Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (72)

Search Parameters:
Keywords = lipopeptide antibiotic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1215 KiB  
Article
Daptomycin-Loaded Nano-Drug Delivery System Based on Biomimetic Cell Membrane Coating Technology: Preparation, Characterization, and Evaluation
by Yuqin Zhou, Shihan Du, Kailun He, Beilei Zhou, Zixuan Chen, Cheng Zheng, Minghao Zhou, Jue Li, Yue Chen, Hu Zhang, Hong Yuan, Yinghong Li, Yan Chen and Fuqiang Hu
Pharmaceuticals 2025, 18(8), 1169; https://doi.org/10.3390/ph18081169 - 6 Aug 2025
Abstract
Background/Objective: Staphylococcus aureus (S. aureus) is a clinically significant pathogenic bacterium. Daptomycin (DAP) is a cyclic lipopeptide antibiotic used to treat infections caused by multidrug-resistant Gram-positive bacteria, including S. aureus. However, DAP currently faces clinical limitations due to its short [...] Read more.
Background/Objective: Staphylococcus aureus (S. aureus) is a clinically significant pathogenic bacterium. Daptomycin (DAP) is a cyclic lipopeptide antibiotic used to treat infections caused by multidrug-resistant Gram-positive bacteria, including S. aureus. However, DAP currently faces clinical limitations due to its short half-life, toxic side effects, and increasingly severe drug resistance issues. This study aimed to develop a biomimetic nano-drug delivery system to enhance targeting ability, prolong blood circulation, and mitigate resistance of DAP. Methods: DAP-loaded chitosan nanocomposite particles (DAP-CS) were prepared by electrostatic self-assembly. Macrophage membrane vesicles (MM) were prepared by fusion of M1-type macrophage membranes with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). A biomimetic nano-drug delivery system (DAP-CS@MM) was constructed by the coextrusion process of DAP-CS and MM. Key physicochemical parameters, including particle diameter, zeta potential, encapsulation efficiency, and membrane protein retention, were systematically characterized. In vitro immune escape studies and in vivo zebrafish infection models were employed to assess the ability of immune escape and antibacterial performance, respectively. Results: The particle size of DAP-CS@MM was 110.9 ± 13.72 nm, with zeta potential +11.90 ± 1.90 mV, and encapsulation efficiency 70.43 ± 1.29%. DAP-CS@MM retained macrophage membrane proteins, including functional TLR2 receptors. In vitro immune escape assays, DAP-CS@MM demonstrated significantly enhanced immune escape compared with DAP-CS (p < 0.05). In the zebrafish infection model, DAP-CS@MM showed superior antibacterial efficacy over both DAP and DAP-CS (p < 0.05). Conclusions: The DAP-CS@MM biomimetic nano-drug delivery system exhibits excellent immune evasion and antibacterial performance, offering a novel strategy to overcome the clinical limitations of DAP. Full article
(This article belongs to the Section Pharmaceutical Technology)
38 pages, 4443 KiB  
Review
The Role of Plant Growth-Promoting Bacteria in Soil Restoration: A Strategy to Promote Agricultural Sustainability
by Mario Maciel-Rodríguez, Francisco David Moreno-Valencia and Miguel Plascencia-Espinosa
Microorganisms 2025, 13(8), 1799; https://doi.org/10.3390/microorganisms13081799 - 1 Aug 2025
Viewed by 450
Abstract
Soil degradation resulting from intensive agricultural practices, the excessive use of agrochemicals, and climate-induced stresses has significantly impaired soil fertility, disrupted microbial diversity, and reduced crop productivity. Plant growth-promoting bacteria (PGPB) represent a sustainable biological approach to restoring degraded soils by modulating plant [...] Read more.
Soil degradation resulting from intensive agricultural practices, the excessive use of agrochemicals, and climate-induced stresses has significantly impaired soil fertility, disrupted microbial diversity, and reduced crop productivity. Plant growth-promoting bacteria (PGPB) represent a sustainable biological approach to restoring degraded soils by modulating plant physiology and soil function through diverse molecular mechanisms. PGPB synthesizes indole-3-acetic acid (IAA) to stimulate root development and nutrient uptake and produce ACC deaminase, which lowers ethylene accumulation under stress, mitigating growth inhibition. They also enhance nutrient availability by releasing phosphate-solubilizing enzymes and siderophores that improve iron acquisition. In parallel, PGPB activates jasmonate and salicylate pathways, priming a systemic resistance to biotic and abiotic stress. Through quorum sensing, biofilm formation, and biosynthetic gene clusters encoding antibiotics, lipopeptides, and VOCs, PGPB strengthen rhizosphere colonization and suppress pathogens. These interactions contribute to microbial community recovery, an improved soil structure, and enhanced nutrient cycling. This review synthesizes current evidence on the molecular and physiological mechanisms by which PGPB enhance soil restoration in degraded agroecosystems, highlighting their role beyond biofertilization as key agents in ecological rehabilitation. It examines advances in nutrient mobilization, stress mitigation, and signaling pathways, based on the literature retrieved from major scientific databases, focusing on studies published in the last decade. Full article
Show Figures

Figure 1

21 pages, 1929 KiB  
Review
Antimicrobial Compounds from Anaerobic Microorganisms: A Review of an Untapped Reservoir
by Mamta Mishra, Upasana Sharma, Manisha Rawat, Harshvardhan, Shelley Sardul Singh and Suresh Korpole
Appl. Microbiol. 2025, 5(3), 68; https://doi.org/10.3390/applmicrobiol5030068 - 15 Jul 2025
Viewed by 385
Abstract
Anaerobes, the oldest evolutionary life forms, have been unexplored for their potential to produce secondary metabolites due to the difficulties observed in their cultivation. Antimicrobials derived from anaerobic bacteria are an emerging and valuable source of novel therapeutic agents. The urgent need for [...] Read more.
Anaerobes, the oldest evolutionary life forms, have been unexplored for their potential to produce secondary metabolites due to the difficulties observed in their cultivation. Antimicrobials derived from anaerobic bacteria are an emerging and valuable source of novel therapeutic agents. The urgent need for new antimicrobial agents due to rising antibiotic resistance has prompted an investigation into anaerobic bacteria. The conventional method of antimicrobial discovery is based on cultivation and extraction methods. Antibacterial and antifungal substances are produced by anaerobic bacteria, but reports are limited due to oxygen-deficient growth requirements. The genome mining approach revealed the presence of biosynthetic gene clusters involved in various antimicrobial compound synthesis. Thus, the current review is focused on antimicrobials derived from anaerobes to unravel the potential of anaerobic bacteria as an emerging valuable source of therapeutic agents. These substances frequently consist of peptides, lipopeptides, and other secondary metabolites. Many of these antimicrobials have distinct modes of action that may be able to go around established resistance pathways. To this effect, we discuss diverse antimicrobial compounds produced by anaerobic bacteria, their biosynthesis, heterologous production, and activity. The findings suggest that anaerobic bacteria harbor significant biosynthetic potential, warranting further exploration through recombinant production for developing new antibiotics. Full article
Show Figures

Graphical abstract

20 pages, 1549 KiB  
Article
In Silico and In Vitro Characterization of Bacillus velezensis P45: Screening for a Novel Probiotic Candidate
by Carolini Esmeriz da Rosa, Cristian Mauricio Barreto Pinilla, Luiza Dalpiccoli Toss and Adriano Brandelli
Foods 2025, 14(13), 2334; https://doi.org/10.3390/foods14132334 - 30 Jun 2025
Viewed by 363
Abstract
Spore-forming Bacilli have been explored due to their potential biotechnological features and applications in human health and functional food research. This study focuses on the genetic and phenotypical characterization of the functional probiotic properties of Bacillus velezensis P45, a strain isolated from fish [...] Read more.
Spore-forming Bacilli have been explored due to their potential biotechnological features and applications in human health and functional food research. This study focuses on the genetic and phenotypical characterization of the functional probiotic properties of Bacillus velezensis P45, a strain isolated from fish intestines. B. velezensis P45 exhibited antimicrobial activity against Gram-positive and Gram-negative pathogens and demonstrated strong autoaggregation and biofilm formation properties in vitro. The strain also showed tolerance to gastrointestinal conditions and ability to metabolize and adhere to mucin. In silico analysis confirmed the absence of virulence factors and antibiotic resistance genes, reinforcing its safety as a probiotic candidate. Genome mining revealed the presence of genes related to adhesion, such as fibronectin-binding protein and enolases, and for the synthesis of secondary metabolites, including the antimicrobial lipopeptides fengycin, surfactin, and bacillibactin. In addition, phylogenetic comparison using the yloA (rqcH) gene associated with gut adhesion clustered strain P45 with other probiotic Bacillus and B. velezensis strains, while separating it from pathogenic bacteria. Thus, the strain B. velezensis P45 could be a valuable candidate as a probiotic due to its functional properties and safety. Full article
(This article belongs to the Special Issue Biosynthesis Technology and Future Functional Foods)
Show Figures

Figure 1

15 pages, 635 KiB  
Review
Use of Daptomycin to Manage Severe MRSA Infections in Humans
by Marco Fiore, Aniello Alfieri, Daniela Fiore, Pasquale Iuliano, Francesco Giuseppe Spatola, Andrea Limone, Ilaria Pezone and Sebastiano Leone
Antibiotics 2025, 14(6), 617; https://doi.org/10.3390/antibiotics14060617 - 18 Jun 2025
Viewed by 901
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) represents a major therapeutic challenge due to its multidrug-resistance and the associated clinical burden. Daptomycin (DAP), a cyclic lipopeptide antibiotic, has become a key agent for the treatment of severe MRSA infections owing to its rapid bactericidal activity and [...] Read more.
Methicillin-resistant Staphylococcus aureus (MRSA) represents a major therapeutic challenge due to its multidrug-resistance and the associated clinical burden. Daptomycin (DAP), a cyclic lipopeptide antibiotic, has become a key agent for the treatment of severe MRSA infections owing to its rapid bactericidal activity and favourable safety profile. In this narrative review, we examine studies published between 2010 and April 2025. The data suggest that treatment with high-dose (8–10 mg kg⁻1) DAP shortened the time to blood-culture sterilisation by a median of 2 days compared with standard-dose vancomycin without increasing toxicity when model-informed area-under-the-curve monitoring was employed. Particular attention is given to the synergistic effects of DAP combined with fosfomycin or β-lactams, especially ceftaroline and ceftobiprole, in overcoming persistent and refractory MRSA infections; this approach results in a reduction in microbiological failure relative to monotherapy. Resistance remains uncommon (<2% of isolates), but recurrent mutations in mprF, liaFSR, and walK underscore the need for proactive genomic surveillance. Despite promising preclinical and clinical evidence supporting combination strategies, further randomized controlled trials are necessary to establish their definitive role in clinical practice, as are head-to-head cost-effectiveness evaluations. DAP remains a critical option in the evolving landscape of MRSA management, provided its use is integrated with precision dosing, resistance surveillance, and antimicrobial-stewardship frameworks. Full article
(This article belongs to the Section Antibiotics Use and Antimicrobial Stewardship)
Show Figures

Figure 1

18 pages, 2023 KiB  
Article
Antimicrobial Activity of a Synthetic Brevibacillin Analog Against Multidrug-Resistant Campylobacter spp.
by Khaled Abdallah, Omar Fliss, Nguyen Phuong Pham, Louis David Guay, Hélène Gingras, Chantal Godin, Philippe Leprohon, Eric Biron, Ismail Fliss and Marc Ouellette
Int. J. Mol. Sci. 2025, 26(10), 4657; https://doi.org/10.3390/ijms26104657 - 13 May 2025
Viewed by 705
Abstract
Campylobacter spp. is one of the most prevalent causes of zoonotic foodborne infections associated with diarrhea in humans. The growing threat of antibiotic resistance calls for innovative approaches. The antimicrobial lipopeptide brevibacillin produced by Brevibacillus laterosporus and its synthetic analog brevibacillin Thr1 showed [...] Read more.
Campylobacter spp. is one of the most prevalent causes of zoonotic foodborne infections associated with diarrhea in humans. The growing threat of antibiotic resistance calls for innovative approaches. The antimicrobial lipopeptide brevibacillin produced by Brevibacillus laterosporus and its synthetic analog brevibacillin Thr1 showed promising activity against Salmonella and E. coli. The latter is a 1602.13 Da positively charged (+3) synthetic peptide of 13 residues that showed reduced cytotoxicity (IC50 of 32.2 µg/mL against Caco-2 cells) and hemolytic activity (1.2% hemolysis at 128 µg/mL) compared to the native peptide. It contains an N-terminal L-isoleucic fatty acid chain and four non-proteinogenic amino acids and ends with valinol at its C-terminus. One key structural modification is the substitution of α,β-dehydrobutyric acid with threonine. We investigated the antimicrobial potential of the synthetic brevibacillin Thr1 analog against a collection of 44 clinical Campylobacter spp. that were obtained from two reference laboratories. Susceptibility testing revealed marked resistance to ciprofloxacin, tetracycline, and ampicillin among the strains, with more than half expressing a multidrug-resistant phenotype. The genomes of the 44 strains were sequenced to study the genes responsible for their antimicrobial resistance. Tetracycline resistance was associated with tet(O), ciprofloxacin resistance with mutations in gyrA and regulatory sequences modulating the expression of an efflux system, and aminoglycoside resistance with genes of the aph family. The brevibacillin Thr1 analog was produced by chemical synthesis, and evaluation of its activity against a subset of clinical strains by microdilution revealed minimum inhibitory concentration and minimum bactericidal concentration ranging from 8 µg/mL to 64 µg/mL. The peptide was active against multidrug-resistant isolates with a bactericidal effect. Of note, despite numerous attempts, it proved impossible to select Campylobacter spp. for resistance to the brevibacillin Thr1 analog. These results underline the potential of lipopeptides, notably brevibacillin, as antimicrobial alternatives against antibiotic-resistant Campylobacter bacterial infections. Full article
(This article belongs to the Special Issue Antibacterial Activity against Drug-Resistant Strains, 2nd Edition)
Show Figures

Figure 1

21 pages, 7272 KiB  
Article
Structure–Activity Study of the Antimicrobial Lipopeptide Humimycin A and Screening Against Multidrug-Resistant Staphylococcus aureus
by Md Ramim Tanver Rahman, Louis-David Guay, Ismail Fliss and Eric Biron
Antibiotics 2025, 14(4), 385; https://doi.org/10.3390/antibiotics14040385 - 5 Apr 2025
Cited by 1 | Viewed by 34205
Abstract
Background: The emergence of multidrug-resistant (MDR) Staphylococcus aureus presents a critical global health challenge due to treatment failures and high mortality rates. Faced with this growing threat, new antimicrobials with original modes of action are urgently needed, and antimicrobial peptides proved to be [...] Read more.
Background: The emergence of multidrug-resistant (MDR) Staphylococcus aureus presents a critical global health challenge due to treatment failures and high mortality rates. Faced with this growing threat, new antimicrobials with original modes of action are urgently needed, and antimicrobial peptides proved to be promising alternatives. Objectives: The aim of this study is to explore the structure–function relationship of the lipopeptide humimycin A, compare the spectrum of activity of the synthetic analogs against a panel of S. aureus isolates, and investigate their binding to the humimycin target, the lipid II flippase MurJ. Methods: Humimycin A and 15 analogs were produced by solid-phase peptide synthesis, and their antimicrobial activity was evaluated by agar diffusion and microtitration assays against 19 S. aureus isolates from bovine mastitis and other pathogens. Results: Among the synthesized peptides, four humimycin analogs exhibited activity against methicillin-sensitive and methicillin-resistant S. aureus, as well as several isolates in the panel, including MDR S. aureus, with minimal inhibitory concentration values ranging from 0.5 to 256 µg/mL. Results from the structure–activity relationship study showed that the β-hydroxymyristoyl lipid chain and C-terminal carboxylic acid are essential for antimicrobial efficacy. In presence of human erythrocytes, the active humimycin analogs exhibited moderate hemolytic activity, suggesting selectivity indexes ranging from 3 to 27 against the more sensitive S. aureus strains. Critical micelle concentration measurements elucidated micelle formation and proved to not be essential for the antibacterial activity. Molecular docking and 100 ns simulations with the lipid II flippase MurJ (PDB: 5T77) provided favorable binding energy. Conclusions: The findings underscore the potential of humimycin analogs as antimicrobials for preventing and treating MDR S. aureus infections in veterinary, animal husbandry, and human medicine. Full article
Show Figures

Graphical abstract

24 pages, 9926 KiB  
Article
Development, Characterization, and Antimicrobial Evaluation of Hybrid Nanoparticles (HNPs) Based on Phospholipids, Cholesterol, Colistin, and Chitosan Against Multidrug-Resistant Gram-Negative Bacteria
by Isabella Perdomo, Carolina Mora, Juan Pinillos, José Oñate-Garzón and Constain H. Salamanca
Pharmaceutics 2025, 17(2), 182; https://doi.org/10.3390/pharmaceutics17020182 - 1 Feb 2025
Viewed by 852
Abstract
Background: Colistin, a lipopeptide antibiotic usually used as a last resort against multidrug-resistant bacterial strains, has also begun to address the challenge of antimicrobial resistance. Objective: this study evaluates whether hybrid nanoparticles (HNPs) composed of Phospholipon® 90G, cholesterol, and colistin can [...] Read more.
Background: Colistin, a lipopeptide antibiotic usually used as a last resort against multidrug-resistant bacterial strains, has also begun to address the challenge of antimicrobial resistance. Objective: this study evaluates whether hybrid nanoparticles (HNPs) composed of Phospholipon® 90G, cholesterol, and colistin can enhance its effectiveness against resistant clinical isolates of Klebsiella pneumoniae, a clinically significant Gram-negative bacterium. Methods: HNPs were developed using the ethanol injection method and coated with chitosan through a layer-by-layer technique. HNP characterization included measurements of particle size, polydispersity index (PDI), and zeta potential, along with thermal (DSC) and spectrophotometric (FT-IR) analyses. Ultrafiltration and ATR-FTIR were employed to assess colistin’s association and release efficiencies. The biological evaluation followed CLSI guidelines. Results: uncoated hybrid nanoparticles (U-HNP) and chitosan-coated hybrid nanoparticles (Ch-HNP) described monodisperse populations, with respective PDI values of ~0.124 and ~0.150, Z-averages of ~249 nm and ~250 nm, and zeta potential values of +17 mV and +20 mV. Colistin’s association and release efficiencies were approximately 79% and 10%, respectively. Regarding antimicrobial activity, results showed that colistin as part of HNPs is poorly effective against this microorganism. However, in the most resistant strain, colistin activity increased slightly when the HNP was coated with chitosan. Conclusions: HNPs described high stability against disaggregation, limiting the colistin release and, therefore, affecting antimicrobial performance. Full article
(This article belongs to the Special Issue Delivery System for Biomacromolecule Drugs: Design and Application)
Show Figures

Figure 1

25 pages, 6689 KiB  
Article
Analysis of the Control Effect of Bacillus amyloliquefaciens C4 Wettable Powder on Potato Bacterial Wilt Caused by Ralstonia solanacearum
by Zhixiang Xing, Dan Liu, Meng Luo, Zelin Yang, Wenyuan Pang, Yexing Feng, Jiani Yan, Fumeng He, Xu Feng, Qiang Yuan, Yingnan Wang and Fenglan Li
Agronomy 2025, 15(1), 206; https://doi.org/10.3390/agronomy15010206 - 16 Jan 2025
Cited by 1 | Viewed by 1047
Abstract
Potatoes are one of the most important food crops worldwide, but their growth and development are often seriously threatened by potato bacterial wilt. The wettable powder produced by Bacillus amyloliquefaciens C4 under optimized fermentation conditions effectively inhibits potato bacterial wilt. In this study, [...] Read more.
Potatoes are one of the most important food crops worldwide, but their growth and development are often seriously threatened by potato bacterial wilt. The wettable powder produced by Bacillus amyloliquefaciens C4 under optimized fermentation conditions effectively inhibits potato bacterial wilt. In this study, lipopeptide antibiotics were identified via PCR and MALDI-TOF-MS, and their antibacterial activity was determined. The optimal formulation of C4 wettable powder was optimized via a single-factor experiment combined with a response surface. The effect of C4 wettable powder on potato bacterial wilt was evaluated. In the antibacterial activity test, surfactin showed better inhibition ability. After determining the optimal liquid fermentation conditions and wettable powder formula, the surfactin activity increased to 540.15 mg/L, and the C4 wettable powder activity reached 69.67 × 108 cfu/g. The results of the pot experiment showed that the best cost-effectiveness was achieved under 500 times dilution and spraying, with a control effect of 79.05 ± 24.79%. The physiological and biochemical results showed that C4 wettable powder could induce rapid defense enzyme responses in leaves and enhance plant resistance to pathogenic bacteria. The results showed that C4 wettable powder effectively controlled potato bacterial wilt, and its application method was determined. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

15 pages, 4858 KiB  
Article
Synthesis, Characterization, and Biological Evaluation of Chitosan Nanoparticles Cross-Linked with Phytic Acid and Loaded with Colistin against Extensively Drug-Resistant Bacteria
by Fabian Pacheco, Alejandro Barrera, Yhors Ciro, Dorian Polo-Cerón, Constain H. Salamanca and José Oñate-Garzón
Pharmaceutics 2024, 16(9), 1115; https://doi.org/10.3390/pharmaceutics16091115 - 24 Aug 2024
Cited by 3 | Viewed by 2049
Abstract
The natural evolution of microorganisms, as well as the inappropriate use of medicines, have accelerated the problem of drug resistance to many of the antibiotics employed today. Colistin, a lipopeptide antibiotic used as a last resort against multi-resistant strains, has also begun to [...] Read more.
The natural evolution of microorganisms, as well as the inappropriate use of medicines, have accelerated the problem of drug resistance to many of the antibiotics employed today. Colistin, a lipopeptide antibiotic used as a last resort against multi-resistant strains, has also begun to present these challenges. Therefore, this study was focused on establishing whether colistin associated with chitosan nanoparticles could improve its antibiotic activity on an extremely resistant clinical isolate of Pseudomonas aeruginosa, which is a clinically relevant Gram-negative bacterium. For this aim, nanoparticulate systems based on phytic acid cross-linked chitosan and loaded with colistin were prepared by the ionic gelation method. The characterization included particle size, polydispersity index-PDI, and zeta potential measurements, as well as thermal (DSC) and spectrophotometric (FTIR) analysis. Encapsulation efficiency was assessed by the bicinchoninic acid (BCA) method, while the antimicrobial evaluation was made following the CLSI guidelines. The results showed that colistin-loaded nanoparticles were monodispersed (PDI = 0.196) with a particle size of around 266 nm and a positive zeta potential (+33.5 mV), and were able to associate with around 65.8% of colistin and decrease the minimum inhibitory concentration from 16 μg/mL to 4 μg/mL. These results suggest that the association of antibiotics with nanostructured systems could be an interesting alternative to recover the antimicrobial activity on resistant strains. Full article
(This article belongs to the Special Issue Biodegradable Nanomaterials for Targeted Drug Delivery)
Show Figures

Figure 1

16 pages, 4145 KiB  
Article
Antagonistic Strain Bacillus velezensis JZ Mediates the Biocontrol of Bacillus altitudinis m-1, a Cause of Leaf Spot Disease in Strawberry
by Li Zhang, Zirui Liu, Yilei Pu, Boyuan Zhang, Boshen Wang, Linman Xing, Yuting Li, Yingjun Zhang, Rong Gu, Feng Jia, Chengwei Li and Na Liu
Int. J. Mol. Sci. 2024, 25(16), 8872; https://doi.org/10.3390/ijms25168872 - 15 Aug 2024
Cited by 4 | Viewed by 1604
Abstract
Biofertilizers are environmentally friendly compounds that can enhance plant growth and substitute for chemically synthesized products. In this research, a new strain of the bacterium Bacillus velezensis, designated JZ, was isolated from the roots of strawberry plants and exhibited potent antagonistic properties [...] Read more.
Biofertilizers are environmentally friendly compounds that can enhance plant growth and substitute for chemically synthesized products. In this research, a new strain of the bacterium Bacillus velezensis, designated JZ, was isolated from the roots of strawberry plants and exhibited potent antagonistic properties against Bacillus altitudinis m-1, a pathogen responsible for leaf spot disease in strawberry. The fermentation broth of JZ exerted an inhibition rate of 47.43% against this pathogen. Using an optimized acid precipitation method, crude extracts of lipopeptides from the JZ fermentation broth were obtained. The crude extract of B. velezensis JZ fermentation broth did not significantly disrupt the cell permeability of B. altitudinis m-1, whereas it notably reduced the Ca2+-ATPase activity on the cell membrane and markedly elevated the intracellular reactive oxygen species (ROS) concentration. To identify the active compounds within the crude extract, QTOF-MS/MS was employed, revealing four antimicrobial compounds: fengycin, iturin, surfactin, and a polyene antibiotic known as bacillaene. The strain JZ also produced various plant-growth-promoting substances, such as protease, IAA, and siderophore, which assists plants to survive under pathogen infection. These findings suggest that the JZ strain holds significant potential as a biological control agent against B. altitudinis, providing a promising avenue for the management of plant bacterial disease. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

15 pages, 2145 KiB  
Article
Development and ELISA Characterization of Antibodies against the Colistin, Vancomycin, Daptomycin, and Meropenem: A Therapeutic Drug Monitoring Approach
by Vivian Garzon, J.-Pablo Salvador, M.-Pilar Marco, Daniel G.-Pinacho and Rosa-Helena Bustos
Antibiotics 2024, 13(7), 600; https://doi.org/10.3390/antibiotics13070600 - 27 Jun 2024
Cited by 1 | Viewed by 2484
Abstract
More than 70% of bacteria are resistant to all or nearly all known antimicrobials, creating the need for the development of new types of antimicrobials or the use of “last-line” antimicrobial therapies for the treatment of multi-resistant bacteria. These antibiotics include Glycopeptide (Vancomycin), [...] Read more.
More than 70% of bacteria are resistant to all or nearly all known antimicrobials, creating the need for the development of new types of antimicrobials or the use of “last-line” antimicrobial therapies for the treatment of multi-resistant bacteria. These antibiotics include Glycopeptide (Vancomycin), Polymyxin (Colistin), Lipopeptide (Daptomycin), and Carbapenem (Meropenem). However, due to the toxicity of these types of molecules, it is necessary to develop new rapid methodologies to be used in Therapeutic Drug Monitoring (TDM). TDM could improve patient outcomes and reduce healthcare costs by enabling a favorable clinical outcome. In this way, personalized antibiotic therapy emerges as a viable option, offering optimal dosing for each patient according to pharmacokinetic (PK) and pharmacodynamic (PD) parameters. Various techniques are used for this monitoring, including high-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), and immunoassays. The objective of this study is the development and characterization by ELISA of specific polyclonal antibodies for the recognition of the antibiotics Vancomycin (glycopeptide), Colistin (polymyxin), Daptomycin (lipopeptide), and Meropenem (carbapenem) for future applications in the monitoring of these antibiotics in different fluids, such as human plasma. The developed antibodies are capable of recognizing the antibiotic molecules with good detectability, showing an IC50 of 0.05 nM for Vancomycin, 7.56 nM for Colistin, 183.6 nM for Meropenem, and 13.82 nM for Daptomycin. These antibodies offer a promising tool for the precise and effective therapeutic monitoring of these critical antibiotics, potentially enhancing treatment efficacy and patient safety. Full article
(This article belongs to the Special Issue Challenges for Therapeutic Drug Monitoring of Antimicrobials)
Show Figures

Figure 1

11 pages, 2271 KiB  
Article
A Hadal Streptomyces-Derived Echinocandin Acylase Discovered through the Prioritization of Protein Families
by Xuejian Jiang, Hongjun Shu, Shuting Feng, Pinmei Wang, Zhizhen Zhang and Nan Wang
Mar. Drugs 2024, 22(5), 212; https://doi.org/10.3390/md22050212 - 7 May 2024
Viewed by 1933
Abstract
Naturally occurring echinocandin B and FR901379 are potent antifungal lipopeptides featuring a cyclic hexapeptide nucleus and a fatty acid side chain. They are the parent compounds of echinocandin drugs for the treatment of severe fungal infections caused by the Candida and Aspergilla species. [...] Read more.
Naturally occurring echinocandin B and FR901379 are potent antifungal lipopeptides featuring a cyclic hexapeptide nucleus and a fatty acid side chain. They are the parent compounds of echinocandin drugs for the treatment of severe fungal infections caused by the Candida and Aspergilla species. To minimize hemolytic toxicity, the native fatty acid side chains in these drug molecules are replaced with designer acyl side chains. The deacylation of the N-acyl side chain is, therefore, a crucial step for the development and manufacturing of echinocandin-type antibiotics. Echinocandin E (ECE) is a novel echinocandin congener with enhanced stability generated via the engineering of the biosynthetic machinery of echinocandin B (ECB). In the present study, we report the discovery of the first echinocandin E acylase (ECEA) using the enzyme similarity tool (EST) for enzymatic function mining across protein families. ECEA is derived from Streptomyces sp. SY1965 isolated from a sediment collected from the Mariana Trench. It was cloned and heterologously expressed in S. lividans TK24. The resultant TKecea66 strain showed efficient cleavage activity of the acyl side chain of ECE, showing promising applications in the development of novel echinocandin-type therapeutics. Our results also provide a showcase for harnessing the essentially untapped biodiversity from the hadal ecosystems for the discovery of functional molecules. Full article
(This article belongs to the Special Issue Biotechnological Applications of Marine Enzymes)
Show Figures

Figure 1

10 pages, 598 KiB  
Article
Daptomycin Use for Persistent Coagulase-Negative Staphylococcal Bacteremia in a Neonatal Intensive Care Unit
by Eleni Papachatzi, Despoina Gkentzi, Sotiris Tzifas, Theodore Dassios and Gabriel Dimitriou
Antibiotics 2024, 13(3), 254; https://doi.org/10.3390/antibiotics13030254 - 12 Mar 2024
Cited by 1 | Viewed by 2598
Abstract
During the last two decades, the incidence of late-onset sepsis (LOS) has increased due to improved survival of premature neonates. Persistent bacteremia (PB) in LOS is defined as more than two positive blood cultures obtained on different calendar days during the same infectious [...] Read more.
During the last two decades, the incidence of late-onset sepsis (LOS) has increased due to improved survival of premature neonates. Persistent bacteremia (PB) in LOS is defined as more than two positive blood cultures obtained on different calendar days during the same infectious episode. Although rare, PB should be treated aggressively to prevent adverse outcomes. Daptomycin, a lipopeptide antibiotic, has been used in neonates with persistent coagulase-negative staphylococci (CoNS) bacteremia with promising results, but studies reporting on the efficacy and safety of the agent are scarce. The purpose of this study was to evaluate the efficacy and safety of daptomycin use for persistent CoNS bacteremia in a neonatal cohort. This is a retrospective, observational, single-center study of neonates treated with daptomycin during 2011–2022 in the Tertiary Neonatal Intensive Care Unit (NICU) of the University General Hospital of Patras, Greece. For the years 2011–2022, there were 3.413 admissions to the NICU. During the last 3 years (2020–2022)—the active epidemiological surveillance period—123 infants (out of 851 admissions, 14.4%) developed CoNS bacteremia (LOS). During the study period, twelve infants with PB were treated with daptomycin. They had a median gestational age of 32 weeks (IQR 31–34) and mean (SD) birth weight of 1.840 (867) grams. CoNS bacteremia isolates were s. epidermidis (50%), s. haemolyticus (20%), s. hominis (20%) and s. warneri (10%). The decision to start daptomycin (6 mg/kg/dose twice daily) was taken on median day 10 (ΙQR 7–15) of infection. None of the infants had focal complications or meningitis. Daptomycin therapy caused no renal, hepatic, muscular or gastrointestinal adverse events. One neonate developed seizures, and one death occurred due to multiple complications of prematurity. Most infants (11/12) were successfully treated and eventually had negative blood culture. Daptomycin monotherapy showed an adequate cure rate in premature neonates with persistent CoNS bacteremia in a tertiary NICU. In our study, daptomycin was effective and well tolerated; the safety profile, however, needs to be confirmed in larger studies and randomized controlled trials. Full article
(This article belongs to the Special Issue Rational Use of Antibiotics in Bloodstream Infection)
Show Figures

Figure 1

17 pages, 6731 KiB  
Article
New N-Terminal Fatty-Acid-Modified Melittin Analogs with Potent Biological Activity
by Sheng Huang, Guoqi Su, Shan Jiang, Li Chen, Jinxiu Huang and Feiyun Yang
Int. J. Mol. Sci. 2024, 25(2), 867; https://doi.org/10.3390/ijms25020867 - 10 Jan 2024
Cited by 10 | Viewed by 2198
Abstract
Melittin, a natural antimicrobial peptide, has broad-spectrum antimicrobial activity. This has resulted in it gaining increasing attention as a potential antibiotic alternative; however, its practical use has been limited by its weak antimicrobial activity, high hemolytic activity, and low proteolytic stability. In this [...] Read more.
Melittin, a natural antimicrobial peptide, has broad-spectrum antimicrobial activity. This has resulted in it gaining increasing attention as a potential antibiotic alternative; however, its practical use has been limited by its weak antimicrobial activity, high hemolytic activity, and low proteolytic stability. In this study, N-terminal fatty acid conjugation was used to develop new melittin-derived lipopeptides (MDLs) to improve the characteristics of melittin. Our results showed that compared with native melittin, the antimicrobial activity of MDLs was increased by 2 to 16 times, and the stability of these MDLs against trypsin and pepsin degradation was increased by 50 to 80%. However, the hemolytic activity of the MDLs decreased when the length of the carbon chain of fatty acids exceeded 10. Among the MDLs, the newly designed analog Mel-C8 showed optimal antimicrobial activity and protease stability. The antimicrobial mechanism studied revealed that the MDLs showed a rapid bactericidal effect by interacting with lipopolysaccharide (LPS) or lipoteichoic acid (LTA) and penetrating the bacterial cell membrane. In conclusion, we designed and synthesized a new class of MDLs with potent antimicrobial activity, high proteolytic stability, and low hemolytic activity through N-terminal fatty acid conjugation. Full article
Show Figures

Graphical abstract

Back to TopTop