Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (158)

Search Parameters:
Keywords = lipid phase transition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7284 KB  
Article
Histological and Macromolecular Characterization of Folliculogenesis in Loggerhead Sea Turtles (Caretta caretta): Novel Insights into the Onset of Puberty
by Ludovica Di Renzo, Erica Trotta, Valentina Notarstefano, Laura Zonta, Elisabetta Giorgini, Luca Marisaldi, Giulia Mariani, Gabriella Di Francesco, Silva Rubini, Marco Matiddi, Cecilia Silvestri, Yakup Kaska, Giulia Chemello and Giorgia Gioacchini
Int. J. Mol. Sci. 2025, 26(20), 9934; https://doi.org/10.3390/ijms26209934 - 12 Oct 2025
Viewed by 487
Abstract
The Adriatic Sea is a critical neritic habitat for juvenile and adult female loggerhead sea turtles (Caretta caretta), where intense anthropogenic pressures and environmental stressors may influence their reproductive biology. Knowledge on the onset of puberty in this population is limited [...] Read more.
The Adriatic Sea is a critical neritic habitat for juvenile and adult female loggerhead sea turtles (Caretta caretta), where intense anthropogenic pressures and environmental stressors may influence their reproductive biology. Knowledge on the onset of puberty in this population is limited by scarce information on the sub-adult stage, a transitional phase in which reproductive competence is acquired. This study integrated histological analysis and Fourier-transform infrared (FTIR) imaging spectroscopy to provide both structural and biochemical characterization of folliculogenesis, with emphasis on vitellogenesis, in C. caretta from the north-central Adriatic Sea. Histological analysis determined the progression of follicle development, while FTIR imaging, a label-free and spatially resolved technique, mapped the distribution of proteins, lipids, and nucleic acids across ovarian compartments. Logistic regression estimated the size at which 50% of females are sexually mature (L50) at 58.54 cm Curved Carapace Length (CCL). Based on this value, 60% of sub-adult females were already mature, indicating earlier puberty than previously inferred from macroscopic criteria. These preliminary results, along with reports of sporadic nesting in the Adriatic, raise the question of whether this basin may host further nesting events in the future. FTIR imaging proved to be a powerful tool for reproductive biology in non-model marine vertebrates. Full article
(This article belongs to the Special Issue A Molecular Perspective on Reproductive Health, 2nd Edition)
Show Figures

Graphical abstract

11 pages, 578 KB  
Article
Biophysical Characterization of Membrane Interactions of 3-Hydroxy-4-Pyridinone Vanadium Complexes: Insights for Antidiabetic Applications
by Luísa M. P. F. Amaral, Tânia Moniz and Maria Rangel
Inorganics 2025, 13(10), 311; https://doi.org/10.3390/inorganics13100311 - 24 Sep 2025
Viewed by 387
Abstract
The development of metallopharmaceuticals for diabetes treatment has garnered increasing attention due to its insulin-mimetic properties, particularly in vanadium complexes. In this study, we report the biophysical evaluation of a series of 3-hydroxy-4-pyridinone (3,4-HPO) vanadium complexes, designed to improve lipophilicity and biological cytocompatibility. [...] Read more.
The development of metallopharmaceuticals for diabetes treatment has garnered increasing attention due to its insulin-mimetic properties, particularly in vanadium complexes. In this study, we report the biophysical evaluation of a series of 3-hydroxy-4-pyridinone (3,4-HPO) vanadium complexes, designed to improve lipophilicity and biological cytocompatibility. Dynamic light scattering (DLS) was used to get insight on the size of the liposomes and Differential Scanning Calorimetry (DSC) was employed to investigate the interaction of these complexes with model biological membranes made from dimyristoylphosphatidylcholine (DMPC) unilamellar liposomes. The thermotropic phase behavior of the lipid bilayers was analyzed in the presence of vanadium complexes. The results reveal that the alkyl chain length of the 3,4-HPO ligands modulates membrane interaction of the respective vanadium compounds, with specific complexes inducing significant shifts in the lipid phase transition temperature (Tm), suggesting alterations in membrane fluidity and packing. These findings provide valuable insight into the membrane affinity of vanadium-based drug candidates and support their potential as next-generation antidiabetic agents. Full article
Show Figures

Graphical abstract

17 pages, 1030 KB  
Review
Next-Generation mRNA Vaccines in Melanoma: Advances in Delivery and Combination Strategies
by Stefano Zoroddu and Luigi Bagella
Cells 2025, 14(18), 1476; https://doi.org/10.3390/cells14181476 - 22 Sep 2025
Viewed by 2339
Abstract
Messenger RNA (mRNA) vaccines have redefined cancer immunotherapy, offering unparalleled flexibility to encode tumor-specific antigens and to be adapted to individual mutational landscapes. Melanoma, with its high mutational burden and responsiveness to immune checkpoint blockade, has become the leading model for translating these [...] Read more.
Messenger RNA (mRNA) vaccines have redefined cancer immunotherapy, offering unparalleled flexibility to encode tumor-specific antigens and to be adapted to individual mutational landscapes. Melanoma, with its high mutational burden and responsiveness to immune checkpoint blockade, has become the leading model for translating these advances into clinical benefit. Recent innovations in delivery—ranging from lipid nanoparticles and polymeric carriers to biomimetic hybrids and intratumoral administration—are dismantling long-standing barriers of stability, targeting, and immunogenicity. Clinical milestones, including the randomized phase IIb KEYNOTE-942, show that adding the personalized neoantigen vaccine mRNA-4157 (V940) to pembrolizumab prolonged recurrence-free survival versus pembrolizumab alone (HR 0.561, 95% CI 0.309–1.017; 18-month RFS 79% vs. 62%), with the ASCO 3-year update reporting 2.5-year RFS 74.8% vs. 55.6% and sustained distant metastasis-free survival benefit in resected high-risk melanoma. Parallel preclinical studies highlight the potential of multifunctional platforms co-delivering cytokines or innate agonists to reshape the tumor microenvironment and achieve durable systemic immunity. As artificial intelligence drives epitope selection and modular manufacturing accelerates personalization, mRNA vaccines may have the potential to transition from adjuncts to main therapies in melanoma and beyond. Full article
Show Figures

Figure 1

17 pages, 1872 KB  
Article
Adsorption of Myelin Basic Protein on Model Myelin Membranes Reveals Weakening of van der Waals Interactions in a Lipid Ratio-Dependent Manner
by Petra Maleš, Barbara Pem, Dražen Petrov, Agustín Mangiarotti, Rumiana Dimova and Danijela Bakarić
Membranes 2025, 15(9), 279; https://doi.org/10.3390/membranes15090279 - 17 Sep 2025
Viewed by 884
Abstract
Myelin is a lipid-rich membrane that insulates axons, providing support and ensuring efficient nerve impulse conduction. Disruption of this sheath, or demyelination, impairs neural transmission and underlies symptoms like vision loss and muscle weakness in multiple sclerosis (MS). Despite extensive studies using in [...] Read more.
Myelin is a lipid-rich membrane that insulates axons, providing support and ensuring efficient nerve impulse conduction. Disruption of this sheath, or demyelination, impairs neural transmission and underlies symptoms like vision loss and muscle weakness in multiple sclerosis (MS). Despite extensive studies using in vitro and in vivo models, the molecular mechanisms driving demyelination remain incompletely understood. To investigate the role of myelin basic protein (MBP) in membrane stability, we prepared model myelin membranes (MMMs) from lipids expectedly undergoing gel-to-fluid phase transition, mimicking both normal and altered myelin, with and without MBP. Differential scanning calorimetry (DSC) revealed that MBP suppresses the main phase transition in normal MMMs, unlike in modified MMMs. FTIR spectra showed strengthening of van der Waals interactions in normal MMMs with MBP upon heating and opposite effects in the analogous modified MMM system. Additionally, phosphate groups were identified as critical sites for MBP–lipid interactions. Circular dichroism (CD) spectroscopy suggests that MBP adopts helical structures that penetrate the bilayer of normal MMMs. These findings offer new insights into the molecular-level interactions between MBP and myelin membranes, with implications for understanding demyelination in diseases like MS. Full article
(This article belongs to the Collection Feature Papers in Membranes in Life Sciences)
Show Figures

Figure 1

14 pages, 488 KB  
Article
Prospective Observational Case Series in Infertile Women with Overweight or Obesity Treated with a Very-Low Calorie Ketogenic Diet (VLCKD) Prior to an In Vitro Fertilization (IVF) Treatment
by Maíra Casalechi, Alessandra Piontini, Annaelisa Nicolosi, Francesca Bergomas, Filomena Napolitano, Stefano Turolo, Marco Reschini, Alessandra Riccaboni, Roberta Bellinghieri, Edgardo Somigliana and Luisella Vigna
Nutrients 2025, 17(18), 2930; https://doi.org/10.3390/nu17182930 - 11 Sep 2025
Viewed by 947
Abstract
Background: Elevated BMI in women is linked to metabolic and endocrine imbalances that impair fertility and increase pregnancy risks. While >10% weight loss before an Assisted reproductive technology (ART) treatment may improve outcomes, sustained results through conventional diets are challenging. A very-low calorie [...] Read more.
Background: Elevated BMI in women is linked to metabolic and endocrine imbalances that impair fertility and increase pregnancy risks. While >10% weight loss before an Assisted reproductive technology (ART) treatment may improve outcomes, sustained results through conventional diets are challenging. A very-low calorie ketogenic diet (VLCKD) promotes rapid fat loss while preserving lean mass and may offer long-term benefits. This study evaluated the efficacy (≥10% weight loss without lean mass reduction), adherence, metabolic effects, and pregnancy outcomes of a meal replacement VLCKD in women with overweight or obesity scheduled for ART. Methods: This monocentric, prospective case-series was conducted at the Obesity and Work Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan (September 2019–September 2023). Eligible women underwent a three-phase dietary program: a 3-month VLCKD (<800 kcal/day), a 6-month transition with gradual carbohydrate reintroduction, and a Mediterranean-style maintenance diet. Participants were monitored for safety, body composition, adherence, and biochemical changes. Results: Of 52 women enrolled, 40 initiated the VLCKD; 27 (68%) achieved ≥10% weight loss while preserving lean mass. Eleven conceived naturally during or after the diet; 22 underwent ART, with 12 additional pregnancies. This corresponds to a 58% pregnancy rate among those who began the VLCKD. Significant improvements were observed in body mass index (BMI), fat mass, waist circumference, glucose metabolism, lipid profile, and liver function. No adverse events were reported. Conclusions: A meal replacement VLCKD protocol is feasible, well-tolerated, and associated with significant improvements in weight, especially in body composition, metabolic health, and potentially outcomes in women with overweight or obesity awaiting ART. Full article
(This article belongs to the Section Nutrition in Women)
Show Figures

Figure 1

16 pages, 1473 KB  
Review
Lipid-Mediated Assembly of Biomolecular Condensates: Mechanisms, Regulation, and Therapeutic Implications
by Shijie Ma, Zheng Yang, Chang Du, Binjie Gan and Tong Tang
Biology 2025, 14(9), 1232; https://doi.org/10.3390/biology14091232 - 10 Sep 2025
Viewed by 1139
Abstract
Cellular organization relies on both membrane-bound organelles and membraneless biomolecular condensates formed through liquid–liquid phase separation. Recent discoveries reveal intricate coupling between lipid membrane organization and condensate assembly, reshaping our understanding of cellular compartmentalization. This review synthesizes multidisciplinary research using advanced techniques including [...] Read more.
Cellular organization relies on both membrane-bound organelles and membraneless biomolecular condensates formed through liquid–liquid phase separation. Recent discoveries reveal intricate coupling between lipid membrane organization and condensate assembly, reshaping our understanding of cellular compartmentalization. This review synthesizes multidisciplinary research using advanced techniques including super-resolution microscopy, fluorescence recovery after photobleaching, and in vitro reconstitution to examine lipid-condensate interactions. Lipid membranes serve as nucleation platforms that reduce critical concentrations for condensate formation by orders of magnitude through membrane anchoring and thermodynamic coupling, creating specialized microenvironments that substantially enhance enzymatic activities. Key regulatory mechanisms include phosphorylation-driven assembly and disassembly, membrane composition effects from cholesterol content and fatty acid saturation, and environmental factors such as calcium and pH. These interactions drive signal transduction through receptor clustering, membrane trafficking via organized domains, and stress responses through protective condensate formation. Dysregulation of lipid-condensate coupling, including aberrant phase transitions and membrane dysfunction, underlies metabolic disorders and neurodegenerative diseases. This coupling represents a fundamental organizing principle with significant therapeutic potential. Current challenges include developing quantitative methods for characterizing condensate dynamics in complex cellular environments and translating molecular mechanisms into clinical applications. Future progress requires interdisciplinary approaches combining advanced experimental techniques, computational modeling, and standardized protocols to advance both fundamental understanding and therapeutic innovations. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

21 pages, 1442 KB  
Article
Enzyme Modifications of Red Deer Fat to Adjust Physicochemical Properties for Advanced Applications
by Tereza Novotná, Jana Pavlačková, Robert Gál, Ladislav Šiška, Miroslav Fišera and Pavel Mokrejš
Molecules 2025, 30(15), 3293; https://doi.org/10.3390/molecules30153293 - 6 Aug 2025
Viewed by 710
Abstract
Red deer fat makes up approximately 7–10% of the animal’s weight and is not currently used. Regarding sustainability in the food industry, it is desirable to look for opportunities for its processing and use, not only in the food industry. The aim of [...] Read more.
Red deer fat makes up approximately 7–10% of the animal’s weight and is not currently used. Regarding sustainability in the food industry, it is desirable to look for opportunities for its processing and use, not only in the food industry. The aim of this study is the enzymatic modification of red deer fat, leading to modification of its physicochemical properties, and the study of changes in phase transitions of modified fat, its structure, color, and texture. Hydrolysis was performed using sn-1,3-specific lipase at different water concentrations (10–30%) and reaction times (2–6 h). The results showed that there was a significant decrease in melting and crystallization temperatures with an increasing degree of hydrolysis, which was confirmed by differential scanning calorimetry. FTIR spectra revealed a decrease in the intensity of the ester bonds, indicating cleavage of triacylglycerols. Texture analysis of the modified fats confirmed a decrease in hardness of up to 50% and an increase in spreadability. The color parameter values remained within an acceptable range. The results show that enzymatic modification is an effective tool for targeted modification of red deer fat properties, and this expands the possibilities of its application in cosmetic matrices and food applications as functional lipids. Full article
Show Figures

Graphical abstract

17 pages, 2353 KB  
Article
Repurposing a Lipid-Lowering Agent to Inhibit TNBC Growth Through Cell Cycle Arrest
by Yi-Chiang Hsu, Kuan-Ting Lee, Sung-Nan Pei, Kun-Ming Rau and Tai-Hsin Tsai
Curr. Issues Mol. Biol. 2025, 47(8), 622; https://doi.org/10.3390/cimb47080622 - 5 Aug 2025
Viewed by 628
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and therapeutically challenging subtype of breast cancer due to its lack of estrogen receptors, progesterone receptors, and HER2 (Human epidermal growth factor receptor 2) expression, which severely limits available treatment options. Recently, Simvastatin—a widely used [...] Read more.
Triple-negative breast cancer (TNBC) is a highly aggressive and therapeutically challenging subtype of breast cancer due to its lack of estrogen receptors, progesterone receptors, and HER2 (Human epidermal growth factor receptor 2) expression, which severely limits available treatment options. Recently, Simvastatin—a widely used HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase inhibitor for hyperlipidemia—has garnered interest for its potential anticancer effects. This study investigates the therapeutic potential of Simvastatin in triple-negative breast cancer (TNBC). The results demonstrate that Simvastatin significantly inhibits the proliferation of TNBC cells, particularly MDA-MB-231, in a dose- and time-dependent manner. Mechanistically, Simvastatin primarily induces G1 phase cell cycle arrest to exert its antiproliferative effects, with no significant evidence of apoptosis or necrosis. These findings support the potential repositioning of Simvastatin as a therapeutic agent to suppress TNBC cell growth. Further analysis shows that Simvastatin downregulates cyclin-dependent kinase 4 (CDK4), a key regulator of the G1/S cell cycle transition and a known marker of poor prognosis in breast cancer. These findings highlight a novel, apoptosis-independent mechanism of Simvastatin’s anticancer action in TNBC. Importantly, given that many breast cancer patients also suffer from hyperlipidemia, Simvastatin offers dual therapeutic benefits—managing both lipid metabolism and tumor cell proliferation. Thus, Simvastatin holds promise as an adjunctive therapy in the treatment of TNBC and warrants further clinical investigation. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

22 pages, 3771 KB  
Article
Integrated Transcriptome and Metabolome Analyses Uncover Cholesterol-Responsive Gene Networks
by Ruihao Zhang, Qi Sun, Lixia Huang and Jian Li
Int. J. Mol. Sci. 2025, 26(15), 7108; https://doi.org/10.3390/ijms26157108 - 23 Jul 2025
Cited by 1 | Viewed by 1128
Abstract
Cholesterol stress profoundly modulates cellular processes, but its underlying mechanisms remain incompletely understood. To investigate cholesterol-responsive networks, we performed integrated transcriptome (RNA-seq) and metabolome (LC-MS) analyses on HeLa cells treated with cholesterol for 6 and 24 h. Through transcriptomic analysis of cholesterol-stressed HeLa [...] Read more.
Cholesterol stress profoundly modulates cellular processes, but its underlying mechanisms remain incompletely understood. To investigate cholesterol-responsive networks, we performed integrated transcriptome (RNA-seq) and metabolome (LC-MS) analyses on HeLa cells treated with cholesterol for 6 and 24 h. Through transcriptomic analysis of cholesterol-stressed HeLa cells, we identified stage-specific responses characterized by early-phase stress responses and late-phase immune-metabolic coordination. This revealed 1340 upregulated and 976 downregulated genes after a 6 h cholesterol treatment, including induction and suppression of genes involved in cholesterol efflux and sterol biosynthesis, respectively, transitioning to Nuclear Factor kappa-B (NF-κB) activation and Peroxisome Proliferator-Activated Receptor (PPAR) pathway modulation by 24 h. Co-expression network analysis prioritized functional modules intersecting with differentially expressed genes. We also performed untargeted metabolomics using cells treated with cholesterol for 6 h, which demonstrated extensive remodeling of lipid species. Interestingly, integrated transcriptomic and metabolic analysis uncovered GFPT1-driven Uridine Diphosphate-N-Acetylglucosamine (UDP-GlcNAc) accumulation and increased taurine levels. Validation experiments confirmed GFPT1 upregulation and ANGPTL4 downregulation through RT-qPCR and increased O-GlcNAcylation via Western blot. Importantly, clinical datasets further supported the correlations between GFPT1/ANGPTL4 expression and cholesterol levels in Non-Alcoholic Steatohepatitis (NASH) liver cancer patients. This work establishes a chronological paradigm of cholesterol sensing and identifies GFPT1 and ANGPTL4 as key regulators bridging glycosylation and lipid pathways, providing mechanistic insights into cholesterol-associated metabolic disorders. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

23 pages, 14728 KB  
Article
Integrated Multi-Omics Analysis of the Developmental Stages of Antheraea pernyi Pupae: Dynamic Changes in Metabolite Profiles and Gene Expression
by Shuhui Ma, Yongxin Sun, Yajie Li, Xuejun Li, Zhixin Wen, Rui Mi, Nan Meng and Xingfan Du
Insects 2025, 16(7), 745; https://doi.org/10.3390/insects16070745 - 21 Jul 2025
Viewed by 672
Abstract
This study integrated non-targeted metabolomics and transcriptomics to investigate dynamic changes in Antheraea pernyi pupae across five developmental stages. Metabolomic analysis identified 1246 metabolites, primarily organic acids, lipids, heterocyclic compounds, and oxygen-containing organics. Principal component analysis revealed stage-specific metabolic profiles: amino acid derivatives [...] Read more.
This study integrated non-targeted metabolomics and transcriptomics to investigate dynamic changes in Antheraea pernyi pupae across five developmental stages. Metabolomic analysis identified 1246 metabolites, primarily organic acids, lipids, heterocyclic compounds, and oxygen-containing organics. Principal component analysis revealed stage-specific metabolic profiles: amino acid derivatives (pyruvate, proline, lysine) declined, while pyrimidines (cytidine, uridine, β-alanine) and monosaccharides (glucose, mannose) increased. 18β-glycyrrhetinic and ursolic acids accumulated significantly in the middle and late stages. Transcriptomic analysis identified 7230 differentially expressed genes (DEGs), with 366, 1705, and 5159 significantly differentially expressed genes in the T1, T3, and T5 comparison groups, respectively. KEGG enrichment highlighted ABC transporters, amino acid/pyrimidine metabolism, and tyrosine pathways as developmentally critical, with aminoacyl-tRNA biosynthesis upregulated in later phases. Integrated multi-omics analysis revealed coordinated shifts in metabolites and genes across developmental phases, reflecting dynamic nutrient remodeling during pupal maturation. This study systematically delineates the molecular transitions driving pupal development in Antheraea pernyi pupae, uncovering conserved pathway interactions and mechanistic insights into nutrient metabolism. These findings provide a scientific foundation for leveraging pupal resources in functional food innovation and bioactive compound discovery for pharmaceutical applications. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

17 pages, 2741 KB  
Review
Polyamine-Mediated Growth Regulation in Microalgae: Integrating Redox Balance and Amino Acids Pathway into Metabolic Engineering
by Leandro Luis Lavandosque and Flavia Vischi Winck
SynBio 2025, 3(2), 8; https://doi.org/10.3390/synbio3020008 - 28 May 2025
Viewed by 1514
Abstract
Polyamines play a pivotal role in regulating the growth and metabolic adaptation of microalgae, yet their integrative regulatory roles remain underexplored. This review advances a comprehensive perspective of microalgae growth, integrating polyamine dynamics, amino acid metabolism, and redox balance. Polyamines (putrescine, spermidine, and [...] Read more.
Polyamines play a pivotal role in regulating the growth and metabolic adaptation of microalgae, yet their integrative regulatory roles remain underexplored. This review advances a comprehensive perspective of microalgae growth, integrating polyamine dynamics, amino acid metabolism, and redox balance. Polyamines (putrescine, spermidine, and spermine) biology in microalgae, particularly Chlamydomonas reinhardtii, is reviewed, exploring their critical function in modulating cell cycle progression, enzymatic activity, and stress responses through nucleic acid stabilization, protein synthesis regulation, and post-translational modifications. This review explores how the exogenous supplementation of polyamines modifies their intracellular dynamics, affecting growth phases and metabolic transitions, highlighting the complex regulation of internal pools of these molecules. Comparative analyses with Chlorella ohadii and Scenedesmus obliquus indicated species-specific responses to polyamine fluctuations, linking putrescine and spermine levels to important tunable metabolic shifts and fast growth phenotypes in phototrophic conditions. The integration of multi-omic approaches and computational modeling has already provided novel insights into polyamine-mediated growth regulation, highlighting their potential in optimizing microalgae biomass production for biotechnological applications. In addition, genomic-based modeling approaches have revealed target genes and cellular compartments as bottlenecks for the enhancement of microalgae growth, including mitochondria and transporters. System-based analyses have evidenced the overlap of the polyamines biosynthetic pathway with amino acids (especially arginine) metabolism and Nitric Oxide (NO) generation. Further association of the H2O2 production with polyamines metabolism reveals novel insights into microalgae growth, combining the role of the H2O2/NO rate regulation with the appropriate balance of the mitochondria and chloroplast functionality. System-level analysis of cell growth metabolism would, therefore, be beneficial to the understanding of the regulatory networks governing this phenotype, fostering metabolic engineering strategies to enhance growth, stress resilience, and lipid accumulation in microalgae. This review consolidates current knowledge and proposes future research directions to unravel the complex interplay of polyamines in microalgal physiology, opening new paths for the optimization of biomass production and biotechnological applications. Full article
Show Figures

Figure 1

20 pages, 1490 KB  
Review
Liposome-Based Drug Delivery Systems: From Laboratory Research to Industrial Production—Instruments and Challenges
by Suman Basak and Tushar Kanti Das
ChemEngineering 2025, 9(3), 56; https://doi.org/10.3390/chemengineering9030056 - 27 May 2025
Cited by 16 | Viewed by 7088
Abstract
Liposome-based drug delivery systems have revolutionized modern pharmaceutics, offering unparalleled versatility and precision in therapeutic delivery. These lipid vesicles, capable of encapsulating hydrophilic, hydrophobic, and amphiphilic drugs, have demonstrated significant potential in addressing pharmacokinetic challenges such as poor solubility, systemic toxicity, and rapid [...] Read more.
Liposome-based drug delivery systems have revolutionized modern pharmaceutics, offering unparalleled versatility and precision in therapeutic delivery. These lipid vesicles, capable of encapsulating hydrophilic, hydrophobic, and amphiphilic drugs, have demonstrated significant potential in addressing pharmacokinetic challenges such as poor solubility, systemic toxicity, and rapid clearance. This review provides a comprehensive exploration of the evolution of liposomes from laboratory models to clinically approved therapeutics, highlighting their structural adaptability, functional tunability, and transformative impact on modern medicine. We discuss pivotal laboratory-scale preparation techniques, including thin-film hydration, ethanol injection, and reverse-phase evaporation, along with their inherent advantages and limitations. The challenges of transitioning to industrial-scale production are examined, with emphasis on achieving batch-to-batch consistency, scalability, regulatory compliance, and cost-effectiveness. Innovative strategies, such as the incorporation of microfluidic systems and advanced process optimization, are explored to address these hurdles. The clinical success of Food and Drug Administration (FDA)-approved liposomal formulations such as Doxil® and AmBisome® underscores their efficacy in treating conditions ranging from cancer to fungal infections. Furthermore, this review delves into emerging trends, including stimuli-responsive and hybrid liposomes, as well as their integration with nanotechnology for enhanced therapeutic precision. As liposomes continue to expand their role in gene therapy, theranostics, and personalized medicine, this review highlights their potential to redefine pharmaceutical applications. Despite existing challenges, ongoing advancements in formulation techniques and scalability underscore the bright future of liposome-based therapeutics in addressing unmet medical needs. Full article
Show Figures

Figure 1

26 pages, 3756 KB  
Review
Recent Advances on Chitosan-Based Thermosensitive Hydrogels for Skin Wound Treatment
by Jin Wang, Lianghui Huang, Enguang Wu, Xiao Li, Yi Rao and Caiqing Zhu
Biology 2025, 14(6), 619; https://doi.org/10.3390/biology14060619 - 27 May 2025
Cited by 2 | Viewed by 2566
Abstract
Thermosensitive hydrogel, as a smart polymer material, showed great potential for application in the field of wound repair due to its unique external temperature responsiveness and excellent biocompatibility. Chitosan, a natural macromolecular polysaccharide derived from the deacetylation of chitin, possessed not only strong [...] Read more.
Thermosensitive hydrogel, as a smart polymer material, showed great potential for application in the field of wound repair due to its unique external temperature responsiveness and excellent biocompatibility. Chitosan, a natural macromolecular polysaccharide derived from the deacetylation of chitin, possessed not only strong interactions with biomolecules such as DNA, proteins, and lipids, but also unique biocompatibility and degradability. Chitosan-based thermosensitive hydrogels, prepared by compounding chitosan with surfactants, underwent sol–gel phase transitions at varying external temperatures, which provided an ideal healing environment for wounds. This comprehensive review was initiated by elucidating the sol–gel phase transformation mechanism underlying thermosensitive hydrogels and the intricate process of wound repair. In addition, this review provided a detailed overview of the prevalent types of chitosan-based thermosensitive hydrogels, highlighting their unique characteristics and applications in different types of wound repair. Finally, the challenges and development directions of chitosan-based thermosensitive hydrogels in wound repair were discussed, aiming to provide theoretical support and practical guidance for their future applications in wound healing. Full article
(This article belongs to the Special Issue Physiology and Pathophysiology of Skin)
Show Figures

Figure 1

19 pages, 1438 KB  
Article
µ-Raman Spectroscopic Temperature Dependence Study of Biomimetic Lipid 1,2-Diphytanoyl-sn-glycero-3-phosphocholine
by Carmen Rizzuto, Antonello Nucera, Irene Barba Castagnaro, Riccardo C. Barberi and Marco Castriota
Biomimetics 2025, 10(5), 308; https://doi.org/10.3390/biomimetics10050308 - 11 May 2025
Cited by 1 | Viewed by 977
Abstract
Raman spectroscopy is one of the best techniques for obtaining information concerning the physical–chemical interactions between a lipid and a solvent. Phospholipids in water are the main elements of cell membranes and, by means of their chemical and physical structures, their cells can [...] Read more.
Raman spectroscopy is one of the best techniques for obtaining information concerning the physical–chemical interactions between a lipid and a solvent. Phospholipids in water are the main elements of cell membranes and, by means of their chemical and physical structures, their cells can interact with other biological molecules (i.e., proteins and vitamins) and express their own biological functions. Phospholipids, due to their amphiphilic structure, form biomimetic membranes which are useful for studying cellular interactions and drug delivery. Synthetic systems such as DPhPC-based liposomes replicate the key properties of biological membranes. Among the different models, phospholipid mimetic membrane models of lamellar vesicles have been greatly supported. In this work, a biomimetic system, a deuterium solution (50 mM) of the synthetic phospholipid 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhDC), is studied using μ-Raman spectroscopy in a wide temperature range from −181.15 °C up to 22.15 °C, including the following temperatures: −181.15 °C, −146.15 °C, −111.15 °C, −76.15 °C, −61.15 °C, −46.15 °C, −31.15 °C, −16.15 °C, −1.15 °C, 14.15 °C, and 22.15 °C. Based on the Raman evidence, phase transitions as a function of temperature are shown and grouped into five classes, where the corresponding Raman modes describe the stretching of the (C−N) bond in the choline head group (gauche) and the asymmetric stretching of the (O−P−O) bond. The acquisition temperature of each Raman spectrum characterizes the rocking mode of the methylene of the acyl chain. These findings enhance our understanding of the role of artificial biomimetic lipids in complex phospholipid membranes and provide valuable insights for optimizing their use in biosensing applications. Although the phase stability of DPhPC is known, the collected Raman data suggest subtle molecular rearrangements, possibly due to hydration and second-order transitions, which are relevant for membrane modeling and biosensing applications. Full article
Show Figures

Figure 1

50 pages, 7741 KB  
Article
X-Ray Crystal and Cryo-Electron Microscopy Structure Analysis Unravels How the Unique Thylakoid Lipid Composition Is Utilized by Cytochrome b6f for Driving Reversible Proteins’ Reorganization During State Transitions
by Radka Vladkova
Membranes 2025, 15(5), 143; https://doi.org/10.3390/membranes15050143 - 8 May 2025
Viewed by 1776
Abstract
The rapid regulatory mechanism of light-induced state transitions (STs) in oxygenic photosynthesis is particularly appealing for membrane-based applications. This interest stems from the unique ability of the thylakoid membrane protein cytochrome b6f (cytb6f) to increase or decrease [...] Read more.
The rapid regulatory mechanism of light-induced state transitions (STs) in oxygenic photosynthesis is particularly appealing for membrane-based applications. This interest stems from the unique ability of the thylakoid membrane protein cytochrome b6f (cytb6f) to increase or decrease its hydrophobic thickness (dP) in parallel with the reduction or oxidation of the PQ pool induced by changes in light quality. This property appears to be the long-sought biophysical driver behind the reorganizations of membrane proteins during STs. This study decisively advances the hydrophobic mismatch (HMM) model for cytb6f-driven STs by thoroughly analyzing thirteen X-ray crystal and eight cryo-electron microscopy cytb6f structures. It uncovers the lipid nanoenvironments that cytb6f, with different hydrophobic thicknesses, selectively attracts. Under optimal, stationary conditions for photosynthesis in low light, when there is hydrophobic matching between the hydrophobic thicknesses of cytb6f dP and that of the bulk thylakoid lipid phase dL, dP = dL, cytb6f predominantly binds to anionic lipids—several phosphatidylglycerol (PG) molecules and one sulfoquinovosyldiacylglycerol (SQDG) molecule. Upon the induction of the transition to State 2, when dP increases and induces a positive HMM (dP > dL), the neutral, non-bilayer-forming lipid monogalactosyldiacylglycerol (MGDG) replaces some of the bound PGs. Upon the induction of the transition to State 1, when dP decreases and induces a negative HMM (dP < dL), PGs and SQDG detach from their binding sites, and two neutral, bilayer-forming lipids such as digalactosyldiacylglycerol (DGDG) occupy two sites. Additionally, this research uncovers two lipid-mediated signaling pathways from Chla to the center of flexibility, the Phe/Tyr124fg-loop-suIV residue—one of which involves β-carotene. This study identifies two novel types of lipid raft-like nanodomains that are devoid of typical components, such as sphingomyelin and cholesterol. These findings firmly validate the HMM model and underscore the STs as the first recognized functional process that fully utilizes the unique and evolutionarily conserved composition of just four thylakoid lipid classes. This research contributes to our understanding of membrane dynamics in general and STs in particular. It introduces a novel and simple approach for reversible protein reorganization driven purely by biophysical mechanisms, with promising implications for various membrane-based applications. Full article
Show Figures

Figure 1

Back to TopTop