Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (283)

Search Parameters:
Keywords = load curtailment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4094 KiB  
Article
Risk–Cost Equilibrium for Grid Reinforcement Under High Renewable Penetration: A Bi-Level Optimization Framework with GAN-Driven Scenario Learning
by Feng Liang, Ying Mu, Dashun Guan, Dongliang Zhang and Wenliang Yin
Energies 2025, 18(14), 3805; https://doi.org/10.3390/en18143805 - 17 Jul 2025
Viewed by 105
Abstract
The integration of high-penetration renewable energy sources (RESs) into transmission networks introduces profound uncertainty that challenges traditional infrastructure planning approaches. Existing transmission expansion planning (TEP) models either rely on static scenario sets or over-conservative worst-case assumptions, failing to capture the operational stress triggered [...] Read more.
The integration of high-penetration renewable energy sources (RESs) into transmission networks introduces profound uncertainty that challenges traditional infrastructure planning approaches. Existing transmission expansion planning (TEP) models either rely on static scenario sets or over-conservative worst-case assumptions, failing to capture the operational stress triggered by rare but structurally impactful renewable behaviors. This paper proposes a novel bi-level optimization framework for transmission planning under adversarial uncertainty, coupling a distributionally robust upper-level investment model with a lower-level operational response embedded with physics and market constraints. The uncertainty space was not exogenously fixed, but instead dynamically generated through a physics-informed spatiotemporal generative adversarial network (PI-ST-GAN), which synthesizes high-risk renewable and load scenarios designed to maximally challenge the system’s resilience. The generator was co-trained using a composite stress index—combining expected energy not served, loss-of-load probability, and marginal congestion cost—ensuring that each scenario reflects both physical plausibility and operational extremity. The resulting bi-level model was reformulated using strong duality, and it was decomposed into a tractable mixed-integer structure with embedded adversarial learning loops. The proposed framework was validated on a modified IEEE 118-bus system with high wind and solar penetration. Results demonstrate that the GAN-enhanced planner consistently outperforms deterministic and stochastic baselines, reducing renewable curtailment by up to 48.7% and load shedding by 62.4% under worst-case realization. Moreover, the stress investment frontier exhibits clear convexity, enabling planners to identify cost-efficient resilience strategies. Spatial congestion maps and scenario risk-density plots further illustrate the ability of adversarial learning to reveal latent structural bottlenecks not captured by conventional methods. This work offers a new methodological paradigm, in which optimization and generative AI co-evolve to produce robust, data-aware, and stress-responsive transmission infrastructure designs. Full article
Show Figures

Figure 1

35 pages, 2895 KiB  
Review
Ventilated Facades for Low-Carbon Buildings: A Review
by Pinar Mert Cuce and Erdem Cuce
Processes 2025, 13(7), 2275; https://doi.org/10.3390/pr13072275 - 17 Jul 2025
Viewed by 78
Abstract
The construction sector presently consumes about 40% of global energy and generates 36% of CO2 emissions, making facade retrofits a priority for decarbonising buildings. This review clarifies how ventilated facades (VFs), wall assemblies that interpose a ventilated air cavity between outer cladding [...] Read more.
The construction sector presently consumes about 40% of global energy and generates 36% of CO2 emissions, making facade retrofits a priority for decarbonising buildings. This review clarifies how ventilated facades (VFs), wall assemblies that interpose a ventilated air cavity between outer cladding and the insulated structure, address that challenge. First, the paper categorises VFs by structural configuration, ventilation strategy and functional control into four principal families: double-skin, rainscreen, hybrid/adaptive and active–passive systems, with further extensions such as BIPV, PCM and green-wall integrations that couple energy generation or storage with envelope performance. Heat-transfer analysis shows that the cavity interrupts conductive paths, promotes buoyancy- or wind-driven convection, and curtails radiative exchange. Key design parameters, including cavity depth, vent-area ratio, airflow velocity and surface emissivity, govern this balance, while hybrid ventilation offers the most excellent peak-load mitigation with modest energy input. A synthesis of simulation and field studies indicates that properly detailed VFs reduce envelope cooling loads by 20–55% across diverse climates and cut winter heating demand by 10–20% when vents are seasonally managed or coupled with heat-recovery devices. These thermal benefits translate into steadier interior surface temperatures, lower radiant asymmetry and fewer drafts, thereby expanding the hours occupants remain within comfort bands without mechanical conditioning. Climate-responsive guidance emerges in tropical and arid regions, favouring highly ventilated, low-absorptance cladding; temperate and continental zones gain from adaptive vents, movable insulation or PCM layers; multi-skin adaptive facades promise balanced year-round savings by re-configuring in real time. Overall, the review demonstrates that VFs constitute a versatile, passive-plus platform for low-carbon buildings, simultaneously enhancing energy efficiency, durability and indoor comfort. Future advances in smart controls, bio-based materials and integrated energy-recovery systems are poised to unlock further performance gains and accelerate the sector’s transition to net-zero. Emerging multifunctional materials such as phase-change composites, nanostructured coatings, and perovskite-integrated systems also show promise in enhancing facade adaptability and energy responsiveness. Full article
(This article belongs to the Special Issue Sustainable Development of Energy and Environment in Buildings)
Show Figures

Figure 1

14 pages, 806 KiB  
Article
A Bi-Level Demand Response Framework Based on Customer Directrix Load for Power Systems with High Renewable Integration
by Weimin Xi, Qian Chen, Haihua Xu and Qingshan Xu
Energies 2025, 18(14), 3652; https://doi.org/10.3390/en18143652 - 10 Jul 2025
Viewed by 187
Abstract
The growing integration of renewable energy sources (RESs) into modern power systems calls for enhanced flexibility and control mechanisms. Conventional demand response (DR) strategies, such as price-based and incentive-driven methods, often encounter challenges that limit their effectiveness. This paper proposes a novel DR [...] Read more.
The growing integration of renewable energy sources (RESs) into modern power systems calls for enhanced flexibility and control mechanisms. Conventional demand response (DR) strategies, such as price-based and incentive-driven methods, often encounter challenges that limit their effectiveness. This paper proposes a novel DR approach grounded in Customer Directrix Load (CDL) and formulated through Stackelberg game theory. A bilevel optimization framework is established, with air conditioning (AC) systems and electric vehicles (EVs) serving as the main DR participants. The problem is addressed using a genetic algorithm. Simulation studies on a modified IEEE 33-bus distribution system reveal that the proposed strategy significantly improves RES accommodation, reduces power curtailment, and yields mutual benefits for both system operators and end users. The findings highlight the potential of the CDL-based DR mechanism in enhancing operational efficiency and encouraging proactive consumer involvement. Full article
Show Figures

Figure 1

37 pages, 1029 KiB  
Article
Autonomous Reinforcement Learning for Intelligent and Sustainable Autonomous Microgrid Energy Management
by Iacovos Ioannou, Saher Javaid, Yasuo Tan and Vasos Vassiliou
Electronics 2025, 14(13), 2691; https://doi.org/10.3390/electronics14132691 - 3 Jul 2025
Viewed by 264
Abstract
Effective energy management in microgrids is essential for integrating renewable energy sources and maintaining operational stability. Machine learning (ML) techniques offer significant potential for optimizing microgrid performance. This study provides a comprehensive comparative performance evaluation of four ML-based control strategies: deep Q-networks (DQNs), [...] Read more.
Effective energy management in microgrids is essential for integrating renewable energy sources and maintaining operational stability. Machine learning (ML) techniques offer significant potential for optimizing microgrid performance. This study provides a comprehensive comparative performance evaluation of four ML-based control strategies: deep Q-networks (DQNs), proximal policy optimization (PPO), Q-learning, and advantage actor–critic (A2C). These strategies were rigorously tested using simulation data from a representative islanded microgrid model, with metrics evaluated across diverse seasonal conditions (autumn, spring, summer, winter). Key performance indicators included overall episodic reward, unmet load, excess generation, energy storage system (ESS) state-of-charge (SoC) imbalance, ESS utilization, and computational runtime. Results from the simulation indicate that the DQN-based agent consistently achieved superior performance across all evaluated seasons, effectively balancing economic rewards, reliability, and battery health while maintaining competitive computational runtimes. Specifically, DQN delivered near-optimal rewards by significantly reducing unmet load, minimizing excess renewable energy curtailment, and virtually eliminating ESS SoC imbalance, thereby prolonging battery life. Although the tabular Q-learning method showed the lowest computational latency, it was constrained by limited adaptability in more complex scenarios. PPO and A2C, while offering robust performance, incurred higher computational costs without additional performance advantages over DQN. This evaluation clearly demonstrates the capability and adaptability of the DQN approach for intelligent and autonomous microgrid management, providing valuable insights into the relative advantages and limitations of various ML strategies in complex energy management scenarios. Full article
(This article belongs to the Special Issue Artificial Intelligence-Driven Emerging Applications)
Show Figures

Figure 1

24 pages, 14028 KiB  
Article
Heuristic-Based Scheduling of BESS for Multi-Community Large-Scale Active Distribution Network
by Ejikeme A. Amako, Ali Arzani and Satish M. Mahajan
Electricity 2025, 6(3), 36; https://doi.org/10.3390/electricity6030036 - 1 Jul 2025
Viewed by 288
Abstract
The integration of battery energy storage systems (BESSs) within active distribution networks (ADNs) entails optimized day-ahead charge/discharge scheduling to achieve effective peak shaving.The primary objective is to reduce peak demand and mitigate power deviations caused by intermittent photovoltaic (PV) output. Quasi-static time-series (QSTS) [...] Read more.
The integration of battery energy storage systems (BESSs) within active distribution networks (ADNs) entails optimized day-ahead charge/discharge scheduling to achieve effective peak shaving.The primary objective is to reduce peak demand and mitigate power deviations caused by intermittent photovoltaic (PV) output. Quasi-static time-series (QSTS) co-simulations for determining optimal heuristic solutions at each time interval are computationally intensive, particularly for large-scale systems. To address this, a two-stage intelligent BESS scheduling approach implemented in a MATLAB–OpenDSS environment with parallel processing is proposed in this paper. In the first stage, a rule-based decision tree generates initial charge/discharge setpoints for community BESS units. These setpoints are refined in the second stage using an optimization algorithm aimed at minimizing community net load power deviations and reducing peak demand. By assigning each ADN community to a dedicated CPU core, the proposed approach utilizes parallel processing to significantly reduce the execution time. Performance evaluations on an IEEE 8500-node test feeder demonstrate that the approach enhances peak shaving while reducing QSTS co-simulation execution time, utility peak demand, distribution network losses, and point of interconnection (POI) nodal voltage deviations. In addition, the use of smart inverter functions improves BESS operations by mitigating voltage violations and active power curtailment, thereby increasing the amount of energy shaved during peak demand periods. Full article
Show Figures

Figure 1

20 pages, 1092 KiB  
Article
Optimal Energy Management and Trading Strategy for Multi-Distribution Networks with Shared Energy Storage Based on Nash Bargaining Game
by Yuan Hu, Zhijun Wu, Yudi Ding, Kai Yuan, Feng Zhao and Tiancheng Shi
Processes 2025, 13(7), 2022; https://doi.org/10.3390/pr13072022 - 26 Jun 2025
Viewed by 316
Abstract
In distribution networks, energy storage serves as a crucial means to mitigate power fluctuations from renewable energy sources. However, due to its high cost, energy storage remains a resource whose large-scale adoption in power systems faces significant challenges. In recent years, the emergence [...] Read more.
In distribution networks, energy storage serves as a crucial means to mitigate power fluctuations from renewable energy sources. However, due to its high cost, energy storage remains a resource whose large-scale adoption in power systems faces significant challenges. In recent years, the emergence of shared energy storage business models has provided new opportunities for the efficient operation of multi-distribution networks. Nevertheless, distribution network operators and shared energy storage operators belong to different stakeholders, and traditional centralized scheduling strategies suffer from issues such as privacy leakage and overly conservative decision-making. To address these challenges, this paper proposes a Nash bargaining game-based optimal energy management and trading strategy for multi-distribution networks with shared energy storage. First, we establish optimal scheduling models for active distribution networks (ADNs) and shared energy storage operators, respectively, and then develop a cooperative scheduling model aimed at maximizing collaborative benefits. The interactive variables—power exchange and electricity prices between distribution networks and shared energy storage operators—are iteratively solved using the Alternating Direction Method of Multipliers (ADMM). Finally, case studies based on modified IEEE-33 test systems validate the effectiveness and feasibility of the proposed method. The results demonstrate that the presented approach significantly outperforms conventional centralized optimization and distributed robust techniques, achieving a maximum improvement of 3.6% in renewable energy utilization efficiency and an 11.2% reduction in operational expenses. While maintaining computational performance on par with centralized methods, it effectively addresses data privacy concerns. Furthermore, the proposed strategy enables a substantial decrease in load curtailment, with reductions reaching as high as 63.7%. Full article
(This article belongs to the Special Issue Applications of Smart Microgrids in Renewable Energy Development)
Show Figures

Figure 1

24 pages, 6043 KiB  
Article
Coordinated Control of Photovoltaic Resources and Electric Vehicles in a Power Distribution System to Balance Technical, Environmental, and Energy Justice Objectives
by Abdulrahman Almazroui and Salman Mohagheghi
Processes 2025, 13(7), 1979; https://doi.org/10.3390/pr13071979 - 23 Jun 2025
Viewed by 492
Abstract
Recent advancements in photovoltaic (PV) and battery technologies, combined with improvements in power electronic converters, have accelerated the adoption of rooftop PV systems and electric vehicles (EVs) in distribution networks, while these technologies offer economic and environmental benefits and support the transition to [...] Read more.
Recent advancements in photovoltaic (PV) and battery technologies, combined with improvements in power electronic converters, have accelerated the adoption of rooftop PV systems and electric vehicles (EVs) in distribution networks, while these technologies offer economic and environmental benefits and support the transition to sustainable energy systems, they also introduce operational challenges, including voltage fluctuations, increased system losses, and voltage regulation issues under high penetration levels. Traditional Voltage and Var Control (VVC) strategies, which rely on substation on-load tap changers, voltage regulators, and shunt capacitors, are insufficient to fully manage these challenges. This study proposes a novel Voltage, Var, and Watt Control (VVWC) framework that coordinates the operation of PV and EV resources, conventional devices, and demand responsive loads. A mixed-integer nonlinear multi-objective optimization model is developed, applying a Chebyshev goal programming approach to balance objectives that include minimizing PV curtailment, reducing system losses, flattening voltage profile, and minimizing demand not met. Unserved demand has, in particular, been modeled while incorporating the concepts of distributional and recognition energy justice. The proposed method is validated using a modified version of the IEEE 123-bus test distribution system. The results indicate that the proposed framework allows for high levels of PV and EV integration in the grid, while ensuring that EV demand is met and PV curtailment is negligible. This demonstrates an equitable access to energy, while maximizing renewable energy usage. Full article
Show Figures

Figure 1

19 pages, 3217 KiB  
Article
Casein Kinase 2 Regulates the Intrinsic Activity of L-Type Calcium Currents in Cardiomyocytes
by Juan Zhao, Marlena Broszczak and Lucie Parent
Int. J. Mol. Sci. 2025, 26(13), 6010; https://doi.org/10.3390/ijms26136010 - 23 Jun 2025
Viewed by 319
Abstract
Heart failure is associated with dysregulation in cellular Ca2+ that could involve sarcolemmal L-type Ca2+ currents (LTCCs). Building on previous observations showing that recombinant CaV1.2 channels are upregulated by phosphorylated calmodulin (CaM) variants, the cellular mechanism(s) underlying this posttranslational [...] Read more.
Heart failure is associated with dysregulation in cellular Ca2+ that could involve sarcolemmal L-type Ca2+ currents (LTCCs). Building on previous observations showing that recombinant CaV1.2 channels are upregulated by phosphorylated calmodulin (CaM) variants, the cellular mechanism(s) underlying this posttranslational modification was investigated in cultured cardiomyocytes. Whole-cell LTCCs decreased by ≈75% after silencing the gene coding for casein kinase 2 (CK2), a constitutively active kinase in cardiomyocytes, or after its pharmacological inhibition. The overexpression of the dominant negative phosphoresistant single, double T79A/S81A, or triple T79A/S81A/S101A CaM variants resulted in a similar inhibition. In contrast, the overexpression of CaM WT or its double T79D/S81D and triple T79D/S81D/S101D phosphomimetic variants curtailed the downregulation of LTCCs caused by CK2 partial knockdown, suggesting that CK2 is responsible for the posttranslational modification of these CaM target residues. Catecholamines, triggering the protein kinase A (PKA) cascade, partially rescued LTCCs treated with siRNA without or after the overexpression of either CaM WT or stimulating CaM phosphomimetic variants. More importantly, they thwarted the negative impact of the phosphoresistant CaM variants, altogether arguing that CK2 and PKA are acting in synergy to regulate the activity of LTCCs. We conclude that CK2-mediated phosphorylation processes exacerbate the Ca2+ load associated with heart failure. Full article
(This article belongs to the Special Issue Voltage-Gated Ion Channels and Human Diseases)
Show Figures

Figure 1

35 pages, 9419 KiB  
Article
Multi-Objective Scheduling Method for Integrated Energy System Containing CCS+P2G System Using Q-Learning Adaptive Mutation Black-Winged Kite Algorithm
by Ruijuan Shi, Xin Yan, Zuhao Fan and Naiwei Tu
Sustainability 2025, 17(13), 5709; https://doi.org/10.3390/su17135709 - 20 Jun 2025
Viewed by 398
Abstract
This study proposes an improved multi-objective black-winged kite algorithm (MOBKA-QL) integrating Q-learning with adaptive mutation strategies for optimizing multi-objective scheduling in integrated energy systems (IES). The algorithm dynamically selects mutation strategies through Q-learning to enhance solution diversity and accelerate convergence. First, an optimal [...] Read more.
This study proposes an improved multi-objective black-winged kite algorithm (MOBKA-QL) integrating Q-learning with adaptive mutation strategies for optimizing multi-objective scheduling in integrated energy systems (IES). The algorithm dynamically selects mutation strategies through Q-learning to enhance solution diversity and accelerate convergence. First, an optimal scheduling model is established, incorporating a carbon capture system (CCS), power-to-gas (P2G), solar thermal, wind power, and energy storage to minimize economic costs and carbon emissions while maximizing energy efficiency. Second, the heat-to-power ratio of the cogeneration system is dynamically adjusted according to load demand, enabling flexible control of combined heat and power (CHP) output. The integration of CCS+P2G further reduces carbon emissions and wind curtailment, with the produced methane utilized in boilers and cogeneration systems. Hydrogen fuel cells (HFCs) are employed to mitigate cascading energy losses. Using forecasted load and renewable energy data from a specific region, dispatch experiments demonstrate that the proposed system reduces economic costs and CO2 emissions by 14.63% and 13.9%, respectively, while improving energy efficiency by 28.84%. Additionally, the adjustable heat-to-power ratio of CHP yields synergistic economic, energy, and environmental benefits. Full article
Show Figures

Figure 1

21 pages, 1801 KiB  
Article
Provincial Electricity–Heat Integrated Energy System Optimal Dispatching Model for Time-Series Production Simulation
by Na Zhang, Jin Yi, Jingwei Hu, Sheng Ge, Changyu Chi and Quan Lyu
Processes 2025, 13(6), 1886; https://doi.org/10.3390/pr13061886 - 14 Jun 2025
Viewed by 309
Abstract
This paper focuses on the provincial integrated energy system in northern China, which is characterized by the large-scale integration of renewable energy, thorough coupling of electricity and heat, and interactive operation of sources, loads, and storages. When conducting time-series production simulation with the [...] Read more.
This paper focuses on the provincial integrated energy system in northern China, which is characterized by the large-scale integration of renewable energy, thorough coupling of electricity and heat, and interactive operation of sources, loads, and storages. When conducting time-series production simulation with the daily rolling optimization dispatching method, the embedded daily optimal dispatching model fails to effectively charge and discharge electric and thermal energy storages across days to accommodate the curtailed electricity from renewable energy. Thus, a new embedded daily optimal dispatching model is proposed. The new model adopts a strategy of converting the stored energy of electric and thermal energy storages at the end of the dispatching day into equivalent coal consumption, respectively, and deducting it from the objective function of the optimal dispatching model. Through theoretical analysis, the reasonable range of the conversion coefficient is determined, enabling the model to use electric and thermal energy storages to store the curtailed electricity during surplus power generation in a dispatching day and accommodate it in subsequent days. A case study based on a provincial electricity–heat integrated energy system in northern China shows that the curtailment of renewable energy with the suggested strategy is much less than that with the traditional strategy, verifying the effectiveness of the proposed model. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

18 pages, 605 KiB  
Article
A Novel Framework for Co-Expansion Planning of Transmission Lines and Energy Storage Devices Considering Unit Commitment
by Edimar José de Oliveira, Lucas Santiago Nepomuceno, Leonardo Willer de Oliveira and Arthur Neves de Paula
Technologies 2025, 13(6), 241; https://doi.org/10.3390/technologies13060241 - 11 Jun 2025
Viewed by 325
Abstract
This paper presents a methodology for the co-expansion planning of transmission lines and energy storage systems, considering unit commitment constraints and uncertainties in load demand and wind generation. The problem is formulated as a mixed-integer nonlinear program and solved using a decomposition-based approach [...] Read more.
This paper presents a methodology for the co-expansion planning of transmission lines and energy storage systems, considering unit commitment constraints and uncertainties in load demand and wind generation. The problem is formulated as a mixed-integer nonlinear program and solved using a decomposition-based approach that combines a genetic algorithm with mixed-integer linear programming. Uncertainties are modeled through representative day scenarios obtained via clustering. The methodology is validated on a modified IEEE 24-bus system. The results show that co-planning reduces total expansion costs by 14.69%, annual operating costs by 26.19%, and wind curtailment by 91.99% compared to transmission only expansion. These improvements are due to the flexibility introduced by energy storage systems, which enables more efficient thermal dispatch, reduces fuel consumption, and minimizes renewable energy curtailment. Full article
Show Figures

Graphical abstract

17 pages, 983 KiB  
Article
Operational Risk Assessment of Power Imbalance for Power Systems Considering Wind Power Ramping Events
by Weikun Wang, Xiaofu Xiong, Di Yang, Song Wang and Xinyi Dong
Processes 2025, 13(6), 1779; https://doi.org/10.3390/pr13061779 - 4 Jun 2025
Viewed by 338
Abstract
Wind power ramping events refer to sustained unidirectional and large-magnitude fluctuations in wind power output over short durations, exhibiting distinct temporal characteristics and imposing significant impacts on power balance. To address the strong temporal dependency of wind power ramping events, a time-sequential outage [...] Read more.
Wind power ramping events refer to sustained unidirectional and large-magnitude fluctuations in wind power output over short durations, exhibiting distinct temporal characteristics and imposing significant impacts on power balance. To address the strong temporal dependency of wind power ramping events, a time-sequential outage model for conventional generators was derived and system operational states were sampled using non-sequential Monte Carlo simulation. Considering the frequency dynamics caused by active power imbalances, dynamic frequency security constraints were formulated. An optimal power flow model was developed to minimize wind curtailment and load shedding comprehensive losses, incorporating these dynamic frequency constraints. The optimal power flow model was employed to solve line power flows for sampled system states and compute comprehensive loss risk indices. Case studies on the IEEE RTS-79 system evaluated and compared operational risks across multiple scenarios, validating the effectiveness of the proposed methodology. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

22 pages, 2052 KiB  
Article
Optimization Scheduling of Carbon Capture Power Systems Considering Energy Storage Coordination and Dynamic Carbon Constraints
by Tingling Wang, Yuyi Jin and Yongqing Li
Processes 2025, 13(6), 1758; https://doi.org/10.3390/pr13061758 - 3 Jun 2025
Viewed by 511
Abstract
To achieve low-carbon economic dispatch and collaborative optimization of carbon capture efficiency in power systems, this paper proposes a flexible carbon capture power plant and generalized energy storage collaborative operation model under a dynamic carbon quota mechanism. First, adjustable carbon capture devices are [...] Read more.
To achieve low-carbon economic dispatch and collaborative optimization of carbon capture efficiency in power systems, this paper proposes a flexible carbon capture power plant and generalized energy storage collaborative operation model under a dynamic carbon quota mechanism. First, adjustable carbon capture devices are integrated into high-emission thermal power units to construct carbon–electricity coupled operation modules, enabling a dynamic reduction of carbon emission intensity and enhancing low-carbon performance. Second, a time-varying carbon quota allocation mechanism and a dynamic correction model for carbon emission factors are designed to improve the regulation capability of carbon capture units during peak demand periods. Furthermore, pumped storage systems and price-guided demand response are integrated to form a generalized energy storage system, establishing a “source–load–storage” coordinated peak-shaving framework that alleviates the regulation burden on carbon capture units. Finally, a multi-timescale optimization scheduling model is developed and solved using the GUROBI algorithm to ensure the economic efficiency and operational synergy of system resources. Simulation results demonstrate that, compared with the traditional static quota mode, the proposed dynamic carbon quota mechanism reduces wind curtailment cost by 9.6%, the loss of load cost by 48.8%, and carbon emission cost by 15%. Moreover, the inclusion of generalized energy storage—including pumped storage and demand response—further decreases coal consumption cost by 9% and carbon emission cost by 17%, validating the effectiveness of the proposed approach in achieving both economic and environmental benefits. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

27 pages, 1612 KiB  
Article
Employing Quantum Entanglement for Real-Time Coordination of Distributed Electric Vehicle Charging Stations: Advancing Grid Efficiency and Stability
by Dawei Wang, Hanqi Dai, Yuan Jin, Zhuoqun Li, Shanna Luo and Xuebin Li
Energies 2025, 18(11), 2917; https://doi.org/10.3390/en18112917 - 2 Jun 2025
Viewed by 422
Abstract
The widespread deployment of electric vehicles (EVs) has introduced substantial challenges to electricity pricing, grid stability, and renewable energy integration. This paper presents the first real-time quantum-enhanced electricity pricing framework for large-scale EV charging networks, marking a significant departure from existing approaches based [...] Read more.
The widespread deployment of electric vehicles (EVs) has introduced substantial challenges to electricity pricing, grid stability, and renewable energy integration. This paper presents the first real-time quantum-enhanced electricity pricing framework for large-scale EV charging networks, marking a significant departure from existing approaches based on mixed-integer programming (MILP) and deep reinforcement learning (DRL). The proposed framework incorporates renewable intermittency, demand elasticity, and infrastructure constraints within a high-dimensional optimization model. The objective is to dynamically determine spatiotemporal electricity prices that reduce system peak load, improve renewable utilization, and minimize user charging costs. A rigorous mathematical formulation is developed, integrating over 40 system-level constraints, including power balance, transmission limits, renewable curtailment, carbon targets, voltage regulation, demand-side flexibility, social participation, and cyber-resilience. Real-time electricity prices are treated as dynamic decision variables influenced by station utilization, elasticity response curves, and the marginal cost of renewable and grid electricity. The model is solved across 96 time intervals using a quantum-classical hybrid method, with benchmark comparisons against MILP and DRL baselines. A comprehensive case study is conducted on a 500-station EV network serving 10,000 vehicles, coupled with a modified IEEE 118-bus grid and 800 MW of variable renewable energy. Historical charging data with ±12% stochastic demand variation and real-world solar/wind profiles are used to simulate realistic conditions. Results show that the proposed framework achieves a 23.4% average peak load reduction per station, a 17.9% gain in renewable utilization, and up to 30% user cost savings compared to flat-rate pricing. Network congestion is mitigated at over 90% of high-traffic stations. Pricing trajectories align low-price windows with high-renewable periods and off-peak hours, enabling synchronized load shifting and enhanced flexibility. Visual analytics using 3D surface plots and disaggregated bar charts confirm structured demand-price interactions and smooth, stable price evolution. These findings validate the potential of quantum-enhanced optimization for scalable, clean, and adaptive EV charging coordination in renewable-rich grid environments. Full article
Show Figures

Figure 1

16 pages, 2369 KiB  
Article
A Modeling Study on the Impact of Coal Power in Wind–Solar–Thermal Storage System
by Yuhua Liu, Qinggang Lyu, Zhengnan Gao, Shujun Zhu, Jinming Fu, Yongjiang Liu, Ming Gao and Zhen Chai
Energies 2025, 18(11), 2819; https://doi.org/10.3390/en18112819 - 28 May 2025
Viewed by 363
Abstract
To further quantify the role of coal-fired power units in a wind–solar–thermal storage system and improve the construction of clean energy bases, this study examined the temporal production characteristics of wind and solar power and established an operational model for coal-fired power units [...] Read more.
To further quantify the role of coal-fired power units in a wind–solar–thermal storage system and improve the construction of clean energy bases, this study examined the temporal production characteristics of wind and solar power and established an operational model for coal-fired power units within a wind–solar–thermal storage system. This approach ensured a stable electricity supply on the basis of power balance. The findings indicate that the correlation between the installed capacity of coal-fired power and the daily power supply capability of energy storage that meets various scheduled power demands can be obtained via the model. As the proportion of wind and solar power in the output power decreases, the influence of the minimum operational load of the coal-fired power units on the curtailment rate intensifies. Notably, the operational cost savings from reducing this minimum operational load surpass those obtained by either downsizing the installed capacity of coal-fired power units or energy storage devices. Among the parameters of this study, the lowest operational cost for the system was observed when wind and solar power generation constituted 76% of the total. This scenario, which ensured stable power output for 95% of the days in a year, had a wind and solar power curtailment rate of 11.3%. Additionally, the energy supplied by storage devices amounted to 1000 MWh, with the ratio of the installed capacity of coal-fired power to the total installed capacities of wind and solar power remaining at 25%. When the ratio of wind and solar power generation to output power was 91%, 76%, and 58%, a 1% reduction in coal consumption by coal-fired units during low-load operation resulted in a decrease in total system operating costs of 0.012%, 0.093%, and 0.089%, respectively. These findings provide valuable data support for the development of clean energy infrastructures. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

Back to TopTop