Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (522)

Search Parameters:
Keywords = local food chains

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 698 KiB  
Article
Modelling the Bioaccumulation of Ciguatoxins in Parrotfish on the Great Barrier Reef Reveals Why Biomagnification Is Not a Property of Ciguatoxin Food Chains
by Michael J. Holmes and Richard J. Lewis
Toxins 2025, 17(8), 380; https://doi.org/10.3390/toxins17080380 - 30 Jul 2025
Viewed by 348
Abstract
We adapt previously developed conceptual and numerical models of ciguateric food chains on the Great Barrier Reef, Australia, to model the bioaccumulation of ciguatoxins (CTXs) in parrotfish, the simplest food chain with only two trophic levels. Our model indicates that relatively low (1 [...] Read more.
We adapt previously developed conceptual and numerical models of ciguateric food chains on the Great Barrier Reef, Australia, to model the bioaccumulation of ciguatoxins (CTXs) in parrotfish, the simplest food chain with only two trophic levels. Our model indicates that relatively low (1 cell/cm2) densities of Gambierdiscus/Fukuyoa species (hereafter collectively referred to as Gambierdiscus) producing known concentrations of CTX are unlikely to be a risk of producing ciguateric fishes on the Great Barrier Reef unless CTX can accumulate and be retained in parrotfish over many months. Cell densities on turf algae equivalent to 10 Gambierdiscus/cm2 producing known maximum concentrations of Pacific-CTX-4 (0.6 pg P-CTX-4/cell) are more difficult to assess but could be a risk. This cell density may be a higher risk for parrotfish than we previously suggested for production of ciguateric groupers (third-trophic-level predators) since second-trophic-level fishes can accumulate CTX loads without the subsequent losses that occur between trophic levels. Our analysis suggests that the ratios of parrotfish length-to-area grazed and weight-to-area grazed scale differently (allometrically), where the area grazed is a proxy for the number of Gambierdiscus consumed and hence proportional to toxin accumulation. Such scaling can help explain fish size–toxicity relationships within and between trophic levels for ciguateric fishes. Our modelling reveals that CTX bioaccumulates but does not necessarily biomagnify in food chains, with the relative enrichment and depletion rates of CTX varying with fish size and/or trophic level through an interplay of local and regional food chain influences. Our numerical model for the bioaccumulation and transfer of CTX across food chains helps conceptualize the development of ciguateric fishes by comparing scenarios that reveal limiting steps in producing ciguateric fish and focuses attention on the relative contributions from each part of the food chain rather than only on single components, such as CTX production. Full article
(This article belongs to the Collection Ciguatoxin)
Show Figures

Figure 1

21 pages, 1758 KiB  
Article
The Effect of Different Tillage Methods on Spring Barley Productivity and Grain Quality Indicators
by Aušra Sinkevičienė, Kęstutis Romaneckas, Edita Meškinytė and Rasa Kimbirauskienė
Agronomy 2025, 15(8), 1823; https://doi.org/10.3390/agronomy15081823 - 28 Jul 2025
Viewed by 216
Abstract
The production of winter wheat, spring barley, spring oilseed rape, and field beans requires detailed experimental data studies to analyze the quality and productivity of spring barley grain under different cultivation and tillage conditions. As the world’s population grows, more food is required [...] Read more.
The production of winter wheat, spring barley, spring oilseed rape, and field beans requires detailed experimental data studies to analyze the quality and productivity of spring barley grain under different cultivation and tillage conditions. As the world’s population grows, more food is required to maintain a stable food supply chain. For many years, intensive farming systems have been used to meet this need. Today, intensive climate change events and other global environmental challenges are driving a shift towards sustainable use of natural resources and simplified cultivation methods that produce high-quality and productive food. It is important to study different tillage systems in order to understand how these methods can affect the chemical composition and nutritional value of the grain. Both agronomic and economic aspects contribute to the complexity of this field and their analysis will undoubtedly contribute to the development of more efficient agricultural practice models and the promotion of more conscious consumption. An appropriate tillage system should be oriented towards local climatic characteristics and people’s needs. The impact of reduced tillage on these indicators in spring barley production is still insufficiently investigated and requires further analysis at a global level. This study was carried out at Vytautas Magnus University Agriculture Academy (Lithuania) in 2022–2024. Treatments were arranged using a split-plot design. Based on a long-term tillage experiment, five tillage systems were tested: deep and shallow plowing, deep cultivation–chiseling, shallow cultivation–disking, and no-tillage. The results show that in 2022–2024, the hectoliter weight and moisture content of spring barley grains increased, but protein content and germination decreased in shallowly plowed fields. In deep cultivation–chiseling fields, the protein content (0.1–1.1%) of spring barley grains decreased, and in shallow cultivation–disking fields, the moisture content (0.2–0.3%) decreased. In all fields, the simplified tillage systems applied reduced spring barley germination (0.4–16.7%). Tillage systems and meteorological conditions are the two main forces shaping the quality indicators of spring barley grains. Properly selected tillage systems and favorable climatic conditions undoubtedly contribute to better grain properties and higher yields, while reducing the risk of disease spread. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

30 pages, 5720 KiB  
Review
Small-Scale Farming in the United States: Challenges and Pathways to Enhanced Productivity and Profitability
by Bonface O. Manono
Sustainability 2025, 17(15), 6752; https://doi.org/10.3390/su17156752 - 24 Jul 2025
Viewed by 1059
Abstract
Small-scale farms deserve attention and support because they play crucial and important roles. Apart from ensuring provision of food security, they also provide other economic, environmental, and social–cultural benefits. In the United States of America, these farms are agriculturally, culturally, and geographically different. [...] Read more.
Small-scale farms deserve attention and support because they play crucial and important roles. Apart from ensuring provision of food security, they also provide other economic, environmental, and social–cultural benefits. In the United States of America, these farms are agriculturally, culturally, and geographically different. They have varied needs that trigger an array of distinct biophysical, socioeconomic, and institutional challenges. The effects of these challenges are exacerbated by economic uncertainty, technological advancements, climate change, and other environmental concerns. To provide ideal services to the small-scale farm audience, it is necessary to understand these challenges and opportunities that can be leveraged to enhance their productivity and profitability. This article reviews the challenges faced by small-scale farming in the United States of America. It then reviews possible pathways to enhance their productivity and profitability. The review revealed that U.S. small-scale farms face several challenges. They include accessing farmland, credit and capital, lack of knowledge and skills, and technology adoption. Others are difficulties to insure, competition from corporations, and environmental uncertainties associated with climate change. The paper then reviews key pathways to enhance small-scale farmers’ capacities and resilience with a positive impact on their productivity and profitability. They are enhanced cooperative extension services, incentivization, strategic marketing, annexing technology, and government support, among others. Based on the diversity of farms and their needs, responses should be targeted towards individual needs. Since small-scale farm products have an effect on human health and dietary patterns, strategies to increase productivity should be linked to nutrition and health. Full article
Show Figures

Figure 1

16 pages, 934 KiB  
Proceeding Paper
Unlocking the Role of Food Processing in Nutrition-Smart and Nutrition-Sensitive Agriculture in West Africa: Challenges, Opportunities, and a Framework for Deployment
by G. Esaïe Kpadonou, Caroline Makamto Sobgui, Rebeca Edoh, Kyky Komla Ganyo, Sedo Eudes L. Anihouvi and Niéyidouba Lamien
Proceedings 2025, 118(1), 17; https://doi.org/10.3390/proceedings2025118017 - 11 Jul 2025
Cited by 1 | Viewed by 364
Abstract
West Africa’s agri-food systems face a triple burden of malnutrition, climate vulnerability, and structural inefficiencies that compromise nutrition and public health. Despite increased attention to food security, agricultural strategies often prioritize yield over dietary quality. This paper explores the critical role of food [...] Read more.
West Africa’s agri-food systems face a triple burden of malnutrition, climate vulnerability, and structural inefficiencies that compromise nutrition and public health. Despite increased attention to food security, agricultural strategies often prioritize yield over dietary quality. This paper explores the critical role of food processing in advancing Nutrition-Sensitive Agriculture (NSA) and Nutrition-Smart Agriculture (NSmartAg) across West Africa. Drawing on a systems lens, it positions food processing not as a peripheral activity, but as a catalytic mechanism that connects nutrient-dense production with improved consumption outcomes. Food processing can reduce post-harvest losses, preserve micronutrients, extend food availability, and foster inclusive value chains particularly for women and youth. Yet, persistent challenges remain, including institutional fragmentation, infrastructure gaps, and limited financial and technical capacity. This paper proposes a conceptual framework linking food processing to NSA and NSmartAg objectives and outlines operational entry points for implementation. By integrating processing into agricultural policies, investment, education, and monitoring systems, stakeholders and policymakers can reimagine agriculture as a platform for resilience and nutritional equity. Strategic recommendations emphasize multisectoral collaboration, localized solutions, and evidence-informed interventions to drive the transformation toward sustainable, nutrition-oriented food systems. Full article
Show Figures

Figure 1

20 pages, 356 KiB  
Review
Soil Properties and Microelement Availability in Crops for Human Health: An Overview
by Lucija Galić, Vesna Vukadinović, Iva Nikolin and Zdenko Lončarić
Crops 2025, 5(4), 40; https://doi.org/10.3390/crops5040040 - 7 Jul 2025
Viewed by 419
Abstract
Microelement deficiencies, often termed “hidden hunger”, represent a significant global health challenge. Optimal human health relies on adequate dietary intake of essential microelements, including selenium (Se), zinc (Zn), copper (Cu), boron (B), manganese (Mn), molybdenum (Mo), iron (Fe), nickel (Ni), and chlorine (Cl). [...] Read more.
Microelement deficiencies, often termed “hidden hunger”, represent a significant global health challenge. Optimal human health relies on adequate dietary intake of essential microelements, including selenium (Se), zinc (Zn), copper (Cu), boron (B), manganese (Mn), molybdenum (Mo), iron (Fe), nickel (Ni), and chlorine (Cl). In recent years, there has been a growing focus on vitality and longevity, which are closely associated with the sufficient intake of essential microelements. This review focuses on these nine elements, whose bioavailability in the food chain is critically determined by their geochemical behavior in soils. There is a necessity for an understanding of the sources, soil–plant transfer, and plant uptake mechanisms of these microelements, with particular emphasis on the influence of key soil properties, including pH, redox potential, organic matter content, and mineral composition. There is a dual challenge of microelement deficiencies in agricultural soils, leading to inadequate crop accumulation, and the potential for localized toxicities arising from anthropogenic inputs or geogenic enrichment. A promising solution to microelement deficiencies in crops is biofortification, which enhances nutrient content in food by improving soil and plant uptake. This strategy includes agronomic methods (e.g., fertilization, soil amendments) and genetic approaches (e.g., marker-assisted selection, genetic engineering) to boost microelement density in edible tissues. Moreover, emphasizing the need for advanced predictive modeling techniques, such as ensemble learning-based digital soil mapping, enhances regional soil microelement management. Integrating machine learning with digital covariates improves spatial prediction accuracy, optimizes soil fertility management, and supports sustainable agriculture. Given the rising global population and the consequent pressures on agricultural production, a comprehensive understanding of microelement dynamics in the soil–plant system is essential for developing sustainable strategies to mitigate deficiencies and ensure food and nutritional security. This review specifically focuses on the bioavailability of these nine essential microelements (Se, Zn, Cu, B, Mn, Mo, Fe, Ni, and Cl), examining the soil–plant transfer mechanisms and their ultimate implications for human health within the soil–plant–human system. The selection of these nine microelements for this review is based on their recognized dual importance: they are not only essential for various plant metabolic functions, but also play a critical role in human nutrition, with widespread deficiencies reported globally in diverse populations and agricultural systems. While other elements, such as cobalt (Co) and iodine (I), are vital for health, Co is primarily required by nitrogen-fixing microorganisms rather than directly by all plants, and the main pathway for iodine intake is often marine-based rather than soil-to-crop. Full article
(This article belongs to the Topic Soil Health and Nutrient Management for Crop Productivity)
17 pages, 2986 KiB  
Article
Modulatory Role of Hesperetin–Copper(II) on Gut Microbiota in Type 2 Diabetes Mellitus Mice
by Xi Peng, Yushi Wei, Deming Gong and Guowen Zhang
Foods 2025, 14(13), 2390; https://doi.org/10.3390/foods14132390 - 6 Jul 2025
Viewed by 495
Abstract
Background: Exploring new strategies to improve type 2 diabetes mellitus (T2DM) is one of the frontier hotspots in the field of healthy food. Flavonoid–metal complexes have become one of the research hotspots in the field of health foods due to their unique structural [...] Read more.
Background: Exploring new strategies to improve type 2 diabetes mellitus (T2DM) is one of the frontier hotspots in the field of healthy food. Flavonoid–metal complexes have become one of the research hotspots in the field of health foods due to their unique structural and functional properties. Methods: In this study, the effect of hesperetin–copper(II) complex [Hsp–Cu(II)] on the gut microbiota of mice with T2DM was investigated by the 16S rRNA high-throughput sequencing. Results: The analyses of α and β diversity indicated that the richness and diversity of gut microbiota in the T2DM mice decreased and the community structure was significantly different from the normal mice. Hsp–Cu(II) increased the abundances of the beneficial bacteria (Lactobacillus, Ligilactobacillus, Romboutsia, Faecalibaculum, and Dubosiella), and decreased the amounts of the harmful bacteria (Desulfobacterota, Corynebacterium, and Desulfovibrio) and the ratio of Firmicutes/Bacteroidetes (from 44.5 to 5.8) in the T2DM mice, which was beneficial for regulating the composition of intestinal microbiota. The linear discriminant analysis effect size analysis showed that the intervention of Hsp–Cu(II) made the short-chain fatty acid (SCFA) producers (o_Lachnospirales, f_Lachnospiraceae, g_Faecalibaculum, g_Romboutsia, and g_Turicibacter) and the lactic acid bacteria producers (f_Lactobacillaceae and o_Lactobacillales) highly enriched, and the production of its metabolite SCFAs (acetic acid, propionic acid, butyric acid, and valeric acid) were increased in a dose-dependent manner, promoting the SCFA metabolism. Conclusions: Hsp–Cu(II) may improve glucose metabolic disorders and alleviate T2DM by modulating gut microbiota composition, promoting probiotics proliferation and SCFAs production, restoring intestinal barrier integrity, and suppressing local inflammation. These research findings may provide a theoretical basis for developing Hsp–Cu(II) as a new hypoglycemic nutritional supplement, and offer new ideas for the dietary food nutritional regulation to alleviate T2DM. Full article
Show Figures

Figure 1

25 pages, 877 KiB  
Systematic Review
Systematic Review of Integrating Technology for Sustainable Agricultural Transitions: Ecuador, a Country with Agroecological Potential
by William Viera-Arroyo, Liliane Binego, Francis Ryans, Duther López, Martín Moya, Lya Vera and Carlos Caicedo
Sustainability 2025, 17(13), 6053; https://doi.org/10.3390/su17136053 - 2 Jul 2025
Viewed by 649
Abstract
Agroecology has traditionally been implemented using conventional methods. However, the integration of precision equipment, advanced methodologies, and digital technologies (DT) is now essential for transitioning to a more modern and efficient approach. While agroecological principles remain fundamental for planning and managing sustainable food [...] Read more.
Agroecology has traditionally been implemented using conventional methods. However, the integration of precision equipment, advanced methodologies, and digital technologies (DT) is now essential for transitioning to a more modern and efficient approach. While agroecological principles remain fundamental for planning and managing sustainable food systems by optimizing natural resources, technological tools can significantly support their implementation and adoption by farmers. This transition, however, must also consider socioeconomic factors and policy frameworks to ensure that technological advancements lead to meaningful improvements in farms and agroecosystems. Across both industrialized and emerging economies, various initiatives, such as precision agriculture, digital platforms, and e-commerce, are driving the digitalization of agroecology. These innovations offer clear benefits, including enhanced knowledge generation and direct improvements to the food supply chain; however, several barriers remain, including limited understanding of digital tools, high-energy demands, insufficient financial resources, economical constrains, weak policy support, lack of infrastructure, low digital learning by framers, etc. to facilitate the transition. This review looks for the understanding of how digitalization can align or conflict with local agroecological dynamics across distinct political frameworks and reality contexts because the information about DT adoption in agroecological practices is limited and it remains unclear if digital agriculture for scaling agroecology can considerably change power dynamics within the productive systems in regions of Europe and Latin America. In South America, among countries like Ecuador, with strong potential for agroecological development, where 60% of farms are less than 1 ha, and where farmers have expressed interest in agroecological practices, 80% have reported lacking sufficient information to make the transition to digitalization, making slow the adoption progress of these DT. While agroecology is gaining global recognition, its modernization through DT requires further research in technical, social, economic, cultural, and political dimensions to more guide the adoption of DT in agroecology with more certainty. Full article
(This article belongs to the Special Issue Green Technology and Biological Approaches to Sustainable Agriculture)
Show Figures

Figure 1

28 pages, 741 KiB  
Article
From Heritage to Modern Economy: Quantitative Surveys and Ethnographic Insights on Sustainability of Traditional Bihor Products
by Ramona Vasilica Bacter, Alina Emilia Maria Gherdan, Ramona Ciolac, Denis Paul Bacter, Monica Angelica Dodu, Mirela Salvia Casau-Crainic, Codrin Gavra, Ana Cornelia Pereș, Alexandra Ungureanu and Tibor-Zsolt Czirják
Agriculture 2025, 15(13), 1404; https://doi.org/10.3390/agriculture15131404 - 29 Jun 2025
Viewed by 505
Abstract
While accelerating globalization and technological transformation, traditional food products occupy a vulnerable yet strategically important position, straddling the line between cultural preservation and the need to remain economically viable. This study assesses both the sustainability and economic potential of traditional food items specific [...] Read more.
While accelerating globalization and technological transformation, traditional food products occupy a vulnerable yet strategically important position, straddling the line between cultural preservation and the need to remain economically viable. This study assesses both the sustainability and economic potential of traditional food items specific to Bihor County, Romania, with particular attention to their integration into contemporary value chains. A mixed-methods design was employed, combining structured surveys with 137 local consumers and semi-structured interviews with 20 regional producers. This research focused on consumer awareness, purchasing behavior, and producers’ readiness to engage with digital tools, within the broader framework of human-centered development and the Industry 5.0 paradigm. Findings reveal a modest but consistent link between familiarity and the willingness to pay a premium, although the frequency of consumption appeared to be unaffected. Sustainability emerged as a widely held value, commonly associated with seasonality, natural ingredients, and artisanal methods. On the supply side, producers showed a cautious openness to digital adoption, often tempered by a strong desire to preserve traditional practices. Based on these insights, this study outlines a territorially grounded framework for enhancing the resilience of traditional foods. Policy recommendations include support for user-friendly digital platforms, improved rural infrastructure, and initiatives that reinforce the regional gastronomic identity. Full article
Show Figures

Figure 1

17 pages, 2373 KiB  
Article
Analytical Workflow for Tracking Aquatic Biomass Responses to Sea Surface Temperature Changes
by Teodoro Semeraro, Jessica Titocci, Lorenzo Liberatore, Flavio Monti, Francesco De Leo, Gianmarco Ingrosso, Milad Shokri and Alberto Basset
Environments 2025, 12(7), 210; https://doi.org/10.3390/environments12070210 - 20 Jun 2025
Viewed by 500
Abstract
Ocean ecosystem services provisioning is driven by phytoplankton, which form the base of the ocean food chain in aquatic ecosystems and play a critical role as the Earth‘s carbon sink. Phytoplankton is highly sensitive to temperature, making it vulnerable to the effects of [...] Read more.
Ocean ecosystem services provisioning is driven by phytoplankton, which form the base of the ocean food chain in aquatic ecosystems and play a critical role as the Earth‘s carbon sink. Phytoplankton is highly sensitive to temperature, making it vulnerable to the effects of temperature variations. The aim of this research was to develop and test a workflow analysis to monitor the impact of sea surface temperature (SST) on phytoplankton biomass and primary production by combining field and remote sensing data of Chl-a and net primary production (NPP) (as proxies of phytoplankton biomass). The tropical zone was used as a case study to test the procedure. Firstly, machine learning algorithms were applied to the field data of SST, Chl-a and NPP, showing that the Random Forest was the most effective in capturing the dataset’s patterns. Secondly, the Random Forest algorithm was applied to MODIS SST images to build Chl-a and NPP time series. The time series analysis showed a significant increase in SST which corresponded to a significant negative trend in Chl-a concentrations and NPP variation. The recurrence plot of the time series revealed significant disruptions in Chl-a and NPP evolutions, potentially linked to El Niño–Southern Oscillation (ENSO) events. Therefore, the analysis can help to highlight the effects of temperature variation on Chl-a and NPP, such as the long-term evolution of the trend and short perturbation events. The methodology, starting from local studies, can support broader spatial–temporal-scale studies and provide insights into future scenarios. Full article
Show Figures

Figure 1

24 pages, 8251 KiB  
Article
Strengthening of the Rural Community and Corn Food Chain Through the Application of the WWP Model and the Integration of CFS-RAI Principles in Puebla, México
by José Regalado-López, José Antonio Maimone-Celorio and Nicolás Pérez-Ramírez
Sustainability 2025, 17(12), 5442; https://doi.org/10.3390/su17125442 - 13 Jun 2025
Viewed by 1154
Abstract
Strengthening producer groups, the rural community, and agri-food chains are important actions to help solve the problem of food poverty, improve the living conditions of producers and promote sustainable development in rural México. It is necessary to seek new ways to improve decision-making [...] Read more.
Strengthening producer groups, the rural community, and agri-food chains are important actions to help solve the problem of food poverty, improve the living conditions of producers and promote sustainable development in rural México. It is necessary to seek new ways to improve decision-making by producer groups and establish some principles to strengthen the different links in agri-food chains. The objective of this study was to analyze the integration of the Principles for Responsible Investment in Agriculture (PRIA) in the corn agri-food chain in order to assess its strengthening. A study was carried out in three cases based on the application of the “Working With People” (WWP) model as well as interviews with key actors. It was found that cooperating groups with a higher degree of application of the WWP model and PRIAs have a higher degree of stability and sustainable development and strengthen the integration and cooperation of local action groups. These groups have the technical component better organize the agri-food processes and better incorporate the PRIAs and improve their economic, social, and environmental development compared to other groups that do it in a traditional way. Full article
Show Figures

Figure 1

20 pages, 5993 KiB  
Article
High-Precision Stored-Grain Insect Pest Detection Method Based on PDA-YOLO
by Fuyan Sun, Zhizhong Guan, Zongwang Lyu and Shanshan Liu
Insects 2025, 16(6), 610; https://doi.org/10.3390/insects16060610 - 10 Jun 2025
Viewed by 898
Abstract
Effective stored-grain insect pest detection is crucial in grain storage management to prevent economic losses and ensure food security throughout production and supply chains. Existing detection methods suffer from issues such as high labor costs, environmental interference, high equipment costs, and inconsistent performance. [...] Read more.
Effective stored-grain insect pest detection is crucial in grain storage management to prevent economic losses and ensure food security throughout production and supply chains. Existing detection methods suffer from issues such as high labor costs, environmental interference, high equipment costs, and inconsistent performance. To address these limitations, we proposed PDA-YOLO, an improved stored-grain insect pest detection algorithm based on YOLO11n which integrates three key modules: PoolFormer_C3k2 (PF_C3k2) for efficient local feature extraction, Attention-based Intra-Scale Feature Interaction (AIFI) for enhanced global context awareness, and Dynamic Multi-scale Aware Edge (DMAE) for precise boundary detection of small targets. Trained and tested on 6200 images covering five common stored-grain insect pests (Lesser Grain Borer, Red Flour Beetle, Indian Meal Moth, Maize Weevil, and Angoumois Grain Moth), PDA-YOLO achieved an mAP@0.5 of 96.6%, mAP@0.5:0.95 of 60.4%, and F1 score of 93.5%, with a computational cost of only 6.9 G and mean detection time of 9.9 ms per image. These results demonstrate the advantages over mainstream detection algorithms, balancing accuracy, computational efficiency, and real-time performance. PDA-YOLO provides a reference for pest detection in intelligent grain storage management. Full article
Show Figures

Figure 1

17 pages, 2093 KiB  
Review
Plasma-Activated Water as a Sustainable Nitrogen Source: Supporting the UN Sustainable Development Goals (SDGs) in Controlled Environment Agriculture
by Pamela Estefania Andrade, Patrice Jacob Savi, Flavia Souza Almeida, Bruno Augusto Carciofi, Abby Pace, Yugeng Zou, Nathan Eylands, George Annor, Neil Mattson and Christian Nansen
Crops 2025, 5(3), 35; https://doi.org/10.3390/crops5030035 - 6 Jun 2025
Viewed by 964
Abstract
Global agriculture remains dependent on nitrogen fertilizers produced through fossil fuel-based processes, contributing to greenhouse gas emissions, energy use, and supply chain vulnerabilities. This review introduces plasma-activated water (PAW) as a novel, electricity-driven alternative for sustainable nitrogen delivery. Generated by non-thermal plasma, PAW [...] Read more.
Global agriculture remains dependent on nitrogen fertilizers produced through fossil fuel-based processes, contributing to greenhouse gas emissions, energy use, and supply chain vulnerabilities. This review introduces plasma-activated water (PAW) as a novel, electricity-driven alternative for sustainable nitrogen delivery. Generated by non-thermal plasma, PAW infuses water with reactive oxygen and nitrogen species, offering a clean, decentralized substitute for conventional synthetic fertilizers derived from the Haber–Bosch and Ostwald processes. It can be produced on-site using renewable energy, reducing transportation costs and depending on fertilizers. Beyond its fertilizer properties, PAW enhances seed germination, plant growth, stress tolerance, and pest resistance, making it a multifunctional input for controlled environment agriculture. We also assess PAW’s techno-economic viability, including energy requirements, production costs, and potential scalability through renewable energy. These factors are crucial for determining its feasibility in both industrial systems and localized agricultural applications. Finally, the review examines PAW’s contribution to the ten United Nations Sustainable Development Goals, particularly in climate action, clean energy, and sustainable food production. By combining agronomic performance with circular production and emissions reduction, PAW presents a promising path toward more resilient, low-impact, and self-sufficient agricultural systems. Full article
Show Figures

Figure 1

24 pages, 2758 KiB  
Review
Persistent Organic Pollutants’ Threats and Impacts on Food Safety in the Polar Regions—A Concise Review
by Dele Raheem, Marco Trovò, Constanza Carmona Mora and Clara Vassent
Pollutants 2025, 5(2), 14; https://doi.org/10.3390/pollutants5020014 - 3 Jun 2025
Viewed by 2587
Abstract
The threats posed by Persistent Organic Pollutants (POPs) impact food safety and, by implication, food security in the polar regions. POPs tend to persist in the environment and the fatty tissues of animals, thereby constituting long-term contamination. Due to the cold climate and [...] Read more.
The threats posed by Persistent Organic Pollutants (POPs) impact food safety and, by implication, food security in the polar regions. POPs tend to persist in the environment and the fatty tissues of animals, thereby constituting long-term contamination. Due to the cold climate and geography of these polar regions, they create a sink for these pollutants, which travel from their source of production and accumulate in food chains, resulting in health risks to the ecosystem, animals, and humans of the Arctic and Antarctica. In this paper, we draw attention to the threats posed by POPs and how they can lead to food insecurity, negatively affecting health due to unsafe traditional foods. A narrative synthesis methodology was employed, systematically analyzing historical data, activities, and research trends on POP contamination in polar ecosystems. We also highlight resilience promoted by Arctic governance, with a focus on how the issues of POPs became an international matter from the 1970s, with three United Nations (UN) conventions: the UN-Environment Stockholm Convention on Persistent Organic Pollutants, the UN Minamata Convention on mercury, and the UN-ECE Convention on Long-range Transboundary Air Pollution. These conventions led to the start of several monitoring activities in the polar regions, transforming the POPs into a global topic. We also consider the intertwined effect of climate change on POPs. Additionally, the human rights paradigm in relation to food security and sovereignty for polar communities is explored. Strengthening the resilience of communities in the polar regions requires recognition of these nutritious traditional foods as an aspect of cultural identity that must be safe and easily accessible. We focus on developments, improvements, the role of international cooperation, and frameworks to assist in research and regulations. Furthermore, establishing systems that engage local communities to consistently monitor POPs regularly will lead to a better understanding of these threats. Ultimately, this narrative provides a look into the past and current research of POPs and their monitoring in the polar regions. Full article
Show Figures

Figure 1

17 pages, 1641 KiB  
Proceeding Paper
Rice Value Chain Upgrading in Côte d’Ivoire: The Role of the Improved GEM System for Rice Parboiling
by Alban Landry Kanon, Rachidi Aboudou, Meougbé Ernest Depieu, Aminou Arouna and Sali Atanga Ndindeng
Proceedings 2025, 118(1), 9; https://doi.org/10.3390/proceedings2025118009 - 19 May 2025
Viewed by 623
Abstract
Rice is a staple food in Côte d’Ivoire, but parboiling remains a weak link in the local rice value chain. Parboiled rice has superior nutritional and physical properties compared with white rice. In 2017, AfricaRice introduced the “Grain quality enhancer, Energy efficient, and [...] Read more.
Rice is a staple food in Côte d’Ivoire, but parboiling remains a weak link in the local rice value chain. Parboiled rice has superior nutritional and physical properties compared with white rice. In 2017, AfricaRice introduced the “Grain quality enhancer, Energy efficient, and durable Material” (GEM) parboiling system in Côte d’Ivoire to address these challenges. This study evaluated the rice value chain, parboilers’ perceptions of GEM technology, and its role in upgrading the rice value chain. Using two survey types (parboiler association level (focus group) and parboiler household level), 179 rice parboilers and 77 key players were randomly sampled and interviewed in Côte d’Ivoire. We used descriptive statistics and the parboiler budget for the profitability analysis. The results show that parboiling, primarily undertaken by women, is profitable in Côte d’Ivoire. Parboilers identified the key advantages of the GEM system, including improved rice quality, higher output rates, better nutritional value, and the ability to parboil larger volumes of rice. GEM technology enhanced rice quality, increased parboilers’ incomes, and reduced energy costs by 22.3%, saving an average of 73,090 FCFA per ton of parboiled paddy. The study recommends scaling up GEM technology through local fabricator training and broader dissemination in rice-growing regions to further strengthen the rice value chain in Côte d’Ivoire. Full article
Show Figures

Figure 1

39 pages, 2337 KiB  
Review
Overview of Patagonian Red Octopus (Enteroctopus megalocyathus) Fisheries in Chilean Regions and Their Food Safety Aspects
by Alessandro Truant, Federica Giacometti, Jorge Hernández, Viviana Espinoza, Ana Farías, Iker Uriarte, Cecilia Godoy, Riccardo Miotti Scapin, Leonardo Alberghini, Paolo Catellani and Valerio Giaccone
Animals 2025, 15(10), 1464; https://doi.org/10.3390/ani15101464 - 19 May 2025
Viewed by 771
Abstract
Artisanal fisheries in southern Chile rely heavily on the Patagonian red octopus (Enteroctopus megalocyathus) as a valuable resource, contributing significantly to local economies. This octopus species accounts for 25–40% of Chilean octopus landings. It is a merobenthic species, characterized by a [...] Read more.
Artisanal fisheries in southern Chile rely heavily on the Patagonian red octopus (Enteroctopus megalocyathus) as a valuable resource, contributing significantly to local economies. This octopus species accounts for 25–40% of Chilean octopus landings. It is a merobenthic species, characterized by a semelparous life cycle and a long brooding period, and it is distributed along the Pacific and Atlantic coasts of the southern tip of South America, inhabiting holes and crevices in rocky substrates. However, this fishery faces critical challenges to both its ecological sustainability and the food safety of octopus products. The primary fishing method, using hooks, poses a risk to reproductive capacity as it can capture brooding females. Food safety concerns arise from microbial contamination during pre- and post-harvest handling, bioaccumulation of toxins from algal blooms, and the presence of heavy metals in the marine environment. While evisceration effectively reduces the risk of consuming toxins and heavy metals, inadequate hygiene practices and insufficient ice usage throughout the production chain represent significant food safety risks. Chilean fishing Law No. 18892/1989 defines artisanal fishing and establishes territorial use rights in fisheries (TURFs) to promote sustainable extraction of benthic resources. Integrating training programs on post-harvest handling, hygiene practices, and food safety measures into the TURFs framework, along with targeted investments in infrastructure and technical assistance, is crucial to ensure the long-term sustainability of the E. megalocyathus fishery, protect consumer health, and maintain the economic viability and environmental sustainability of this vital resource for local communities. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

Back to TopTop