Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,029)

Search Parameters:
Keywords = livestock system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1097 KiB  
Review
Natural Feed Additives in Sub-Saharan Africa: A Systematic Review of Efficiency and Sustainability in Ruminant Production
by Zonaxolo Ntsongota, Olusegun Oyebade Ikusika and Thando Conference Mpendulo
Ruminants 2025, 5(3), 36; https://doi.org/10.3390/ruminants5030036 - 6 Aug 2025
Abstract
Ruminant livestock production plays a crucial role in the agricultural systems of Sub-Saharan Africa, significantly supporting rural livelihoods through income generation, improved nutrition, and employment opportunities. Despite its importance, the sector continues to face substantial challenges, such as low feed quality, seasonal feed [...] Read more.
Ruminant livestock production plays a crucial role in the agricultural systems of Sub-Saharan Africa, significantly supporting rural livelihoods through income generation, improved nutrition, and employment opportunities. Despite its importance, the sector continues to face substantial challenges, such as low feed quality, seasonal feed shortages, and climate-related stresses, all of which limit productivity and sustainability. Considering these challenges, the adoption of natural feed additives has emerged as a promising strategy to enhance animal performance, optimise nutrient utilisation, and mitigate environmental impacts, including the reduction of enteric methane emissions. This review underscores the significant potential of natural feed additives such as plant extracts, essential oils, probiotics, and mineral-based supplements such as fossil shell flour as sustainable alternatives to conventional growth promoters in ruminant production systems across the region. All available documented evidence on the topic from 2000 to 2024 was collated and synthesised through standardised methods of systematic review protocol—PRISMA. Out of 319 research papers downloaded, six were included and analysed directly or indirectly in this study. The results show that the addition of feed additives to ruminant diets in all the studies reviewed significantly (p < 0.05) improved growth parameters such as average daily growth (ADG), feed intake, and feed conversion ratio (FCR) compared to the control group. However, no significant (p > 0.05) effect was found on cold carcass weight (CCW), meat percentage, fat percentage, bone percentage, or intramuscular fat (IMF%) compared to the control. The available evidence indicates that these additives can provide tangible benefits, including improved growth performance, better feed efficiency, enhanced immune responses, and superior meat quality, while also supporting environmental sustainability by reducing nitrogen excretion and decreasing dependence on antimicrobial agents. Full article
Show Figures

Figure 1

20 pages, 312 KiB  
Article
Pimelea and Its Toxicity: A Survey of Landholder Experiences and Management Practices
by Rashid Saleem, Shane Campbell, Mary T. Fletcher, Sundaravelpandian Kalaipandian and Steve W. Adkins
Toxins 2025, 17(8), 393; https://doi.org/10.3390/toxins17080393 - 6 Aug 2025
Abstract
Pimelea is one of the highly toxic plants in Australia, particularly affecting cattle. It contains simplexin, a potent toxin that can cause Pimelea poisoning (St. George Disease) in livestock. A survey was conducted to assess the current impact of Pimelea on livestock production, [...] Read more.
Pimelea is one of the highly toxic plants in Australia, particularly affecting cattle. It contains simplexin, a potent toxin that can cause Pimelea poisoning (St. George Disease) in livestock. A survey was conducted to assess the current impact of Pimelea on livestock production, pasture systems, and financial losses among agricultural producers. In addition, information was also sought about the environmental conditions that facilitate its growth and the effectiveness of existing management strategies. The survey responses were obtained from producers affected by Pimelea across nine different Local Government Areas, through three States, viz., Queensland, New South Wales, and South Australia. Pimelea was reported to significantly affect animal production, with 97% of producers surveyed acknowledging its detrimental effects. Among livestock, cattle were the most severely affected (94%), when compared to sheep (13%), goats (3%), and horses (3%). The presence of Pimelea was mostly observed in spring (65%) and winter (48%), although 29% of respondents indicated that it could be present all year-round under favorable rainfall conditions. Germination was associated with light to moderate rainfall (52%), while only 24% linked it to heavy rainfall. Pimelea simplex F. Muell. was the most frequently encountered species (71%), followed by Pimelea trichostachya Lindl. (26%). Infestations were reported to occur annually by 47% of producers, with 41% noting occurrences every 2 to 5 years. Financially, producers estimated average annual losses of AUD 67,000, with 50% reporting an average of 26 cattle deaths per year, reaching up to 105 deaths in severe years. Some producers were spending up to AUD 2100 per annum to manage Pimelea. While chemical and physical controls were commonly employed, integrating competitive pastures and alternative livestock, such as sheep and goats, was considered as a potential management strategy. This study reiterates the need for further research on sustainable pasture management practices to reduce Pimelea-related risks to livestock and agricultural production systems. Full article
(This article belongs to the Special Issue Plant Toxin Emergency)
22 pages, 5939 KiB  
Article
Single-Nucleus Transcriptome Sequencing Unravels Physiological Differences in Holstein Cows Under Different Physiological States
by Peipei Li, Yaqiang Guo, Yanchun Bao, Caixia Shi, Lin Zhu, Mingjuan Gu, Risu Na and Wenguang Zhang
Genes 2025, 16(8), 931; https://doi.org/10.3390/genes16080931 (registering DOI) - 3 Aug 2025
Viewed by 88
Abstract
Background: Against the backdrop of the large-scale and intensive development of the livestock industry, enhancing the reproductive efficiency of cattle has become a crucial factor in industrial development. Holstein cows, as the most predominant dairy cattle breed globally, are characterized by high milk [...] Read more.
Background: Against the backdrop of the large-scale and intensive development of the livestock industry, enhancing the reproductive efficiency of cattle has become a crucial factor in industrial development. Holstein cows, as the most predominant dairy cattle breed globally, are characterized by high milk yield and excellent milk quality. However, their reproductive efficiency is comprehensively influenced by a variety of complex factors, and improving their reproductive performance faces numerous challenges. The ovary, as the core organ of the female reproductive system, plays a decisive role in embryonic development and pregnancy maintenance. It is not only the site where eggs are produced and developed but it also regulates the cow’s estrous cycle, ovulation process, and the establishment and maintenance of pregnancy by secreting various hormones. The normal functioning of the ovary is crucial for the smooth development of the embryo and the successful maintenance of pregnancy. Methods: Currently, traditional sequencing technologies have obvious limitations in deciphering ovarian function and reproductive regulatory mechanisms. To overcome the bottlenecks of traditional sequencing technologies, this study selected Holstein cows as the research subjects. Ovarian samples were collected from one pregnant and one non-pregnant Holstein cow, and single-nucleus transcriptome sequencing technology was used to conduct an in-depth study on the ovarian cells of Holstein cows. Results: By constructing a cell type-specific molecular atlas of the ovaries, nine different cell types were successfully identified. This study compared the proportions of ovarian cell types under different physiological states and found that the proportion of endothelial cells decreased during pregnancy, while the proportions of granulosa cells and luteal cells increased significantly. In terms of functional enrichment analysis, oocytes during both pregnancy and non-pregnancy play roles in the “cell cycle” and “homologous recombination” pathways. However, non-pregnant oocytes are also involved in the “progesterone-mediated oocyte maturation” pathway. Luteal cells during pregnancy mainly function in the “cortisol synthesis and secretion” and “ovarian steroidogenesis” pathways; non-pregnant luteal cells are mainly enriched in pathway processes such as the “AMPK signaling pathway”, “pyrimidine metabolism”, and “nucleotide metabolism”. Cell communication analysis reveals that there are 51 signaling pathways involved in the pregnant ovary, with endothelial cells, granulosa cells, and luteal cells serving as the core communication hubs. In the non-pregnant ovary, there are 48 pathways, and the interaction between endothelial cells and stromal cells is the dominant mode. Conclusions: This study provides new insights into the regulatory mechanisms of reproductive efficiency in Holstein cows. The differences in the proportions of ovarian cell types, functional pathways, and cell communication patterns under different physiological states, especially the increase in the proportions of granulosa cells and luteal cells during pregnancy and the specificity of related functional pathways, indicate that these cells play a crucial role in the reproductive process of cows. These findings also highlight the importance of ovarian cells in pathways such as “cell cycle”, “homologous recombination”, and “progesterone-mediated oocyte maturation”, as well as the cell communication mechanisms in regulating ovarian function and reproductive performance. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

14 pages, 265 KiB  
Article
Bovine Leptospirosis: Serology, Isolation, and Risk Factors in Dairy Farms of La Laguna, Mexico
by Alejandra María Pescador-Gutiérrez, Jesús Francisco Chávez-Sánchez, Lucio Galaviz-Silva, Juan José Zarate-Ramos, José Pablo Villarreal-Villarreal, Sergio Eduardo Bernal-García, Uziel Castillo-Velázquez, Rubén Cervantes-Vega and Ramiro Avalos-Ramirez
Life 2025, 15(8), 1224; https://doi.org/10.3390/life15081224 - 2 Aug 2025
Viewed by 188
Abstract
Leptospirosis is a globally significant zoonosis affecting animal health, productivity, and the environment. While typically associated with tropical climates, its persistence in semi-arid regions such as La Laguna, Mexico—characterized by low humidity, high temperatures, and limited water sources—remains poorly understood. Although these adverse [...] Read more.
Leptospirosis is a globally significant zoonosis affecting animal health, productivity, and the environment. While typically associated with tropical climates, its persistence in semi-arid regions such as La Laguna, Mexico—characterized by low humidity, high temperatures, and limited water sources—remains poorly understood. Although these adverse environmental conditions theoretically limit the survival of Leptospira, high livestock density and synanthropic reservoirs (e.g., rodents) may compensate, facilitating transmission. In this cross-sectional study, blood sera from 445 dairy cows (28 herds: 12 intensive [MI], 16 semi-intensive [MSI] systems) were analyzed via microscopic agglutination testing (MAT) against 10 pathogenic serovars. Urine samples were cultured for active Leptospira detection. Risk factors were assessed through epidemiological surveys and multivariable analysis. This study revealed an overall apparent seroprevalence of 27.0% (95% CI: 22.8–31.1), with significantly higher rates in MSI (54.1%) versus MI (12.2%) herds (p < 0.001) and an estimated true seroprevalence of 56.3% (95% CI: 50.2–62.1) in MSI and 13.1% (95% CI: 8.5–18.7) in MI herds (p < 0.001). The Sejroe serogroup was isolated from urine in both systems, confirming active circulation. In MI herds, rodent presence (OR: 3.6; 95% CI: 1.6–7.9) was identified as a risk factor for Leptospira seropositivity, while first-trimester abortions (OR:10.1; 95% CI: 4.2–24.2) were significantly associated with infection. In MSI herds, risk factors associated with Leptospira seropositivity included co-occurrence with hens (OR: 2.8; 95% CI: 1.5–5.3) and natural breeding (OR: 2.0; 95% CI: 1.1–3.9), whereas mastitis/agalactiae (OR: 2.8; 95% CI: 1.5–5.2) represented a clinical outcome associated with seropositivity. Despite semi-arid conditions, Leptospira maintains transmission in La Laguna, particularly in semi-intensive systems. The coexistence of adapted (Sejroe) and incidental serogroups underscores the need for targeted interventions, such as rodent control in MI systems and poultry management in MSI systems, to mitigate both zoonotic and economic impacts. Full article
(This article belongs to the Section Animal Science)
22 pages, 598 KiB  
Article
Re-Consider the Lobster: Animal Lives in Protein Supply Chains
by Karl T. Ulrich
Sustainability 2025, 17(15), 7034; https://doi.org/10.3390/su17157034 - 2 Aug 2025
Viewed by 120
Abstract
Animal protein production represents a complex system of lives transformed into nutrition, with profound ethical and environmental implications. This study provides a quantitative analysis of animal lives required to produce human-consumable protein across major food production systems. Categorizing animal lives based on cognitive [...] Read more.
Animal protein production represents a complex system of lives transformed into nutrition, with profound ethical and environmental implications. This study provides a quantitative analysis of animal lives required to produce human-consumable protein across major food production systems. Categorizing animal lives based on cognitive complexity and accounting for all lives involved in production, including direct harvests, reproductive animals, and feed species, reveals dramatic variations in protein efficiency. The analysis considers two categories of animal life: complex-cognitive lives (e.g., mammals, birds, cephalopods) and pain-capable lives (e.g., fish, crustaceans). Calculating protein yield per life demonstrates efficiency differences spanning more than five orders of magnitude, from 2 g per complex-cognitive life for baby octopus to 390,000 g per life for bovine dairy systems. Key findings expose disparities between terrestrial and marine protein production. Terrestrial systems involving mammals and birds show higher protein yields and exclusively involve complex-cognitive lives, while marine systems rely predominantly on pain-capable lives across complex food chains. Dairy production emerges as the most efficient system. Aquaculture systems reveal complex dynamics, with farmed carnivorous fish requiring hundreds of feed fish lives to produce protein, compared to omnivorous species that demonstrate improved efficiency. Beyond quantitative analysis, this research provides a framework for understanding the ethical and ecological dimensions of protein production, offering insights for potential systemic innovations. Full article
(This article belongs to the Section Sustainable Food)
Show Figures

Graphical abstract

19 pages, 977 KiB  
Article
Physical-Hydric Properties of a Planosols Under Long-Term Integrated Crop–Livestock–Forest System in the Brazilian Semiarid
by Valter Silva Ferreira, Flávio Pereira de Oliveira, Pedro Luan Ferreira da Silva, Adriana Ferreira Martins, Walter Esfrain Pereira, Djail Santos, Tancredo Augusto Feitosa de Souza, Robson Vinício dos Santos and Milton César Costa Campos
Forests 2025, 16(8), 1261; https://doi.org/10.3390/f16081261 - 2 Aug 2025
Viewed by 159
Abstract
The objective of this study was to evaluate the physical-hydric properties of a Planosol under an Integrated Crop–Livestock–Forest (ICLF) system in the Agreste region of Paraíba, Brazil, after eight years of implementation, and to compare them with areas under a conventional cropping system [...] Read more.
The objective of this study was to evaluate the physical-hydric properties of a Planosol under an Integrated Crop–Livestock–Forest (ICLF) system in the Agreste region of Paraíba, Brazil, after eight years of implementation, and to compare them with areas under a conventional cropping system and secondary native vegetation. The experiment was conducted at the experimental station located in Alagoinha, in the Agreste mesoregion of the State of Paraíba, Brazil. The experimental design adopted was a randomized block design (RBD) with five treatments and four replications (5 × 4 + 2). The treatments consisted of: (1) Gliricidia (Gliricidia sepium (Jacq.) Steud) + Signal grass (Urochloa decumbens) (GL+SG); (2) Sabiá (Mimosa caesalpiniaefolia Benth) + Signal grass (SB+SG); (3) Purple Ipê (Handroanthus avellanedae (Lorentz ex Griseb.) Mattos) + SG (I+SG); (4) annual crop + SG (C+SG); and (5) Signal grass (SG). Two additional treatments were included for statistical comparison: a conventional cropping system (CC) and a secondary native vegetation area (NV), both located near the experimental site. The CC treatment showed the lowest bulk density (1.23 g cm−3) and the lowest degree of compaction (66.3%) among the evaluated treatments, as well as a total porosity (TP) higher than 75% (0.75 m3 m−3). In the soil under the integration system, the lowest bulk density (1.38 g cm−3) and the highest total porosity (0.48 m3 m−3) were observed in the SG treatment at the 0.0–0.10 m depth. High S-index values (>0.035) and a low relative field capacity (RFc < 0.50) and Kθ indicate high structural quality and low soil water storage capacity. It was concluded that the SG, I+SG, SB+SG, and CC treatments presented the highest values of soil bulk and degree of compaction in the layers below 0.10 m. The I+SG and C+SG treatments showed the lowest hydraulic conductivities and macroaggregation. The SG and C+SG treatments had the lowest available water content and available water capacity across the three analyzed soil layers. Full article
(This article belongs to the Special Issue Forest Soil Physical, Chemical, and Biological Properties)
Show Figures

Graphical abstract

26 pages, 1033 KiB  
Article
Internet of Things Platform for Assessment and Research on Cybersecurity of Smart Rural Environments
by Daniel Sernández-Iglesias, Llanos Tobarra, Rafael Pastor-Vargas, Antonio Robles-Gómez, Pedro Vidal-Balboa and João Sarraipa
Future Internet 2025, 17(8), 351; https://doi.org/10.3390/fi17080351 - 1 Aug 2025
Viewed by 163
Abstract
Rural regions face significant barriers to adopting IoT technologies, due to limited connectivity, energy constraints, and poor technical infrastructure. While urban environments benefit from advanced digital systems and cloud services, rural areas often lack the necessary conditions to deploy and evaluate secure and [...] Read more.
Rural regions face significant barriers to adopting IoT technologies, due to limited connectivity, energy constraints, and poor technical infrastructure. While urban environments benefit from advanced digital systems and cloud services, rural areas often lack the necessary conditions to deploy and evaluate secure and autonomous IoT solutions. To help overcome this gap, this paper presents the Smart Rural IoT Lab, a modular and reproducible testbed designed to replicate the deployment conditions in rural areas using open-source tools and affordable hardware. The laboratory integrates long-range and short-range communication technologies in six experimental scenarios, implementing protocols such as MQTT, HTTP, UDP, and CoAP. These scenarios simulate realistic rural use cases, including environmental monitoring, livestock tracking, infrastructure access control, and heritage site protection. Local data processing is achieved through containerized services like Node-RED, InfluxDB, MongoDB, and Grafana, ensuring complete autonomy, without dependence on cloud services. A key contribution of the laboratory is the generation of structured datasets from real network traffic captured with Tcpdump and preprocessed using Zeek. Unlike simulated datasets, the collected data reflect communication patterns generated from real devices. Although the current dataset only includes benign traffic, the platform is prepared for future incorporation of adversarial scenarios (spoofing, DoS) to support AI-based cybersecurity research. While experiments were conducted in an indoor controlled environment, the testbed architecture is portable and suitable for future outdoor deployment. The Smart Rural IoT Lab addresses a critical gap in current research infrastructure, providing a realistic and flexible foundation for developing secure, cloud-independent IoT solutions, contributing to the digital transformation of rural regions. Full article
Show Figures

Figure 1

27 pages, 4190 KiB  
Article
Dairy’s Development and Socio-Economic Transformation: A Cross-Country Analysis
by Ana Felis, Ugo Pica-Ciamarra and Ernesto Reyes
World 2025, 6(3), 105; https://doi.org/10.3390/world6030105 - 1 Aug 2025
Viewed by 158
Abstract
Global policy narratives on livestock development increasingly emphasize environmental concerns, often overlooking the social dimensions of the sector. In the case of dairy, the world’s most valuable agricultural commodity, its role in social and economic development remains poorly quantified. Our study contributes to [...] Read more.
Global policy narratives on livestock development increasingly emphasize environmental concerns, often overlooking the social dimensions of the sector. In the case of dairy, the world’s most valuable agricultural commodity, its role in social and economic development remains poorly quantified. Our study contributes to a more balanced vision of the UN SDGs thanks to the inclusion of a socio-economic dimension. Here we present a novel empirical approach to assess the socio-economic impacts of dairy development using a new global dataset and non-parametric modelling techniques (local polynomial regressions), with yield as a proxy for sectoral performance. We find that as dairy systems intensify, the number of farm households engaged in production declines, yet household incomes rise. On-farm labour productivity also increases, accompanied by a reduction in employment but higher wages. In dairy processing, employment initially grows, peaks, and then contracts, again with rising wages. The most substantial impact is observed among consumers: an increased milk supply leads to lower prices and improved affordability, expanding the access to dairy products. Additionally, dairy development is associated with greater agricultural value added, an expanding tax base, and the increased formalization of the economy. These findings suggest that dairy development, beyond its environmental footprint, plays a significant and largely positive role in social transformation, yet is having to adapt sustainably while tackling labour force relocation, and that dairy development’s social impacts mimic the general agricultural sector. These results might be of interest for the assessment of policies regarding dairy development. Full article
Show Figures

Graphical abstract

14 pages, 939 KiB  
Review
Revisiting Male Fertility in Livestock: The Case of Bull Sperm RNA
by Rene A. Ramírez-Sosa, Francisco J. Jahuey-Martínez, Monserrath Felix-Portillo and José A. Martínez-Quintana
Biology 2025, 14(8), 969; https://doi.org/10.3390/biology14080969 (registering DOI) - 1 Aug 2025
Viewed by 282
Abstract
To achieve the goals of productivity and sustainability across diverse livestock systems, reproductive factors play a pivotal role. Historically, reproductive research has primarily focused on females, as they are responsible for maintaining pregnancy and delivering offspring following oocyte fertilization. However, since the early [...] Read more.
To achieve the goals of productivity and sustainability across diverse livestock systems, reproductive factors play a pivotal role. Historically, reproductive research has primarily focused on females, as they are responsible for maintaining pregnancy and delivering offspring following oocyte fertilization. However, since the early 2000s, the biological significance of sperm RNAs has been increasingly recognized in various livestock species. These RNAs contribute both genetically and epigenetically at the time of fertilization and during early embryonic development. Multiple types of sperm RNA have been identified in bovine, porcine, ovine, buffalo, and caprine spermatozoa. Notably, transcriptomic profiling has shown potential to differentiate between high- and low-fertility males, even when conventional semen quality values appear normal in both groups. This opens the possibility for more accurate identification of highly fertile sires. Nevertheless, a definitive marker or set of markers has yet to be established, likely due to the transcriptome’s sensitivity to environmental conditions and to the variability in evaluation methodologies. Therefore, global scientific efforts should aim to establish standardized, robust protocols, as sperm RNA represents a promising avenue for enhancing the sustainability of animal production systems. Full article
(This article belongs to the Special Issue The Biology of Animal Reproduction)
Show Figures

Figure 1

13 pages, 373 KiB  
Article
Impact Assessment of Rural Electrification Through Photovoltaic Kits on Household Expenditures and Income: The Case of Morocco
by Abdellah Oulakhmis, Rachid Hasnaoui and Youness Boudrik
Economies 2025, 13(8), 224; https://doi.org/10.3390/economies13080224 - 31 Jul 2025
Viewed by 177
Abstract
This study evaluates the socio-economic impact of rural electrification through photovoltaic (PV) systems in Morocco. As part of the country’s broader energy transition strategy, decentralized renewable energy solutions like PV kits have been deployed to improve energy access in isolated rural areas. Using [...] Read more.
This study evaluates the socio-economic impact of rural electrification through photovoltaic (PV) systems in Morocco. As part of the country’s broader energy transition strategy, decentralized renewable energy solutions like PV kits have been deployed to improve energy access in isolated rural areas. Using quasi-experimental econometric techniques, specifically propensity score matching (PSM) and estimation of the Average Treatment Effect on the Treated (ATT), the study measures changes in household income, expenditures, and economic activities resulting from PV electrification. The results indicate significant positive effects on household income, electricity spending, and productivity in agriculture and livestock. These findings highlight the critical role of decentralized renewable energy in advancing rural development and poverty reduction. Policy recommendations include expanding PV access with complementary support measures such as microfinance and technical training. Full article
Show Figures

Figure 1

13 pages, 250 KiB  
Article
Evaluation of Depth of Anesthesia Sleep Quality in Swine Undergoing Hernia Repair: Effects of Romifidine/Ketamine-Diazepam Protocols with and Without Tramadol and the Potential Role of Serotonin as a Biomarker
by Fabio Bruno, Fabio Leonardi, Filippo Spadola, Giuseppe Bruschetta, Patrizia Licata, Veronica Cristina Neve and Giovanna Lucrezia Costa
Vet. Sci. 2025, 12(8), 722; https://doi.org/10.3390/vetsci12080722 - 31 Jul 2025
Viewed by 182
Abstract
Sedation and anesthesia are essential for ensuring animal welfare during surgical procedures such as hernia repair in swine. However, the number of sedative and anesthetic agents officially approved for livestock use remained limited. This study evaluated the sedative efficacy and serotonergic effects of [...] Read more.
Sedation and anesthesia are essential for ensuring animal welfare during surgical procedures such as hernia repair in swine. However, the number of sedative and anesthetic agents officially approved for livestock use remained limited. This study evaluated the sedative efficacy and serotonergic effects of a romifidine/ketamine/diazepam protocol, with and without the addition of tramadol, in swine undergoing umbilical hernia repair. Sixty-six crossbred Large White swine were randomly allocated to three groups: LL (lidocaine 4 mg/kg by infiltration), LT (lidocaine 2 mg/kg by infiltration + tramadol 2 mg/kg intraperitoneally), and TT (lidocaine2 mg/kg by infiltration + tramadol 4 mg/kg intraperitoneally). The physiological parameters heart rate, arterial pressure, oxygen saturation, rectal body temperature, and respiratory rate were assessed. The depth of intraoperative anesthesia and postoperative sedation was assessed using an ordinal scoring system (0–3). Plasma serotonin (5-HT) concentration was measured at baseline and 24 h post-surgery. Physiological parameters remained within species-specific reference ranges throughout the procedure. Anesthesia depth scores significantly decreased over time in all groups (p ≤ 0.001), with the tramadol-treated groups (LT and TT) showing more prolonged deeper anesthesia. Postoperative sedation was significantly higher in the TT group (p ≤ 0.001). Serotonin concentration decreased in LL, increased in LT, and remained stable in TT. These findings suggest that tramadol may enhance sedation and recovery, potentially through serotonergic modulation. Moreover, serotonin could serve as a physiological marker warranting further investigation in future studies of anesthetic protocols in veterinary medicine. Full article
(This article belongs to the Special Issue Anesthesia and Pain Management in Large Animals)
16 pages, 3034 KiB  
Article
Interannual Variability in Precipitation Modulates Grazing-Induced Vertical Translocation of Soil Organic Carbon in a Semi-Arid Steppe
by Siyu Liu, Xiaobing Li, Mengyuan Li, Xiang Li, Dongliang Dang, Kai Wang, Huashun Dou and Xin Lyu
Agronomy 2025, 15(8), 1839; https://doi.org/10.3390/agronomy15081839 - 29 Jul 2025
Viewed by 149
Abstract
Grazing affects soil organic carbon (SOC) through plant removal, livestock trampling, and manure deposition. However, the impact of grazing on SOC is also influenced by multiple factors such as climate, soil properties, and management approaches. Despite extensive research, the mechanisms by which grazing [...] Read more.
Grazing affects soil organic carbon (SOC) through plant removal, livestock trampling, and manure deposition. However, the impact of grazing on SOC is also influenced by multiple factors such as climate, soil properties, and management approaches. Despite extensive research, the mechanisms by which grazing intensity influences SOC density in grasslands remain incompletely understood. This study examines the effects of varying grazing intensities on SOC density (0–30 cm) dynamics in temperate grasslands of northern China using field surveys and experimental analyses in a typical steppe ecosystem of Inner Mongolia. Results show that moderate grazing (3.8 sheep units/ha/yr) led to substantial consumption of aboveground plant biomass. Relative to the ungrazed control (0 sheep units/ha/yr), aboveground plant biomass was reduced by 40.5%, 36.2%, and 50.6% in the years 2016, 2019, and 2020, respectively. Compensatory growth failed to fully offset biomass loss, and there were significant reductions in vegetation carbon storage and cover (p < 0.05). Reduced vegetation cover increased bare soil exposure and accelerated topsoil drying and erosion. This degradation promoted the downward migration of SOC from surface layers. Quantitative analysis revealed that moderate grazing significantly reduced surface soil (0–10 cm) organic carbon density by 13.4% compared to the ungrazed control while significantly increasing SOC density in the subsurface layer (10–30 cm). Increased precipitation could mitigate the SOC transfer and enhance overall SOC accumulation. However, it might negatively affect certain labile SOC fractions. Elucidating the mechanisms of SOC variation under different grazing intensities and precipitation regimes in semi-arid grasslands could improve our understanding of carbon dynamics in response to environmental stressors. These insights will aid in predicting how grazing systems influence grassland carbon cycling under global climate change. Full article
Show Figures

Figure 1

19 pages, 2828 KiB  
Review
Microbial Proteins: A Green Approach Towards Zero Hunger
by Ayesha Muazzam, Abdul Samad, AMM Nurul Alam, Young-Hwa Hwang and Seon-Tea Joo
Foods 2025, 14(15), 2636; https://doi.org/10.3390/foods14152636 - 28 Jul 2025
Viewed by 409
Abstract
The global population is increasing rapidly and, according to the United Nations (UN), it is expected to reach 9.8 billion by 2050. The demand for food is also increasing with a growing population. Food shortages, land scarcity, resource depletion, and climate change are [...] Read more.
The global population is increasing rapidly and, according to the United Nations (UN), it is expected to reach 9.8 billion by 2050. The demand for food is also increasing with a growing population. Food shortages, land scarcity, resource depletion, and climate change are significant issues raised due to an increasing population. Meat is a vital source of high-quality protein in the human diet, and addressing the sustainability of meat production is essential to ensuring long-term food security. To cover the meat demand of a growing population, meat scientists are working on several meat alternatives. Bacteria, fungi, yeast, and algae have been identified as sources of microbial proteins that are both effective and sustainable, making them suitable for use in the development of meat analogs. Unlike livestock farming, microbial proteins produce less environmental pollution, need less space and water, and contain all the necessary dietary components. This review examines the status and future of microbial proteins in regard to consolidating and stabilizing the global food system. This review explores the production methods, nutritional benefits, environmental impact, regulatory landscape, and consumer perception of microbial protein-based meat analogs. Additionally, this review highlights the importance of microbial proteins by elaborating on the connection between microbial protein-based meat analogs and multiple UN Sustainable Development Goals. Full article
Show Figures

Figure 1

23 pages, 3140 KiB  
Article
Socioeconomic and Environmental Dimensions of Agriculture, Livestock, and Fisheries: A Network Study on Carbon and Water Footprints in Global Food Trade
by Murilo Mazzotti Silvestrini, Thiago Joel Angrizanes Rossi and Flavia Mori Sarti
Standards 2025, 5(3), 19; https://doi.org/10.3390/standards5030019 - 25 Jul 2025
Viewed by 232
Abstract
Agriculture, livestock, and fisheries significantly impact socioeconomic, environmental, and health dimensions at global level, ensuring food supply for growing populations whilst promoting economic welfare through international trade, employment, and income. Considering that bilateral food exchanges between countries represent exchanges of natural resources involved [...] Read more.
Agriculture, livestock, and fisheries significantly impact socioeconomic, environmental, and health dimensions at global level, ensuring food supply for growing populations whilst promoting economic welfare through international trade, employment, and income. Considering that bilateral food exchanges between countries represent exchanges of natural resources involved in food production (i.e., food imports are equivalent to savings of natural resources), the purpose of the study is to investigate the evolution of carbon and water footprints corresponding to the global food trade networks between 1986 and 2020. The research aims to identify potential associations between carbon and water footprints embedded in food trade and countries’ economic welfare. Complex network analysis was used to map countries’ positions within annual food trade networks, and countries’ metrics within networks were used to identify connections between participation in global trade of carbon and water footprints and economic welfare. The findings of the study show an increase in carbon and water footprints linked to global food exchanges between countries during the period. Furthermore, a country’s centrality within the network was linked to economic welfare, showing that countries with higher imports of carbon and water through global food trade derive economic benefits from participating in global trade. Global efforts towards transformations of food systems should prioritize sustainable development standards to ensure continued access to healthy sustainable diets for populations worldwide. Full article
(This article belongs to the Special Issue Sustainable Development Standards)
Show Figures

Figure 1

15 pages, 343 KiB  
Article
Perception of Climate Change and Adoption of Cottonseed Cake in Pastoral Systems in the Hauts-Bassins Region of Burkina Faso
by Yacouba Kagambega and Patrice Rélouendé Zidouemba
Reg. Sci. Environ. Econ. 2025, 2(3), 21; https://doi.org/10.3390/rsee2030021 - 25 Jul 2025
Viewed by 159
Abstract
In the Sahelian context characterized by the increasing scarcity of forage resources, this study investigated how climate change perceptions influence the adoption of cottonseed cake in pastoral and agro-pastoral systems in the Hauts-Bassins region of Burkina Faso. Drawing on the Subjective Expected Utility [...] Read more.
In the Sahelian context characterized by the increasing scarcity of forage resources, this study investigated how climate change perceptions influence the adoption of cottonseed cake in pastoral and agro-pastoral systems in the Hauts-Bassins region of Burkina Faso. Drawing on the Subjective Expected Utility (SEU) theory and using a logit model estimated from survey data collected from 366 livestock farms, the analysis reveals that the perceived degradation of rangelands due to climate change is a key determinant of adoption. Over 40% of surveyed herders believed that climate change is negatively affecting the availability of natural forage. This heightened awareness is significantly associated with a greater likelihood of adopting cottonseed cake as a feed supplementation strategy. This study highlights the crucial role of cognitive factors in shaping adaptation decisions, beyond traditional economic and structural determinants. It underscores the importance of incorporating environmental perceptions into public policies supporting livestock systems and technological innovations in pastoral. Full article
Back to TopTop