networks, the LSTM model demonstrated a substantial improvement in predicting the side-mode suppression ratio, achieving a 61.62% reduction in mean squared error (MSE) and a 34.99% decrease in root mean squared error (RMSE), thereby markedly enhancing robustness to outliers and ensuring greater overall prediction stability. In predicting the peak-to-valley ratio, the model attained a notable 24.9% decrease in mean absolute error (MAE) and a 21.2% reduction in root mean squared error (RMSE), thereby substantially curtailing localized inaccuracies. The forecasted confidence intervals were correspondingly narrower and exhibited diminished fluctuation, highlighting the LSTM architecture’s enhanced proficiency in capturing nonlinear dynamics and modeling temporal dependencies. The proposed method manifests considerable practical engineering relevance and delivers resilient intelligent assistance for the seamless implementation of CFRP-FBG sensor technology in structural health monitoring and fatigue life prognostics. Full article
(This article belongs to the Section Artificial Intelligence in Polymer Science)
Show Figures

Figure 1

18 pages, 3278 KiB  
Article
A Hybrid 3D Localization Algorithm Based on Meta-Heuristic Weighted Fusion
by Dongfang Mao, Guoping Jiang and Yun Zhao
Mathematics 2025, 13(15), 2423; https://doi.org/10.3390/math13152423 - 28 Jul 2025
Viewed by 243
Abstract
This paper presents a hybrid indoor localization framework combining time difference of arrival (TDoA) measurements with a swarm intelligence optimization technique. To address the nonlinear optimization challenges in three-dimensional (3D) indoor localization via TDoA measurements, we systematically evaluate the artificial bee colony (ABC) [...] Read more.
This paper presents a hybrid indoor localization framework combining time difference of arrival (TDoA) measurements with a swarm intelligence optimization technique. To address the nonlinear optimization challenges in three-dimensional (3D) indoor localization via TDoA measurements, we systematically evaluate the artificial bee colony (ABC) algorithm and chimpanzee optimization algorithm (ChOA). Through comprehensive Monte Carlo simulations in a cubic 3D environment with eight beacons, our comparative analysis reveals that the ChOA achieves superior localization accuracy while maintaining computational efficiency. Building upon the ChOA framework, we introduce a multi-beacon fusion strategy incorporating a local outlier factor-based linear weighting mechanism to enhance robustness against measurement noise and improve localization accuracy. This approach integrates spatial density estimation with geometrically consistent weighting of distributed beacons, effectively filtering measurement outliers through adaptive sensor fusion. The experimental results show that the proposed algorithm exhibits excellent convergence performance under the condition of a low population size. Its anti-interference capability against Gaussian white noise is significantly improved compared with the baseline algorithms, and its anti-interference performance against multipath noise is consistent with that of the baseline algorithms. However, in terms of dealing with UWB device failures, the performance of the algorithm is slightly inferior. Meanwhile, the algorithm has relatively good time-lag performance and target-tracking performance. The study provides theoretical insights and practical guidelines for deploying reliable localization systems in complex indoor environments. Full article
Show Figures

Figure 1

18 pages, 2469 KiB  
Article
Neural Network-Based SLAM/GNSS Fusion Localization Algorithm for Agricultural Robots in Orchard GNSS-Degraded or Denied Environments
by Huixiang Zhou, Jingting Wang, Yuqi Chen, Lian Hu, Zihao Li, Fuming Xie, Jie He and Pei Wang
Agriculture 2025, 15(15), 1612; https://doi.org/10.3390/agriculture15151612 - 25 Jul 2025
Viewed by 217
Abstract
To address the issue of agricultural robot loss of control caused by GNSS signal degradation or loss in complex agricultural environments such as farmland and orchards, this study proposes a neural network-based SLAM/GNSS fusion localization algorithm aiming to enhance the robot’s localization accuracy [...] Read more.
To address the issue of agricultural robot loss of control caused by GNSS signal degradation or loss in complex agricultural environments such as farmland and orchards, this study proposes a neural network-based SLAM/GNSS fusion localization algorithm aiming to enhance the robot’s localization accuracy and stability in weak or GNSS-denied environments. It achieves multi-sensor observed pose coordinate system unification through coordinate system alignment preprocessing, optimizes SLAM poses via outlier filtering and drift correction, and dynamically adjusts the weights of poses from distinct coordinate systems via a neural network according to the GDOP. Experimental results on the robotic platform demonstrate that, compared to the SLAM algorithm without pose optimization, the proposed SLAM/GNSS fusion localization algorithm reduced the whole process average position deviation by 37%. Compared to the fixed-weight fusion localization algorithm, the proposed SLAM/GNSS fusion localization algorithm achieved a 74% reduction in average position deviation during transitional segments with GNSS signal degradation or recovery. These results validate the superior positioning accuracy and stability of the proposed SLAM/GNSS fusion localization algorithm in weak or GNSS-denied environments. Orchard experimental results demonstrate that, at an average speed of 0.55 m/s, the proposed SLAM/GNSS fusion localization algorithm achieves an overall average position deviation of 0.12 m, with average position deviation of 0.06 m in high GNSS signal quality zones, 0.11 m in transitional sections under signal degradation or recovery, and 0.14 m in fully GNSS-denied environments. These results validate that the proposed SLAM/GNSS fusion localization algorithm maintains high localization accuracy and stability even under conditions of low and highly fluctuating GNSS signal quality, meeting the operational requirements of most agricultural robots. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

21 pages, 3816 KiB  
Article
A K-Means Clustering Algorithm with Total Bregman Divergence for Point Cloud Denoising
by Xiaomin Duan, Anqi Mu, Xinyu Zhao and Yuqi Wu
Symmetry 2025, 17(8), 1186; https://doi.org/10.3390/sym17081186 - 24 Jul 2025
Viewed by 277
Abstract
Point cloud denoising is essential for improving 3D data quality, yet traditional K-means methods relying on Euclidean distance struggle with non-uniform noise. This paper proposes a K-means algorithm leveraging Total Bregman Divergence (TBD) to better model geometric structures on manifolds, enhancing robustness against [...] Read more.
Point cloud denoising is essential for improving 3D data quality, yet traditional K-means methods relying on Euclidean distance struggle with non-uniform noise. This paper proposes a K-means algorithm leveraging Total Bregman Divergence (TBD) to better model geometric structures on manifolds, enhancing robustness against noise. Specifically, TBDs—Total Logarithm, Exponential, and Inverse Divergences—are defined on symmetric positive-definite matrices, each tailored to capture distinct local geometries. Theoretical analysis demonstrates the bounded sensitivity of TBD-induced means to outliers via influence functions, while anisotropy indices quantify structural variations. Numerical experiments validate the method’s superiority over Euclidean-based approaches, showing effective noise separation and improved stability. This work bridges geometric insights with practical clustering, offering a robust framework for point cloud preprocessing in vision and robotics applications. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

22 pages, 3429 KiB  
Article
Indoor Positioning and Tracking System in a Multi-Level Residential Building Using WiFi
by Elmer Magsino, Joshua Kenichi Sim, Rica Rizabel Tagabuhin and Jan Jayson Tirados
Information 2025, 16(8), 633; https://doi.org/10.3390/info16080633 - 24 Jul 2025
Viewed by 312
Abstract
The implementation of an Indoor Positioning System (IPS) in a three-storey residential building employing WiFi signals that can also be used to track indoor movements is presented in this study. The movement of inhabitants is monitored through an Android smartphone by detecting the [...] Read more.
The implementation of an Indoor Positioning System (IPS) in a three-storey residential building employing WiFi signals that can also be used to track indoor movements is presented in this study. The movement of inhabitants is monitored through an Android smartphone by detecting the Received Signal Strength Indicator (RSSI) signals from WiFi Anchor Points (APs).Indoor movement is detected through a successive estimation of a target’s multiple positions. Using the K-Nearest Neighbors (KNN) and Particle Swarm Optimization (PSO) algorithms, these RSSI measurements are trained for estimating the position of an indoor target. Additionally, the Density-based Spatial Clustering of Applications with Noise (DBSCAN) has been integrated into the PSO method for removing RSSI-estimated position outliers of the mobile device to further improve indoor position detection and monitoring accuracy. We also employed Time Reversal Resonating Strength (TRRS) as a correlation technique as the third method of localization. Our extensive and rigorous experimentation covers the influence of various weather conditions in indoor detection. Our proposed localization methods have maximum accuracies of 92%, 80%, and 75% for TRRS, KNN, and PSO + DBSCAN, respectively. Each method also has an approximate one-meter deviation, which is a short distance from our targets. Full article
Show Figures

Graphical abstract

25 pages, 6462 KiB  
Article
Phenotypic Trait Acquisition Method for Tomato Plants Based on RGB-D SLAM
by Penggang Wang, Yuejun He, Jiguang Zhang, Jiandong Liu, Ran Chen and Xiang Zhuang
Agriculture 2025, 15(15), 1574; https://doi.org/10.3390/agriculture15151574 - 22 Jul 2025
Viewed by 208
Abstract
The acquisition of plant phenotypic traits is essential for selecting superior varieties, improving crop yield, and supporting precision agriculture and agricultural decision-making. Therefore, it plays a significant role in modern agriculture and plant science research. Traditional manual measurements of phenotypic traits are labor-intensive [...] Read more.
The acquisition of plant phenotypic traits is essential for selecting superior varieties, improving crop yield, and supporting precision agriculture and agricultural decision-making. Therefore, it plays a significant role in modern agriculture and plant science research. Traditional manual measurements of phenotypic traits are labor-intensive and inefficient. In contrast, combining 3D reconstruction technologies with autonomous vehicles enables more intuitive and efficient trait acquisition. This study proposes a 3D semantic reconstruction system based on an improved ORB-SLAM3 framework, which is mounted on an unmanned vehicle to acquire phenotypic traits in tomato cultivation scenarios. The vehicle is also equipped with the A * algorithm for autonomous navigation. To enhance the semantic representation of the point cloud map, we integrate the BiSeNetV2 network into the ORB-SLAM3 system as a semantic segmentation module. Furthermore, a two-stage filtering strategy is employed to remove outliers and improve the map accuracy, and OctoMap is adopted to store the point cloud data, significantly reducing the memory consumption. A spherical fitting method is applied to estimate the number of tomato fruits. The experimental results demonstrate that BiSeNetV2 achieves a mean intersection over union (mIoU) of 95.37% and a frame rate of 61.98 FPS on the tomato dataset, enabling real-time segmentation. The use of OctoMap reduces the memory consumption by an average of 96.70%. The relative errors when predicting the plant height, canopy width, and volume are 3.86%, 14.34%, and 27.14%, respectively, while the errors concerning the fruit count and fruit volume are 14.36% and 14.25%. Localization experiments on a field dataset show that the proposed system achieves a mean absolute trajectory error (mATE) of 0.16 m and a root mean square error (RMSE) of 0.21 m, indicating high localization accuracy. Therefore, the proposed system can accurately acquire the phenotypic traits of tomato plants, providing data support for precision agriculture and agricultural decision-making. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

20 pages, 3710 KiB  
Article
An Accurate LiDAR-Inertial SLAM Based on Multi-Category Feature Extraction and Matching
by Nuo Li, Yiqing Yao, Xiaosu Xu, Shuai Zhou and Taihong Yang
Remote Sens. 2025, 17(14), 2425; https://doi.org/10.3390/rs17142425 - 12 Jul 2025
Viewed by 443
Abstract
Light Detection and Ranging(LiDAR)-inertial simultaneous localization and mapping (SLAM) is a critical component in multi-sensor autonomous navigation systems, providing both accurate pose estimation and detailed environmental understanding. Despite its importance, existing optimization-based LiDAR-inertial SLAM methods often face key limitations: unreliable feature extraction, sensitivity [...] Read more.
Light Detection and Ranging(LiDAR)-inertial simultaneous localization and mapping (SLAM) is a critical component in multi-sensor autonomous navigation systems, providing both accurate pose estimation and detailed environmental understanding. Despite its importance, existing optimization-based LiDAR-inertial SLAM methods often face key limitations: unreliable feature extraction, sensitivity to noise and sparsity, and the inclusion of redundant or low-quality feature correspondences. These weaknesses hinder their performance in complex or dynamic environments and fail to meet the reliability requirements of autonomous systems. To overcome these challenges, we propose a novel and accurate LiDAR-inertial SLAM framework with three major contributions. First, we employ a robust multi-category feature extraction method based on principal component analysis (PCA), which effectively filters out noisy and weakly structured points, ensuring stable feature representation. Second, to suppress outlier correspondences and enhance pose estimation reliability, we introduce a coarse-to-fine two-stage feature correspondence selection strategy that evaluates geometric consistency and structural contribution. Third, we develop an adaptive weighted pose estimation scheme that considers both distance and directional consistency, improving the robustness of feature matching under varying scene conditions. These components are jointly optimized within a sliding-window-based factor graph, integrating LiDAR feature factors, IMU pre-integration, and loop closure constraints. Extensive experiments on public datasets (KITTI, M2DGR) and a custom-collected dataset validate the proposed method’s effectiveness. Results show that our system consistently outperforms state-of-the-art approaches in accuracy and robustness, particularly in scenes with sparse structure, motion distortion, and dynamic interference, demonstrating its suitability for reliable real-world deployment. Full article
(This article belongs to the Special Issue LiDAR Technology for Autonomous Navigation and Mapping)
Show Figures

Figure 1

20 pages, 3609 KiB  
Article
Beyond the Grid: GLRT-Based TomoSAR Fast Detection for Retrieving Height and Thermal Dilation
by Nabil Haddad, Karima Hadj-Rabah, Alessandra Budillon and Gilda Schirinzi
Remote Sens. 2025, 17(14), 2334; https://doi.org/10.3390/rs17142334 - 8 Jul 2025
Viewed by 316
Abstract
The Tomographic Synthetic Aperture Radar (TomoSAR) technique is widely used for monitoring urban infrastructures, as it enables the mapping of individual scatterers across additional dimensions such as height (3D), thermal dilation (4D), and deformation velocity (5D). Retrieving this information is crucial for building [...] Read more.
The Tomographic Synthetic Aperture Radar (TomoSAR) technique is widely used for monitoring urban infrastructures, as it enables the mapping of individual scatterers across additional dimensions such as height (3D), thermal dilation (4D), and deformation velocity (5D). Retrieving this information is crucial for building management and maintenance. Nevertheless, accurately extracting it from TomoSAR data poses several challenges, particularly the presence of outliers due to uneven and limited baseline distributions. One way to address these issues is through statistical detection approaches such as the Generalized Likelihood Ratio Test, which ensures a Constant False Alarm Rate. While effective, these methods face two primary limitations: high computational complexity and the off-grid problem caused by the discretization of the search space. To overcome these drawbacks, we propose an approach that combines a quick initialization process using Fast-Sup GLRT with local descent optimization. This method operates directly in the continuous domain, bypassing the limitations of grid-based search while significantly reducing computational costs. Experiments conducted on both simulated and real datasets acquired with the TerraSAR-X satellite over the Spanish city of Barcelona demonstrate the ability of the proposed approach to maintain computational efficiency while improving scatterer localization accuracy in the third and fourth dimensions. Full article
(This article belongs to the Section Urban Remote Sensing)
Show Figures

Graphical abstract

31 pages, 20469 KiB  
Article
YOLO-SRMX: A Lightweight Model for Real-Time Object Detection on Unmanned Aerial Vehicles
by Shimin Weng, Han Wang, Jiashu Wang, Changming Xu and Ende Zhang
Remote Sens. 2025, 17(13), 2313; https://doi.org/10.3390/rs17132313 - 5 Jul 2025
Cited by 1 | Viewed by 726
Abstract
Unmanned Aerial Vehicles (UAVs) face a significant challenge in balancing high accuracy and high efficiency when performing real-time object detection tasks, especially amidst intricate backgrounds, diverse target scales, and stringent onboard computational resource constraints. To tackle these difficulties, this study introduces YOLO-SRMX, a [...] Read more.
Unmanned Aerial Vehicles (UAVs) face a significant challenge in balancing high accuracy and high efficiency when performing real-time object detection tasks, especially amidst intricate backgrounds, diverse target scales, and stringent onboard computational resource constraints. To tackle these difficulties, this study introduces YOLO-SRMX, a lightweight real-time object detection framework specifically designed for infrared imagery captured by UAVs. Firstly, the model utilizes ShuffleNetV2 as an efficient lightweight backbone and integrates the novel Multi-Scale Dilated Attention (MSDA) module. This strategy not only facilitates a substantial 46.4% reduction in parameter volume but also, through the flexible adaptation of receptive fields, boosts the model’s robustness and precision in multi-scale object recognition tasks. Secondly, within the neck network, multi-scale feature extraction is facilitated through the design of novel composite convolutions, ConvX and MConv, based on a “split–differentiate–concatenate” paradigm. Furthermore, the lightweight GhostConv is incorporated to reduce model complexity. By synthesizing these principles, a novel composite receptive field lightweight convolution, DRFAConvP, is proposed to further optimize multi-scale feature fusion efficiency and promote model lightweighting. Finally, the Wise-IoU loss function is adopted to replace the traditional bounding box loss. This is coupled with a dynamic non-monotonic focusing mechanism formulated using the concept of outlier degrees. This mechanism intelligently assigns elevated gradient weights to anchor boxes of moderate quality by assessing their relative outlier degree, while concurrently diminishing the gradient contributions from both high-quality and low-quality anchor boxes. Consequently, this approach enhances the model’s localization accuracy for small targets in complex scenes. Experimental evaluations on the HIT-UAV dataset corroborate that YOLO-SRMX achieves an mAP50 of 82.8%, representing a 7.81% improvement over the baseline YOLOv8s model; an F1 score of 80%, marking a 3.9% increase; and a substantial 65.3% reduction in computational cost (GFLOPs). YOLO-SRMX demonstrates an exceptional trade-off between detection accuracy and operational efficiency, thereby underscoring its considerable potential for efficient and precise object detection on resource-constrained UAV platforms. Full article
Show Figures

Figure 1

26 pages, 4907 KiB  
Article
A Novel Approach Utilizing Bagging, Histogram Gradient Boosting, and Advanced Feature Selection for Predicting the Onset of Cardiovascular Diseases
by Norma Latif Fitriyani, Muhammad Syafrudin, Nur Chamidah, Marisa Rifada, Hendri Susilo, Dursun Aydin, Syifa Latif Qolbiyani and Seung Won Lee
Mathematics 2025, 13(13), 2194; https://doi.org/10.3390/math13132194 - 4 Jul 2025
Viewed by 326
Abstract
Cardiovascular diseases (CVDs) rank among the leading global causes of mortality, underscoring the necessity for early detection and effective management. This research presents a novel prediction model for CVDs utilizing a bagging algorithm that incorporates histogram gradient boosting as the estimator. This study [...] Read more.
Cardiovascular diseases (CVDs) rank among the leading global causes of mortality, underscoring the necessity for early detection and effective management. This research presents a novel prediction model for CVDs utilizing a bagging algorithm that incorporates histogram gradient boosting as the estimator. This study leverages three preprocessed cardiovascular datasets, employing the Local Outlier Factor technique for outlier removal and the information gain method for feature selection. Through rigorous experimentation, the proposed model demonstrates superior performance compared to conventional machine learning approaches, such as Logistic Regression, Support Vector Classification, Gaussian Naïve Bayes, Multi-Layer Perceptron, k-nearest neighbors, Random Forest, AdaBoost, gradient boosting, and histogram gradient boosting. Evaluation metrics, including precision, recall, F1 score, accuracy, and AUC, yielded impressive results: 93.90%, 98.83%, 96.30%, 96.25%, and 0.9916 for dataset I; 94.17%, 99.05%, 96.54%, 96.48%, and 0.9931 for dataset II; and 89.81%, 82.40%, 85.91%, 86.66%, and 0.9274 for dataset III. The findings indicate that the proposed prediction model has the potential to facilitate early CVD detection, thereby enhancing preventive strategies and improving patient outcomes. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence in Decision Making)
Show Figures

Figure 1

25 pages, 1524 KiB  
Article
Detecting Emerging DGA Malware in Federated Environments via Variational Autoencoder-Based Clustering and Resource-Aware Client Selection
by Ma Viet Duc, Pham Minh Dang, Tran Thu Phuong, Truong Duc Truong, Vu Hai and Nguyen Huu Thanh
Future Internet 2025, 17(7), 299; https://doi.org/10.3390/fi17070299 - 3 Jul 2025
Viewed by 392
Abstract
Domain Generation Algorithms (DGAs) remain a persistent technique used by modern malware to establish stealthy command-and-control (C&C) channels, thereby evading traditional blacklist-based defenses. Detecting such evolving threats is especially challenging in decentralized environments where raw traffic data cannot be aggregated due to privacy [...] Read more.
Domain Generation Algorithms (DGAs) remain a persistent technique used by modern malware to establish stealthy command-and-control (C&C) channels, thereby evading traditional blacklist-based defenses. Detecting such evolving threats is especially challenging in decentralized environments where raw traffic data cannot be aggregated due to privacy or policy constraints. To address this, we present FedSAGE, a security-aware federated intrusion detection framework that combines Variational Autoencoder (VAE)-based latent representation learning with unsupervised clustering and resource-efficient client selection. Each client encodes its local domain traffic into a semantic latent space using a shared, pre-trained VAE trained solely on benign domains. These embeddings are clustered via affinity propagation to group clients with similar data distributions and identify outliers indicative of novel threats without requiring any labeled DGA samples. Within each cluster, FedSAGE selects only the fastest clients for training, balancing computational constraints with threat visibility. Experimental results from the multi-zones DGA dataset show that FedSAGE improves detection accuracy by up to 11.6% and reduces energy consumption by up to 93.8% compared to standard FedAvg under non-IID conditions. Notably, the latent clustering perfectly recovers ground-truth DGA family zones, enabling effective anomaly detection in a fully unsupervised manner while remaining privacy-preserving. These foundations demonstrate that FedSAGE is a practical and lightweight approach for decentralized detection of evasive malware, offering a viable solution for secure and adaptive defense in resource-constrained edge environments. Full article
(This article belongs to the Special Issue Security of Computer System and Network)
Show Figures

Figure 1

19 pages, 8986 KiB  
Article
Precise Feature Removal Method Based on Semantic and Geometric Dual Masks in Dynamic SLAM
by Zhanrong Li, Chao Jiang, Yu Sun, Haosheng Su and Longning He
Appl. Sci. 2025, 15(13), 7095; https://doi.org/10.3390/app15137095 - 24 Jun 2025
Viewed by 330
Abstract
In visual Simultaneous Localization and Mapping (SLAM) systems, dynamic elements in the environment pose significant challenges that complicate reliable feature matching and accurate pose estimation. To address the issue of unstable feature points within dynamic regions, this study proposes a robust dual-mask filtering [...] Read more.
In visual Simultaneous Localization and Mapping (SLAM) systems, dynamic elements in the environment pose significant challenges that complicate reliable feature matching and accurate pose estimation. To address the issue of unstable feature points within dynamic regions, this study proposes a robust dual-mask filtering strategy that synergistically integrates semantic segmentation information with geometric outlier detection techniques. The proposed method first identifies outlier feature points through rigorous geometric consistency checks, then employs morphological dilation to expand the initially detected dynamic regions. Subsequently, the expanded mask is intersected with instance-level semantic segmentation results to precisely delineate dynamic areas, effectively constraining the search space for feature matching and reducing interference caused by dynamic objects. A key innovation of this approach is the incorporation of a Perspective-n-Point (PnP)-based optimization module. This module dynamically updates the outlier set on a per-frame basis, enabling continuous monitoring and selective removal of dynamic features. Extensive experiments conducted on benchmark datasets demonstrate that the proposed method achieves average accuracy improvements of 3.43% and 11.42% on the KITTI dataset and 24% and 8.27% on the TUM dataset. Compared to traditional methods, this dual-mask collaborative filtering strategy improves the accuracy of dynamic feature removal and enhances the reliability of dynamic object detection, validating its robustness and applicability in complex dynamic environments. Full article
Show Figures

Figure 1

10 pages, 531 KiB  
Article
Histological Grade, Tumor Breadth, and Hypertension Predict Early Recurrence in Pediatric Sarcoma: A LASSO-Regularized Micro-Cohort Study
by Alexander Fiedler, Mehran Dadras, Marius Drysch, Sonja Verena Schmidt, Flemming Puscz, Felix Reinkemeier, Marcus Lehnhardt and Christoph Wallner
Children 2025, 12(6), 806; https://doi.org/10.3390/children12060806 - 19 Jun 2025
Viewed by 322
Abstract
Background/Objectives: Pediatric sarcomas are a biologically diverse group of mesenchymal tumors associated with morbidity due to recurrence, despite aggressive multimodal treatment. Reliable predictors of early recurrence remain limited. This exploratory study aimed to identify clinical features associated with first tumor recurrence using [...] Read more.
Background/Objectives: Pediatric sarcomas are a biologically diverse group of mesenchymal tumors associated with morbidity due to recurrence, despite aggressive multimodal treatment. Reliable predictors of early recurrence remain limited. This exploratory study aimed to identify clinical features associated with first tumor recurrence using a machine learning approach tailored to low-event settings. Methods: We conducted a retrospective, single-center cohort study of 23 pediatric patients with histologically confirmed sarcoma. Forty-six baseline variables were extracted per patient, including clinical, histological, and comorbidity data. Tumor recurrence was the primary binary endpoint. A LASSO-regularized logistic regression model was developed using leave-one-out cross-validation (LOOCV) to identify the most informative predictors. Dimensionality reduction (PCA) and SHAP-value analyses were used to visualize patient clustering and interpret variable contributions. Results: The model identified a four-variable risk signature comprising histological grade, primary tumor width, arterial hypertension, and extremity localization. Each additional tumor grade or centimeter of width approximately doubled the odds of recurrence (OR 2.18 and 2.04, respectively). Hypertension and limb location were associated with a 1.7 and 1.9 odds ratio of recurrence, respectively. The model achieved a balanced accuracy of 0.61 ± 0.08 and AUROC of 0.47 ± 0.12, reflecting limited discriminative power. PCA mapping revealed distinct outlier patterns correlating with high-risk profiles. Conclusions: Even in a small cohort, classical prognostic markers, such as tumor grade and size, retained predictive relevance, while hypertension emerged as a novel, potentially modifiable cofactor or indicator for recurrence. Although model performance was modest, the findings are hypothesis-generating and warrant validation in larger prospective datasets. Full article
(This article belongs to the Section Pediatric Hematology & Oncology)
Show Figures

Figure 1

Back to TopTop