Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = lipase-catalyzed interesterification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2789 KiB  
Article
Batch and Continuous Lipase-Catalyzed Production of Dietetic Structured Lipids from Milk Thistle, Grapeseed, and Apricot Kernel Oils
by Şuheda Akbaş, Natália M. Osório and Suzana Ferreira-Dias
Molecules 2025, 30(9), 1943; https://doi.org/10.3390/molecules30091943 - 27 Apr 2025
Viewed by 563
Abstract
The sustainable production of healthy structured lipids (SLs) using oils extracted from agro-industry by-products or non-conventional lipid sources is of utmost importance in the framework of a circular bioeconomy, toward a zero-waste goal. In this study, low-calorie triacylglycerols (TAGs) containing a long-chain (L) [...] Read more.
The sustainable production of healthy structured lipids (SLs) using oils extracted from agro-industry by-products or non-conventional lipid sources is of utmost importance in the framework of a circular bioeconomy, toward a zero-waste goal. In this study, low-calorie triacylglycerols (TAGs) containing a long-chain (L) fatty acid (FA) at position sn-2 and medium-chain (M) FAs at positions sn-1,3 (MLM type SL) were obtained from virgin cold-pressed milk thistle (51.55% linoleic acid; C18:2), grapeseed (66.62% C18:2), and apricot kernel (68.61% oleic acid; C18:1) oils. Lipase-catalyzed acidolysis with capric acid (C10:0) or interesterification with ethyl caprate (C10 Ethyl) in solvent-free media were performed. In batch reactions, immobilized Rhizomucor miehei lipase (Lipozyme RM) was used as a biocatalyst. For all tested oils, new TAG (SL) yields, varying from 61 to 63%, were obtained after 6 h of interesterification. Maximum new TAG yields were reached after 6, 24, and 30 h of acidolysis with grapeseed (64.7%), milk thistle (56.1%), or apricot kernel (69.7%) oils, respectively. Continuous acidolysis and interesterification of grapeseed oil were implemented in a packed-bed bioreactor, catalyzed by immobilized Thermomyces lanuginosus lipase (Lipozyme TL IM). Throughout 150 h of continuous operation, no lipase deactivation was observed, with average SL yields of 79.2% ± 4.1 by interesterification and 61.5% ± 5.91 by acidolysis. Full article
(This article belongs to the Section Bioactive Lipids)
Show Figures

Figure 1

14 pages, 2513 KiB  
Article
Synthesis of Biodiesel via Interesterification Reaction of Calophyllum inophyllum Seed Oil and Ethyl Acetate over Lipase Catalyst: Experimental and Surface Response Methodology Analysis
by Ratna Dewi Kusumaningtyas, Normaliza Normaliza, Elva Dianis Novia Anisa, Haniif Prasetiawan, Dhoni Hartanto, Harumi Veny, Fazlena Hamzah and Miradatul Najwa Muhd Rodhi
Energies 2022, 15(20), 7737; https://doi.org/10.3390/en15207737 - 19 Oct 2022
Cited by 3 | Viewed by 2809
Abstract
Biodiesel is increasingly being considered as an alternative to the fossil fuel as it is renewable, nontoxic, biodegradable, and feasible for mass production. Biodiesel can be produced from various types of vegetable oils. Calophyllum inophyllum seed oil (CSO) is among the prospective nonedible [...] Read more.
Biodiesel is increasingly being considered as an alternative to the fossil fuel as it is renewable, nontoxic, biodegradable, and feasible for mass production. Biodiesel can be produced from various types of vegetable oils. Calophyllum inophyllum seed oil (CSO) is among the prospective nonedible vegetable oils considered as a raw material for biodiesel synthesis. The most common process of the biodiesel manufacturing is the transesterification of vegetable oils which results in glycerol as a by-product. Thus, product purification is necessary. In this work, an alternative route to biodiesel synthesis through interesterification reaction of vegetable oil and ethyl acetate was conducted. By replacing alcohol with ethyl acetate, triacetin was produced as a side product rather than glycerol. Triacetin can be used as a fuel additive to increase the octane number of the fuel. Therefore, triacetin separation from biodiesel products is needless. The interesterification reaction is catalyzed by an alkaline catalyst or by a lipase enzyme. In this study, biodiesel synthesis was carried out using a lipase enzyme since it is a green and sustainable catalyst. The interesterification reaction of CSO with ethyl acetate in the presence of a lipase catalyst was conducted using the molar ratio of CSO and ethyl acetate of 1:3. The reaction time, lipase catalyst concentration, and reaction temperature were varied at 1, 2, 3, 4, 5 h, 10%,15%, 20%, and 30 °C, 40 °C, 50 °C, 60 °C, respectively. The experimental results were also analyzed using response surface methodology (RSM) with the Box–Behnken design (BBD) model on Design Expert software. Data processing using RSM revealed that the highest conversion within the studied parameter range was 41.46%, obtained at a temperature reaction of 44.43 °C, a reaction time of 5 h, and a lipase catalyst concentration of 20%. Full article
(This article belongs to the Topic Chemical and Biochemical Processes for Energy Sources)
Show Figures

Figure 1

17 pages, 12144 KiB  
Article
Synthesis of Dietetic Structured Lipids from Spent Coffee Grounds Crude Oil Catalyzed by Commercial Immobilized Lipases and Immobilized Rhizopus oryzae Lipase on Biochar and Hybrid Support
by Danyelle A. Mota, Jefferson C. B. Santos, Diana Faria, Álvaro S. Lima, Laiza C. Krause, Cleide M. F. Soares and Suzana Ferreira-Dias
Processes 2020, 8(12), 1542; https://doi.org/10.3390/pr8121542 - 26 Nov 2020
Cited by 23 | Viewed by 3781
Abstract
The aim of this study was the valorization of coffee industry residues, namely spent coffee grounds (SCG) as a source of oil, and silverskin (CS) as a source of both oil and biomass, under the concept of the circular economy. Therefore, crude oil [...] Read more.
The aim of this study was the valorization of coffee industry residues, namely spent coffee grounds (SCG) as a source of oil, and silverskin (CS) as a source of both oil and biomass, under the concept of the circular economy. Therefore, crude oil from SCG was used to produce low-calorie structured lipids (SL) for food and pharmaceutical industries, and CS to produce biochar by pyrolysis for biotechnological uses. SL were obtained by acidolysis with caprylic or capric acid, or interesterification with ethyl caprylate or ethyl caprate, in solvent-free media, catalyzed by immobilized sn-1,3 regioselective lipases. Silverskin biochar (BIO) was directly used as enzyme carrier or to produce hybrid organic-silica (HB) supports for enzyme immobilization. Rhizopus oryzae lipase (ROL) immobilized on Amberlite (AMB), silica (SIL), BIO or HB, and the commercial immobilized Thermomyces lanuginosus (Lipozyme TL IM) and Rhizomucor miehei (Lipozyme RM IM) lipases were tested. Lipozyme RM IM showed better results in SL production than Lipozyme TLIM or ROL on BIO, SIL or HB. About 90% triacylglycerol conversion was attained after 7 h acidolysis or interesterification. Lipozyme RM IM was more stable in interesterification (80% and 65% activity with ethyl caprylate or ethyl caprate) than in acidolysis (first-order decay) after 10 reuses. Full article
(This article belongs to the Special Issue Biocatalysis, Enzyme and Process Engineering)
Show Figures

Graphical abstract

17 pages, 2042 KiB  
Article
Interesterification of Egg-Yolk Phosphatidylcholine with p-Methoxycinnamic Acid Catalyzed by Immobilized Lipase B from Candida Antarctica
by Magdalena Rychlicka and Anna Gliszczyńska
Catalysts 2020, 10(10), 1181; https://doi.org/10.3390/catal10101181 - 14 Oct 2020
Cited by 7 | Viewed by 3070
Abstract
The p-methoxycinnamic acid (p-MCA) is one of the most popular phenylpropanoids, the beneficial impact of which on the human health is well documented in the literature. This compound has shown many valuable activities including anticancer, antidiabetic, and neuro- and hepatoprotective. [...] Read more.
The p-methoxycinnamic acid (p-MCA) is one of the most popular phenylpropanoids, the beneficial impact of which on the human health is well documented in the literature. This compound has shown many valuable activities including anticancer, antidiabetic, and neuro- and hepatoprotective. However, its practical application is limited by its low bioavailability resulting from rapid metabolism in the human body. The latest strategy, aimed at overcoming these limitations, is based on the production of more stability in systemic circulation bioconjugates with phospholipids. Therefore, the aim of this research was to develop the biotechnological method for the synthesis of phospholipid derivatives of p-methoxycinnamic acid, which can play a role of new nutraceuticals. We developed and optimized enzymatic interesterification of phosphatidylcholine (PC) with ethyl p-methoxycinnamate (Ep-MCA). Novozym 435 and a binary solvent system of toluene/chloroform 9:1 (v/v) were found to be the effective biocatalyst and reaction medium for the synthesis of structured p-MCA phospholipids, respectively. The effects of the other reaction parameters, such as substrate molar ratio, enzyme dosage, and reaction time, on the degree of incorporation of p-MCA into PC were evaluated by use of an experimental factorial design method. The results showed that substrate molar ratio and biocatalyst load have significant effects on the synthesis of p-methoxycinnamoylated phospholipids. The optimum conditions were: Reaction time of three days, 30% (w/w) of Novozym 435, and 1/10 substrate molar ratio PC/Ep-MCA. Under these parameters, p-methoxycinnamoylated lysophosphatidylcholine (p-MCA-LPC) and p-methoxycinnamoylated phosphatidylcholine (p-MCA-PC) were obtained in isolated yields of 32% and 3% (w/w), respectively. Full article
(This article belongs to the Special Issue Application of Immobilized Enzyme as Catalysts in Chemical Synthesis)
Show Figures

Figure 1

13 pages, 1600 KiB  
Article
Production of Structured Phosphatidylcholine with High Content of Myristic Acid by Lipase-Catalyzed Acidolysis and Interesterification
by Anna Chojnacka and Witold Gładkowski
Catalysts 2018, 8(7), 281; https://doi.org/10.3390/catal8070281 - 14 Jul 2018
Cited by 18 | Viewed by 6436
Abstract
Synthesis of structured phosphatidylcholine (PC) enriched with myristic acid (MA) was conducted by acidolysis and interesterification reactions using immobilized lipases as catalysts and two acyl donors: trimyristin (TMA) isolated from ground nutmeg, and myristic acid obtained by saponification of TMA. Screening experiments indicated [...] Read more.
Synthesis of structured phosphatidylcholine (PC) enriched with myristic acid (MA) was conducted by acidolysis and interesterification reactions using immobilized lipases as catalysts and two acyl donors: trimyristin (TMA) isolated from ground nutmeg, and myristic acid obtained by saponification of TMA. Screening experiments indicated that the most effective biocatalyst for interesterification was Rhizomucor miehei lipase (RML), whereas for acidolysis, the most active were Thermomyces lanuginosus lipase (TLL) and RML. The effect of the molar ratio of substrates (egg-yolk PC/acyl donor), enzyme loading, and different solvent on the incorporation of MA into PC and on PC recovery was studied. The maximal incorporation of MA (44 wt%) was achieved after 48 h of RML-catalyzed interesterification in hexane using substrates molar ratio (PC/trimyristin) 1/5 and 30% enzyme load. Comparable results were obtained in toluene with 1/3 substrates molar ratio. Interesterification of PC with trimyristin resulted in significantly higher MA incorporation than acidolysis with myristic acid, particularly in the reactions catalyzed by RML. Full article
(This article belongs to the Special Issue Catalyzed Synthesis of Natural Products)
Show Figures

Figure 1

67 pages, 2389 KiB  
Review
Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications
by Grazia M. Borrelli and Daniela Trono
Int. J. Mol. Sci. 2015, 16(9), 20774-20840; https://doi.org/10.3390/ijms160920774 - 1 Sep 2015
Cited by 298 | Viewed by 22285
Abstract
Lipases and phospholipases are interfacial enzymes that hydrolyze hydrophobic ester linkages of triacylglycerols and phospholipids, respectively. In addition to their role as esterases, these enzymes catalyze a plethora of other reactions; indeed, lipases also catalyze esterification, transesterification and interesterification reactions, and phospholipases also [...] Read more.
Lipases and phospholipases are interfacial enzymes that hydrolyze hydrophobic ester linkages of triacylglycerols and phospholipids, respectively. In addition to their role as esterases, these enzymes catalyze a plethora of other reactions; indeed, lipases also catalyze esterification, transesterification and interesterification reactions, and phospholipases also show acyltransferase, transacylase and transphosphatidylation activities. Thus, lipases and phospholipases represent versatile biocatalysts that are widely used in various industrial applications, such as for biodiesels, food, nutraceuticals, oil degumming and detergents; minor applications also include bioremediation, agriculture, cosmetics, leather and paper industries. These enzymes are ubiquitous in most living organisms, across animals, plants, yeasts, fungi and bacteria. For their greater availability and their ease of production, microbial lipases and phospholipases are preferred to those derived from animals and plants. Nevertheless, traditional purification strategies from microbe cultures have a number of disadvantages, which include non-reproducibility and low yields. Moreover, native microbial enzymes are not always suitable for biocatalytic processes. The development of molecular techniques for the production of recombinant heterologous proteins in a host system has overcome these constraints, as this allows high-level protein expression and production of new redesigned enzymes with improved catalytic properties. These can meet the requirements of specific industrial process better than the native enzymes. The purpose of this review is to give an overview of the structural and functional features of lipases and phospholipases, to describe the recent advances in optimization of the production of recombinant lipases and phospholipases, and to summarize the information available relating to their major applications in industrial processes. Full article
(This article belongs to the Special Issue Molecular Biocatalysis)
Show Figures

Graphical abstract

12 pages, 249 KiB  
Article
Synthesis of Structured Lipids by Lipase-Catalyzed Interesterification of Triacetin with Camellia Oil Methyl Esters and Preliminary Evaluation of their Plasma Lipid-Lowering Effect in Mice
by Yu Cao, Suijian Qi, Yang Zhang, Xiaoning Wang, Bo Yang and Yonghua Wang
Molecules 2013, 18(4), 3733-3744; https://doi.org/10.3390/molecules18043733 - 25 Mar 2013
Cited by 27 | Viewed by 6832
Abstract
Structured lipids (SLCTs triacylglycerols with short- and long-chain acyl residues) were synthesized by interesterification of triacetin and fatty acid methyl esters (FAMEs) from camellia oil, followed by molecular distillation for purification. Different commercial immobilized lipases (Lipozyme RM IM and Novozyme 435), the substrate [...] Read more.
Structured lipids (SLCTs triacylglycerols with short- and long-chain acyl residues) were synthesized by interesterification of triacetin and fatty acid methyl esters (FAMEs) from camellia oil, followed by molecular distillation for purification. Different commercial immobilized lipases (Lipozyme RM IM and Novozyme 435), the substrate molar ratios of FAMEs to triacetin, the reaction temperatures and the lipase amounts were studied for their efficiency in producing SLCTs. Results showed that Novozyme 435 was more suitable for this reaction system. Moreover, the optimal reaction conditions for the highest conversion of FAMEs and the highest LLS-TAGs (triacylglycerols with one short- and two long-chain acyl residues) yields were achieved at a molar ratio of FAMEs to triacetin of 3:1, 50 °C of reaction temperature and a lipase amount of 4% (w/v). Scale-up was conducted based on the optimized reaction conditions. Results showed that after 24 h of reaction , the conversion rate of FAMEs was 82.4% and the rate of disubstituted triacetin was 52.4 mol%. The final product yield rate was 94.6%. The effects of the synthesized SLCTs on the plasma lipid level of fasting mice were also studied. The SLCTs could effectively lessen the total triacylglycerol levels in plasma compared to the triacylglycerol group in fasting NIH mice. It suggested that this type of structured lipid might be beneficial for human health, especially for the prevention of obesity. Full article
Show Figures

Figure 1

19 pages, 1263 KiB  
Article
Modification of oligo-Ricinoleic Acid and Its Derivatives with 10-Undecenoic Acid via Lipase-Catalyzed Esterification
by Douglas G. Hayes, Vinay K. Mannam, Ran Ye, Haizhen Zhao, Salvadora Ortega and M. Claudia Montiel
Polymers 2012, 4(2), 1037-1055; https://doi.org/10.3390/polym4021037 - 17 Apr 2012
Cited by 21 | Viewed by 11684
Abstract
Lipases were employed under solvent-free conditions to conjugate oligo-ricinoleic acid derivatives with 10-undecenoic acid, to incorporate a reactive terminal double bond into the resultant product. First, undecenoic acid was covalently attached to oligo-ricinoleic acid using immobilized Candida antarctica lipase (CAL) at [...] Read more.
Lipases were employed under solvent-free conditions to conjugate oligo-ricinoleic acid derivatives with 10-undecenoic acid, to incorporate a reactive terminal double bond into the resultant product. First, undecenoic acid was covalently attached to oligo-ricinoleic acid using immobilized Candida antarctica lipase (CAL) at a 30% yield. Thirty percent conversion also occurred for CAL-catalyzed esterification between undecenoic acid and biocatalytically-prepared polyglycerol polyricinoleate (PGPR), with attachment of undecenoic acid occurring primarily at free hydroxyls of the polyglycerol moiety. The synthesis of oligo-ricinoleyl-, undecenoyl- structured triacylglycerols comprised two steps. The first step, the 1,3-selective lipase-catalyzed interesterification of castor oil with undecenoic acid, occurred successfully. The second step, the CAL-catalyzed reaction between ricinoleyl-, undecenoyl structured TAG and ricinoleic acid, yielded approximately 10% of the desired structured triacylglycerols (TAG); however, a significant portion of the ricinoleic acid underwent self-polymerization as a side-reaction. The employment of gel permeation chromatography, normal phase HPLC, NMR, and acid value measurements was effective for characterizing the reaction pathways and products that formed. Full article
(This article belongs to the Special Issue Enzymes in Monomer and Polymer Synthesis)
Show Figures

Graphical abstract

Back to TopTop