Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = liver/hepatic organoid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 13309 KiB  
Article
Biomarker-Driven Optimization of Saponin Therapy in MASLD: From Mouse Models to Human Liver Organoids
by Hye Young Kim, Ju Hee Oh, Hyun Sung Kim and Dae Won Jun
Antioxidants 2025, 14(8), 943; https://doi.org/10.3390/antiox14080943 (registering DOI) - 31 Jul 2025
Viewed by 273
Abstract
(1) Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by liver damage similar to alcoholic fatty liver disease, including triglyceride infiltration of hepatocytes, regardless of alcohol consumption. It leads to progressive liver damage, such as loss of liver function, cirrhosis, and liver [...] Read more.
(1) Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by liver damage similar to alcoholic fatty liver disease, including triglyceride infiltration of hepatocytes, regardless of alcohol consumption. It leads to progressive liver damage, such as loss of liver function, cirrhosis, and liver cancer, and the response rate of drugs under clinical research is less than 50%. There is an urgent need for biomarkers to evaluate the efficacy of these drugs. (2) Methods: MASLD was induced in mice using a High-Fat diet (HF), Western diet (WD), and Methionine/Choline-Deficient diet (MCD) for 20 weeks (4 weeks for MCD). Liver tissue biopsies were performed, and the treatment effects of saponin and non-saponin feeds were evaluated. Fat accumulation and hepatic inflammation were measured, and mRNA sequencing analysis was conducted. The therapeutic effects were validated using patient-derived liver organoids. (3) Results: The NAFLD Activity Score (NAS) significantly increased in all MASLD models compared with controls. Saponin treatment decreased NAS in the HF and WD groups but not in the MCD group. RNA sequencing and PCA analysis showed that the HF saponin response samples were similar to normal controls. DAVID analysis revealed significant changes in lipid, triglyceride, and fatty acid metabolic processes. qRT-PCR confirmed decreased fibrosis markers in the HF saponin response group, and GSEA analysis showed reduced HAMP1 gene expression. (4) Conclusions: Among the diets, red ginseng was most effective in the HF diet, with significant effects in the saponin-treated group. The therapeutic efficacy was better when HAMP1 expression was increased. Therefore, we propose HAMP1 as a potential exploratory biomarker to assess the saponin response in a preclinical setting. In addition, the reduction of inflammation and hepatic iron accumulation suggests that saponins may exert antioxidant effects through modulation of oxidative stress. Full article
Show Figures

Graphical abstract

30 pages, 821 KiB  
Review
Hepatic Lipoprotein Metabolism: Current and Future In Vitro Cell-Based Systems
by Izabella Kiss, Nicole Neuwert, Raimund Oberle, Markus Hengstschläger, Selma Osmanagic-Myers and Herbert Stangl
Biomolecules 2025, 15(7), 956; https://doi.org/10.3390/biom15070956 - 2 Jul 2025
Viewed by 749
Abstract
Changes in hepatic lipoprotein metabolism are responsible for the majority of metabolic dysfunction-associated disorders, including familial hypercholesterolemia (FH), metabolic syndrome (MetS), metabolic dysfunction-associated fatty liver disease (MAFLD), and age-related diseases such as atherosclerosis, a major health burden in modern society. This review aims [...] Read more.
Changes in hepatic lipoprotein metabolism are responsible for the majority of metabolic dysfunction-associated disorders, including familial hypercholesterolemia (FH), metabolic syndrome (MetS), metabolic dysfunction-associated fatty liver disease (MAFLD), and age-related diseases such as atherosclerosis, a major health burden in modern society. This review aims to advance the understanding of state-of-the-art mechanistic concepts in lipoprotein metabolism, with a particular focus on lipoprotein uptake and secretion and their dysregulation in disease, and to provide a comprehensive overview of experimental models used to study these processes. Human lipoprotein research faces several challenges. First, significant differences in lipoprotein metabolism between humans and other species hinder the reliability of non-human model systems. Additionally, ethical constraints often limit studies on human lipoprotein metabolism using tracers. Lastly, while 2D hepatocyte cell culture systems are widely used, they are commonly of cancerous origins, limiting their physiological relevance and necessitating the use of more physiologically representative models. In this review, we will elaborate on key findings in lipoprotein metabolism, as well as limitations and challenges of currently available study tools, highlighting mechanistic insights throughout discussion of these models. These include human tracer studies, animal studies, 2D tissue culture-based systems derived from cancerous tissue as well as from induced pluripotent stem cells (iPSCs)/embryonic stem cells (ESCs). Finally, we will discuss precision-cut liver slices, liver-on-a-chip models, and, particularly, improved 3D models: (i) spheroids generated from either hepatoma cancer cell lines or primary human hepatocytes and (ii) organoids generated from liver tissues or iPSCs/ESCs. In the last section, we will explore future perspectives on liver-in-a-dish models in studying mechanisms of liver diseases, treatment options, and their applicability in precision medicine approaches. By comparing traditional and advanced models, this review will highlight the future directions of lipoprotein metabolism research, with a focus on the growing potential of 3D liver organoid models. Full article
(This article belongs to the Section Lipids)
Show Figures

Graphical abstract

23 pages, 8906 KiB  
Article
9-cis-Retinoic Acid Improves Disease Modelling in iPSC-Derived Liver Organoids
by Mina Kazemzadeh Dastjerd, Vincent Merens, Ayla Smout, Rebeca De Wolf, Christophe Chesné, Catherine Verfaillie, Stefaan Verhulst and Leo A. van Grunsven
Cells 2025, 14(13), 983; https://doi.org/10.3390/cells14130983 - 26 Jun 2025
Viewed by 801
Abstract
Liver fibrosis majorly impacts global health, necessitating the development of in vitro models to study disease mechanisms and develop drug therapies. Relevant models should at least include hepatocytes and hepatic stellate cells (HSCs) and ideally use three-dimensional cultures to mimic in vivo conditions. [...] Read more.
Liver fibrosis majorly impacts global health, necessitating the development of in vitro models to study disease mechanisms and develop drug therapies. Relevant models should at least include hepatocytes and hepatic stellate cells (HSCs) and ideally use three-dimensional cultures to mimic in vivo conditions. Induced pluripotent stem cells (iPSCs) allow for patient-specific liver modelling, but current models based on iPSC-derived hepatocytes (iHepatocytes) and HSCs (iHSCs) still lack key functions. We developed organoids of iHepatocytes and iHSCs and compared them to HepaRG and primary HSC organoids. RNA sequencing analysis comparison of these cultures identified a potential role for the transcription factor RXRA in hepatocyte differentiation and HSC quiescence. Treating cells with the RXRA ligand 9-cis-retinoic acid (9CRA) promoted iHepatocyte metabolism and iHSC quiescence. In organoids, 9CRA enhanced fibrotic response to TGF-β and acetaminophen, highlighting its potential for refining iPSC-based liver fibrosis models to more faithfully replicate human drug-induced liver injury and fibrotic conditions. Full article
(This article belongs to the Special Issue Organoids as an Experimental Tool)
Show Figures

Graphical abstract

20 pages, 1742 KiB  
Review
Developments and Applications of Liver-on-a-Chip Technology—Current Status and Future Prospects
by Joseph Mugaanyi, Jing Huang, Jiongze Fang, Arthur Musinguzi, Caide Lu and Zaozao Chen
Biomedicines 2025, 13(6), 1272; https://doi.org/10.3390/biomedicines13061272 - 22 May 2025
Viewed by 1424
Abstract
Background/Objectives: Liver-on-a-chip (LiOC) technology is increasingly recognized as a transformative platform for modeling liver biology, disease mechanisms, drug metabolism, and toxicity screening. Traditional two-dimensional (2D) in vitro models lack the complexity needed to replicate the liver’s unique microenvironment. This review aims to [...] Read more.
Background/Objectives: Liver-on-a-chip (LiOC) technology is increasingly recognized as a transformative platform for modeling liver biology, disease mechanisms, drug metabolism, and toxicity screening. Traditional two-dimensional (2D) in vitro models lack the complexity needed to replicate the liver’s unique microenvironment. This review aims to summarize recent advancements in LiOC systems, emphasizing their potential in biomedical research and translational applications. Methods: This narrative review synthesizes findings from key studies on the development and application of LiOC platforms. We explored innovations in material science and bioengineering, including microfluidic design, 3D printing, stem cell– and tissue-derived liver organoid integration, and co-culture strategies. Commercially available LiOC systems and their regulatory relevance were also evaluated. Results: LiOC systems have evolved from simple PDMS-based chips to complex, multicellular constructs incorporating hepatocytes, endothelial cells, Kupffer cells, and hepatic stellate cells. Recent studies demonstrate their superior ability to replicate liver-specific architecture and functions. Applications span cancer research, drug toxicity assessment (e.g., drug-induced liver injury prediction with >85% sensitivity), disease modeling, and regenerative medicine. Several platforms have gained FDA recognition and are in active use for preclinical drug testing. Conclusions: LiOC technology offers a more physiologically relevant alternative to traditional models and holds promise for reducing reliance on animal studies. While challenges remain, such as vascularization and long-term function, ongoing advancements are paving the way toward clinical and pharmaceutical integration. The technology is poised to play a key role in personalized medicine and next-generation therapeutic development. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

16 pages, 2310 KiB  
Review
Decoding Liver Fibrosis: How Omics Technologies and Innovative Modeling Can Guide Precision Medicine
by Gabriele Codotto, Benedetta Blarasin, Claudio Tiribelli, Cristina Bellarosa and Danilo Licastro
Int. J. Mol. Sci. 2025, 26(6), 2658; https://doi.org/10.3390/ijms26062658 - 15 Mar 2025
Viewed by 1239
Abstract
The burden of chronic liver disease (CLD) is dramatically increasing. It is estimated that 20–30% of the population worldwide is affected by CLD. Hepatic fibrosis is a symptom common to all CLDs. Although it affects liver functional activities, it is a reversible stage [...] Read more.
The burden of chronic liver disease (CLD) is dramatically increasing. It is estimated that 20–30% of the population worldwide is affected by CLD. Hepatic fibrosis is a symptom common to all CLDs. Although it affects liver functional activities, it is a reversible stage if diagnosed at an early stage, but no resolutive therapy to contrast liver fibrosis is currently available. Therefore, efforts are needed to study the molecular insights of the disease. Emerging cutting-edge fields in cellular and molecular biology are introducing innovative strategies. Spatial and single-cell resolution approaches are paving the way for a more detailed understanding of the mechanisms underlying liver fibrosis. Cellular models have been generated to recapitulate the in-a-dish pathophysiology of liver fibrosis, yielding remarkable results that not only uncover the underlying molecular mechanisms but also serve as patient-specific avatars for precision medicine. Induced pluripotent stem cells (iPSC) and organoids are incredible tools to reshape the modeling of liver diseases, describe their architecture, and study the residents of hepatic tissue and their heterogeneous population. The present work aims to give an overview of innovative omics technologies revolutionizing liver fibrosis research and the current tools to model this disease. Full article
(This article belongs to the Special Issue Liver Fibrosis: Molecular Pathogenesis, Diagnosis and Treatment)
Show Figures

Figure 1

20 pages, 677 KiB  
Review
In Vivo and In Vitro Models of Hepatic Fibrosis for Pharmacodynamic Evaluation and Pathology Exploration
by Yanting Hu, Zhongrui Zhang, Akida Adiham, Hong Li, Jian Gu and Puyang Gong
Int. J. Mol. Sci. 2025, 26(2), 696; https://doi.org/10.3390/ijms26020696 - 15 Jan 2025
Viewed by 2491
Abstract
Hepatic fibrosis (HF) is an important pathological state in the progression of chronic liver disease to end-stage liver disease and is usually triggered by alcohol, nonalcoholic fatty liver, chronic hepatitis viruses, autoimmune hepatitis (AIH), or cholestatic liver disease. Research on novel therapies has [...] Read more.
Hepatic fibrosis (HF) is an important pathological state in the progression of chronic liver disease to end-stage liver disease and is usually triggered by alcohol, nonalcoholic fatty liver, chronic hepatitis viruses, autoimmune hepatitis (AIH), or cholestatic liver disease. Research on novel therapies has become a hot topic due to the reversibility of HF. Research into the molecular mechanisms of the pathology of HF and potential drug screening relies on reliable and rational biological models, mainly including animals and cells. Hence, a number of modeling approaches have been attempted based on human dietary, pathological, and physiological factors in the development of HF. In this review, classical and novel methods of modeling HF in the last 10 years were collected from electronic databases, including Web of Science, PubMed, ScienceDirect, ResearchGate, Baidu Scholar, and CNKI. Animal models of HF are usually induced by chemical toxicants, special diets, pathogenic microorganisms, surgical operations, and gene editing. The advantages and limitations of hepatic stellate cells (HSCs), organoids, and 3D coculture-based HF modeling methods established in vitro were also proposed and summarized. This information provides a scientific basis for the discovery of the pathological mechanism and treatment of HF. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

13 pages, 502 KiB  
Review
Hepatitis C Virus–Pediatric and Adult Perspectives in the Current Decade
by Nanda Kerkar and Kayla Hartjes
Pathogens 2025, 14(1), 11; https://doi.org/10.3390/pathogens14010011 - 29 Dec 2024
Cited by 1 | Viewed by 2046
Abstract
Hepatitis C virus (HCV) infects both pediatric and adult populations and is an important cause of chronic liver disease worldwide. There are differences in the screening and management of HCV between pediatric and adult patients, which have been highlighted in this review. Direct-acting [...] Read more.
Hepatitis C virus (HCV) infects both pediatric and adult populations and is an important cause of chronic liver disease worldwide. There are differences in the screening and management of HCV between pediatric and adult patients, which have been highlighted in this review. Direct-acting antiviral agents (DAA) have made the cure of HCV possible, and fortunately, these medications are approved down to three years of age. However, treatment in the pediatric population has its own set of challenges. The World Health Organization (WHO) has made a pledge to eliminate HCV as a public health threat by 2030. Despite this, HCV continues to remain a global health burden, leading to cirrhosis as well as hepatocellular carcinoma, and is a reason for liver transplantation in the adult population. Although rare, these complications can also affect the pediatric population. A variety of new technologies t have become available in the current era and can advance our understanding of HCV are discussed. Artificial intelligence, machine learning, liver organoids, and liver-on-chip are some examples of techniques that have the potential to contribute to our understanding of the disease and treatment process in HCV. Despite efforts over several decades, a successful vaccine against HCV has yet to be developed. This would be an important tool to help in worldwide efforts to eliminate the virus. Full article
Show Figures

Figure 1

18 pages, 3019 KiB  
Article
Heterotropic Activation of Cytochrome P450 3A4 by Perillyl Alcohol
by Ji Hyeon Ryu, Jieun Yu, Jang Su Jeon, Seongyea Jo, Soo Min Lee, Hyemin Kim, Han-Jin Park, Soo Jin Oh and Sang Kyum Kim
Pharmaceutics 2024, 16(12), 1581; https://doi.org/10.3390/pharmaceutics16121581 - 11 Dec 2024
Viewed by 1295
Abstract
Background/Objectives: Perillyl alcohol (POH), a monoterpene natural product derived from the essential oils of plants such as perilla (Perilla frutescens), is currently in phase I and II clinical trials as a chemotherapeutic agent. In this study, we investigated the effect [...] Read more.
Background/Objectives: Perillyl alcohol (POH), a monoterpene natural product derived from the essential oils of plants such as perilla (Perilla frutescens), is currently in phase I and II clinical trials as a chemotherapeutic agent. In this study, we investigated the effect of POH on cytochrome P450 (CYP) activity for evaluating POH–drug interaction potential. Methods: The investigation was conducted using pooled human liver microsomes (HLMs), recombinant CYP3A4 (rCYP3A4) enzymes, and human pluripotent stem cell-derived hepatic organoids (hHOs) employing liquid chromatography-tandem mass spectrometry. Results: POH inhibited the activities of CYP2A6 and CYP2B6 with Ki of 6.35 and 3.78 μM, respectively, whereas it stimulated CYP3A4 activity in pooled HLMs incubated with midazolam (MDZ). In a direct CYP inhibition assay using HLMs, activities of CYP2C9, CYP2C19, and CYP2E1 were also inhibited by POH, with IC50 values greater than 50 μM, but those of CYP1A2, CYP2C8, CYP2D6, and CYP3A4 (testosterone) were not significantly inhibited. In pooled HLMs, the Vmax/Km value of 1′-hydroxy MDZ, but not that of 4-hydroxy MDZ, was increased 2.7-fold by 100 μM POH compared with that in the absence of POH. Moreover, stimulation of MDZ 1′-hydroxylation by CYP3A4 was observed in hHOs and rCYP3A4 with cytochrome b5 but not rCYP3A4 without cytochrome b5. Furthermore, activation of CYP3A4-mediated metabolism by POH was observed in HLMs incubated with fimasartan but not atorvastatin, buspirone, donepezil, nifedipine, or tadalafil, suggesting a substrate-dependent activation of CYP3A4 by POH. Conclusions: POH inhibits CYP2A6 and CYP2B6, but it activates CYP3A4. These findings underscore the need for further evaluation of the interactions of clinical drugs with POH. Full article
(This article belongs to the Section Pharmacokinetics and Pharmacodynamics)
Show Figures

Graphical abstract

29 pages, 8268 KiB  
Article
Human Multi-Lineage Liver Organoid Model Reveals Impairment of CYP3A4 Expression upon Repeated Exposure to Graphene Oxide
by Alessio Romaldini, Raffaele Spanò, Marina Veronesi, Benedetto Grimaldi, Tiziano Bandiera and Stefania Sabella
Cells 2024, 13(18), 1542; https://doi.org/10.3390/cells13181542 - 13 Sep 2024
Viewed by 2043
Abstract
Three-dimensional hepatic cell cultures can provide an important advancement in the toxicity assessment of nanomaterials with respect to 2D models. Here, we describe liver organoids (LOs) obtained by assembling multiple cell lineages in a fixed ratio 1:1:0.2. These are upcyte® human hepatocytes, [...] Read more.
Three-dimensional hepatic cell cultures can provide an important advancement in the toxicity assessment of nanomaterials with respect to 2D models. Here, we describe liver organoids (LOs) obtained by assembling multiple cell lineages in a fixed ratio 1:1:0.2. These are upcyte® human hepatocytes, UHHs, upcyte® liver sinusoidal endothelial cells, LSECs, and human bone marrow-derived mesenchymal stromal cells, hbmMSCs. The structural and functional analyses indicated that LOs reached size stability upon ca. 10 days of cultivation (organoid maturation), showing a surface area of approximately 10 mm2 and the hepatic cellular lineages, UHHs and LSECs, arranged to form both primitive biliary networks and sinusoid structures, alike in vivo. LOs did not show signs of cellular apoptosis, senescence, or alteration of hepatocellular functions (e.g., dis-regulation of CYP3A4 or aberrant production of Albumin) for the entire culture period (19 days since organoid maturation). After that, LOs were repeatedly exposed for 19 days to a single or repeated dose of graphene oxide (GO: 2–40 µg/mL). We observed that the treatment did not induce any macroscopic signs of tissue damage, apoptosis activation, and alteration of cell viability. However, in the repeated dose regimen, we observed a down-regulation of CYP3A4 gene expression. Notably, these findings are in line with recent in vivo data, which report a similar impact on CYP3A4 when mice were repeatedly exposed to GO. Taken together, these findings warn of the potential detrimental effects of GO in real-life exposure (e.g., occupational scenario), where its progressive accumulation is likely expected. More in general, this study highlights that LOs formed by many cell lineages can enable repeated exposure regimens (suitable to mimic accumulation); thus, they can be suitably considered alternative or complementary in vitro systems to animal models. Full article
Show Figures

Graphical abstract

19 pages, 6542 KiB  
Article
Genome Engineering of Primary and Pluripotent Stem Cell-Derived Hepatocytes for Modeling Liver Tumor Formation
by Lulu Zhang, Xunting Wang, Xuelian Yang, Yijia Chi, Yihang Chu, Yi Zhang, Yufan Gong, Fei Wang, Qian Zhao and Dongxin Zhao
Biology 2024, 13(9), 684; https://doi.org/10.3390/biology13090684 - 2 Sep 2024
Viewed by 2597
Abstract
Genome editing has demonstrated its utility in generating isogenic cell-based disease models, enabling the precise introduction of genetic alterations into wild-type cells to mimic disease phenotypes and explore underlying mechanisms. However, its application in liver-related diseases has been limited by challenges in genetic [...] Read more.
Genome editing has demonstrated its utility in generating isogenic cell-based disease models, enabling the precise introduction of genetic alterations into wild-type cells to mimic disease phenotypes and explore underlying mechanisms. However, its application in liver-related diseases has been limited by challenges in genetic modification of mature hepatocytes in a dish. Here, we conducted a systematic comparison of various methods for primary hepatocyte culture and gene delivery to achieve robust genome editing of hepatocytes ex vivo. Our efforts yielded editing efficiencies of up to 80% in primary murine hepatocytes cultured in monolayer and 20% in organoids. To model human hepatic tumorigenesis, we utilized hepatocytes differentiated from human pluripotent stem cells (hPSCs) as an alternative human hepatocyte source. We developed a series of cellular models by introducing various single or combined oncogenic alterations into hPSC-derived hepatocytes. Our findings demonstrated that distinct mutational patterns led to phenotypic variances, affecting both overgrowth and transcriptional profiles. Notably, we discovered that the PI3KCA E542K mutant, whether alone or in combination with exogenous c-MYC, significantly impaired hepatocyte functions and facilitated cancer metabolic reprogramming, highlighting the critical roles of these frequently mutated genes in driving liver neoplasia. In conclusion, our study demonstrates genome-engineered hepatocytes as valuable cellular models of hepatocarcinoma, providing insights into early tumorigenesis mechanisms. Full article
Show Figures

Figure 1

16 pages, 6678 KiB  
Article
Enhanced In Vitro Recapitulation of In Vivo Liver Regeneration by Co-Culturing Hepatocyte Organoids with Adipose-Derived Mesenchymal Stem Cells, Alleviating Steatosis and Apoptosis in Acute Alcoholic Liver Injury
by Sun A Ock, Seo-Yeon Kim, Young-Im Kim, Won Seok Ju and Poongyeon Lee
Cells 2024, 13(15), 1303; https://doi.org/10.3390/cells13151303 - 4 Aug 2024
Cited by 2 | Viewed by 2703
Abstract
Hepatocyte organoids (HOs) have superior hepatic functions to cholangiocyte-derived organoids but suffer from shorter lifespans. To counteract this, we co-cultured pig HOs with adipose-derived mesenchymal stem cells (A-MSCs) and performed transcriptome analysis. The results revealed that A-MSCs enhanced the collagen synthesis pathways, which [...] Read more.
Hepatocyte organoids (HOs) have superior hepatic functions to cholangiocyte-derived organoids but suffer from shorter lifespans. To counteract this, we co-cultured pig HOs with adipose-derived mesenchymal stem cells (A-MSCs) and performed transcriptome analysis. The results revealed that A-MSCs enhanced the collagen synthesis pathways, which are crucial for maintaining the three-dimensional structure and extracellular matrix synthesis of the organoids. A-MSCs also increased the expression of liver progenitor cell markers (KRT7, SPP1, LGR5+, and TERT). To explore HOs as a liver disease model, we exposed them to alcohol to create an alcoholic liver injury (ALI) model. The co-culture of HOs with A-MSCs inhibited the apoptosis of hepatocytes and reduced lipid accumulation of HOs. Furthermore, varying ethanol concentrations (0–400 mM) and single-versus-daily exposure to HOs showed that daily exposure significantly increased the level of PLIN2, a lipid storage marker, while decreasing CYP2E1 and increasing CYP1A2 levels, suggesting that CYP1A2 may play a critical role in alcohol detoxification during short-term exposure. Moreover, daily alcohol exposure led to excessive lipid accumulation and nuclear fragmentation in HOs cultured alone. These findings indicate that HOs mimic in vivo liver regeneration, establishing them as a valuable model for studying liver diseases, such as ALI. Full article
(This article belongs to the Special Issue Organoids as an Experimental Tool)
Show Figures

Figure 1

19 pages, 773 KiB  
Review
Human Hepatobiliary Organoids: Recent Advances in Drug Toxicity Verification and Drug Screening
by Haoyu Fang, Haoying Xu, Jiong Yu, Hongcui Cao and Lanjuan Li
Biomolecules 2024, 14(7), 794; https://doi.org/10.3390/biom14070794 - 4 Jul 2024
Cited by 6 | Viewed by 4636
Abstract
Many drug and therapeutic modalities have emerged over the past few years. However, successful commercialization is dependent on their safety and efficacy evaluations. Several preclinical models are available for drug-screening and safety evaluations, including cellular- and molecular-level models, tissue and organoid models, and [...] Read more.
Many drug and therapeutic modalities have emerged over the past few years. However, successful commercialization is dependent on their safety and efficacy evaluations. Several preclinical models are available for drug-screening and safety evaluations, including cellular- and molecular-level models, tissue and organoid models, and animal models. Organoids are three-dimensional cell cultures derived from primary tissues or stem cells that are structurally and functionally similar to the original organs and can self-renew, and they are used to establish various disease models. Human hepatobiliary organoids have been used to study the pathogenesis of diseases, such as hepatitis, liver fibrosis, hepatocellular carcinoma, primary sclerosing cholangitis and biliary tract cancer, as they retain the physiological and histological characteristics of the liver and bile ducts. Here, we review recent research progress in validating drug toxicity, drug screening and personalized therapy for hepatobiliary-related diseases using human hepatobiliary organoid models, discuss the challenges encountered in current research and evaluate the possible solutions. Full article
Show Figures

Figure 1

26 pages, 3056 KiB  
Review
Growing Role of 3D In Vitro Cell Cultures in the Study of Cellular and Molecular Mechanisms: Short Focus on Breast Cancer, Endometriosis, Liver and Infectious Diseases
by Nora Bloise, Marialaura Giannaccari, Giuseppe Guagliano, Emanuela Peluso, Elisa Restivo, Silvia Strada, Cristina Volpini, Paola Petrini and Livia Visai
Cells 2024, 13(12), 1054; https://doi.org/10.3390/cells13121054 - 18 Jun 2024
Cited by 7 | Viewed by 5275
Abstract
Over the past decade, the development of three-dimensional (3D) models has increased exponentially, facilitating the unravelling of fundamental and essential cellular mechanisms by which cells communicate with each other, assemble into tissues and organs and respond to biochemical and biophysical stimuli under both [...] Read more.
Over the past decade, the development of three-dimensional (3D) models has increased exponentially, facilitating the unravelling of fundamental and essential cellular mechanisms by which cells communicate with each other, assemble into tissues and organs and respond to biochemical and biophysical stimuli under both physiological and pathological conditions. This section presents a concise overview of the most recent updates on the significant contribution of different types of 3D cell cultures including spheroids, organoids and organ-on-chip and bio-printed tissues in advancing our understanding of cellular and molecular mechanisms. The case studies presented include the 3D cultures of breast cancer (BC), endometriosis, the liver microenvironment and infections. In BC, the establishment of 3D culture models has permitted the visualization of the role of cancer-associated fibroblasts in the delivery of exosomes, as well as the significance of the physical properties of the extracellular matrix in promoting cell proliferation and invasion. This approach has also become a valuable tool in gaining insight into general and specific mechanisms of drug resistance. Given the considerable heterogeneity of endometriosis, 3D models offer a more accurate representation of the in vivo microenvironment, thereby facilitating the identification and translation of novel targeted therapeutic strategies. The advantages provided by 3D models of the hepatic environment, in conjunction with the high throughput characterizing various platforms, have enabled the elucidation of complex molecular mechanisms underlying various threatening hepatic diseases. A limited number of 3D models for gut and skin infections have been developed. However, a more profound comprehension of the spatial and temporal interactions between microbes, the host and their environment may facilitate the advancement of in vitro, ex vivo and in vivo disease models. Additionally, it may pave the way for the development of novel therapeutic approaches in diverse research fields. The interested reader will also find concluding remarks on the challenges and prospects of using 3D cell cultures for discovering cellular and molecular mechanisms in the research areas covered in this review. Full article
Show Figures

Graphical abstract

19 pages, 2456 KiB  
Article
Validating Well-Functioning Hepatic Organoids for Toxicity Evaluation
by Seo Yoon Choi, Tae Hee Kim, Min Jeong Kim, Seon Ju Mun, Tae Sung Kim, Ki Kyung Jung, Il Ung Oh, Jae Ho Oh, Myung Jin Son and Jin Hee Lee
Toxics 2024, 12(5), 371; https://doi.org/10.3390/toxics12050371 - 17 May 2024
Cited by 1 | Viewed by 3614
Abstract
“Organoids”, three-dimensional self-organized organ-like miniature tissues, are proposed as intermediary models that bridge the gap between animal and human studies in drug development. Despite recent advancements in organoid model development, studies on toxicity using these models are limited. Therefore, in this study, we [...] Read more.
“Organoids”, three-dimensional self-organized organ-like miniature tissues, are proposed as intermediary models that bridge the gap between animal and human studies in drug development. Despite recent advancements in organoid model development, studies on toxicity using these models are limited. Therefore, in this study, we aimed to analyze the functionality and gene expression of pre- and post-differentiated human hepatic organoids derived from induced pluripotent stem cells and utilize them for toxicity assessment. First, we confirmed the functional similarity of this hepatic organoid model to the human liver through various functional assessments, such as glycogen storage, albumin and bile acid secretion, and cytochrome P450 (CYP) activity. Subsequently, utilizing these functionally validated hepatic organoids, we conducted toxicity evaluations with three hepatotoxic substances (ketoconazole, troglitazone, and tolcapone), which are well known for causing drug-induced liver injury, and three non-hepatotoxic substances (sucrose, ascorbic acid, and biotin). The organoids effectively distinguished between the toxicity levels of substances with and without hepatic toxicity. We demonstrated the potential of hepatic organoids with validated functionalities and genetic characteristics as promising models for toxicity evaluation by analyzing toxicological changes occurring in hepatoxic drug-treated organoids. Full article
(This article belongs to the Section Drugs Toxicity)
Show Figures

Figure 1

13 pages, 3326 KiB  
Article
Novel Inositol 1,4,5-Trisphosphate Receptor Inhibitor Antagonizes Hepatic Stellate Cell Activation: A Potential Drug to Treat Liver Fibrosis
by Natalia Smith-Cortinez, Janette Heegsma, Masa Podunavac, Armen Zakarian, J. César Cardenas and Klaas Nico Faber
Cells 2024, 13(9), 765; https://doi.org/10.3390/cells13090765 - 30 Apr 2024
Cited by 1 | Viewed by 2474
Abstract
Liver fibrosis, characterized by excessive extracellular matrix (ECM) deposition, can progress to cirrhosis and increases the risk of liver cancer. Hepatic stellate cells (HSCs) play a pivotal role in fibrosis progression, transitioning from a quiescent to activated state upon liver injury, wherein they [...] Read more.
Liver fibrosis, characterized by excessive extracellular matrix (ECM) deposition, can progress to cirrhosis and increases the risk of liver cancer. Hepatic stellate cells (HSCs) play a pivotal role in fibrosis progression, transitioning from a quiescent to activated state upon liver injury, wherein they proliferate, migrate, and produce ECM. Calcium signaling, involving the inositol 1,4,5-trisphosphate receptor (IP3R), regulates HSC activation. This study investigated the efficacy of a novel IP3R inhibitor, desmethylxestospongin B (dmXeB), in preventing HSC activation. Freshly isolated rat HSCs were activated in vitro in the presence of varying dmXeB concentrations. The dmXeB effectively inhibited HSC proliferation, migration, and expression of fibrosis markers without toxicity to the primary rat hepatocytes or human liver organoids. Furthermore, dmXeB preserved the quiescent phenotype of HSCs marked by retained vitamin A storage. Mechanistically, dmXeB suppressed mitochondrial respiration in activated HSCs while enhancing glycolytic activity. Notably, methyl pyruvate, dimethyl α-ketoglutarate, and nucleoside supplementation all individually restored HSC proliferation despite dmXeB treatment. Overall, dmXeB demonstrates promising anti-fibrotic effects by inhibiting HSC activation via IP3R antagonism without adverse effects on other liver cells. These findings highlight dmXeB as a potential therapeutic agent for liver fibrosis treatment, offering a targeted approach to mitigate liver fibrosis progression and its associated complications. Full article
(This article belongs to the Section Cellular Metabolism)
Show Figures

Figure 1

Back to TopTop