Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = linear spectral unmixing (LSU)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7865 KiB  
Article
Applying Knowledge-Based and Data-Driven Methods to Improve Ore Grade Control of Blast Hole Drill Cuttings Using Hyperspectral Imaging
by Somaieh Akbar, Mehdi Abdolmaleki, Saleh Ghadernejad and Kamran Esmaeili
Remote Sens. 2024, 16(15), 2823; https://doi.org/10.3390/rs16152823 - 1 Aug 2024
Cited by 5 | Viewed by 2031
Abstract
This study introduces a novel method utilizing hyperspectral imaging for instantaneous ore-waste analysis of drill cuttings. To implement this technique, we collected samples of drill cuttings at regular depth intervals from five blast holes in an open pit gold mine and subjected them [...] Read more.
This study introduces a novel method utilizing hyperspectral imaging for instantaneous ore-waste analysis of drill cuttings. To implement this technique, we collected samples of drill cuttings at regular depth intervals from five blast holes in an open pit gold mine and subjected them to scanning using a hyperspectral imaging system. Subsequently, we employed two distinct methods for processing the hyperspectral images. A knowledge-based method was used to estimate ore grade within each sampled interval, and a data-driven technique was employed to distinguish the ore and waste for each sample interval. Firstly, leveraging the mixed mineralogical composition of the samples, the Linear Spectral Unmixing (LSU) technique was utilized to predict ore grade for each sample. Additionally, the Gradient Boosting Classifier (GBC) was used as an efficient data-driven approach to classify ore-waste samples. Both methods rendered accurate results when they were compared with results obtained through laboratory X-ray diffraction (XRD) analysis and gold assay analysis for the same sample intervals. Adopting the proposed methodology in open pit mine operations can significantly enhance the process of grade control during blast hole drilling. This includes reducing costs, saving time, minimizing uncertainty in ore grade estimation, and establishing more precise ore-waste boundaries in resource block models. Full article
Show Figures

Figure 1

24 pages, 16262 KiB  
Article
Monitoring Forest Cover Dynamics Using Orthophotos and Satellite Imagery
by Lucian Blaga, Dorina Camelia Ilieș, Jan A. Wendt, Ioan Rus, Kai Zhu and Lóránt Dénes Dávid
Remote Sens. 2023, 15(12), 3168; https://doi.org/10.3390/rs15123168 - 18 Jun 2023
Cited by 12 | Viewed by 3718
Abstract
The assessment of changes in forest coverage is crucial for managing protected forest areas, particularly in the face of climate change. This study monitored forest cover dynamics in a 6535 ha mountain area located in north-west Romania as part of the Apuseni Natural [...] Read more.
The assessment of changes in forest coverage is crucial for managing protected forest areas, particularly in the face of climate change. This study monitored forest cover dynamics in a 6535 ha mountain area located in north-west Romania as part of the Apuseni Natural Park from 2003 to 2019. Two approaches were used: vectorization from orthophotos and Google Earth images (in 2003, 2005, 2009, 2012, 2014, 2016, 2017, and 2019) and satellite imagery (Landsat 5 TM, 7 ETM, and 8 OLI) pre-processed to Surface Reflectance (SR) format from the same years. We employed four standard classifiers: Support Vector Machine (SVM), Random Forest (RF), Maximum Likelihood Classification (MLC), Spectral Angle Mapper (SAM), and three combined methods: Linear Spectral Unmixing (LSU) with Natural Breaks (NB), Otsu Method (OM) and SVM, to extract and classify forest areas. Our study had two objectives: 1) to accurately assess changes in forest cover over a 17-year period and 2) to determine the most efficient methods for extracting and classifying forest areas. We validated the results using performance metrics that quantify both thematic and spatial accuracy. Our results indicate a 9% loss of forest cover in the study area, representing 577 ha with an average decrease ratio of 33.9 ha/year−1. Of all the methods used, SVM produced the best results (with an average score of 88% for Overall Quality (OQ)), followed by RF (with a mean value of 86% for OQ). Full article
(This article belongs to the Special Issue Image Analysis for Forest Environmental Monitoring)
Show Figures

Figure 1

25 pages, 10380 KiB  
Article
Application of Dirichlet Process and Support Vector Machine Techniques for Mapping Alteration Zones Associated with Porphyry Copper Deposit Using ASTER Remote Sensing Imagery
by Mastoureh Yousefi, Seyed Hassan Tabatabaei, Reyhaneh Rikhtehgaran, Amin Beiranvand Pour and Biswajeet Pradhan
Minerals 2021, 11(11), 1235; https://doi.org/10.3390/min11111235 - 6 Nov 2021
Cited by 22 | Viewed by 3308
Abstract
The application of machine learning (ML) algorithms for processing remote sensing data is momentous, particularly for mapping hydrothermal alteration zones associated with porphyry copper deposits. The unsupervised Dirichlet Process (DP) and the supervised Support Vector Machine (SVM) techniques can be executed for mapping [...] Read more.
The application of machine learning (ML) algorithms for processing remote sensing data is momentous, particularly for mapping hydrothermal alteration zones associated with porphyry copper deposits. The unsupervised Dirichlet Process (DP) and the supervised Support Vector Machine (SVM) techniques can be executed for mapping hydrothermal alteration zones associated with porphyry copper deposits. The main objective of this investigation is to practice an algorithm that can accurately model the best training data as input for supervised methods such as SVM. For this purpose, the Zefreh porphyry copper deposit located in the Urumieh-Dokhtar Magmatic Arc (UDMA) of central Iran was selected and used as training data. Initially, using ASTER data, different alteration zones of the Zefreh porphyry copper deposit were detected by Band Ratio, Relative Band Depth (RBD), Linear Spectral Unmixing (LSU), Spectral Feature Fitting (SFF), and Orthogonal Subspace Projection (OSP) techniques. Then, using the DP method, the exact extent of each alteration was determined. Finally, the detected alterations were used as training data to identify similar alteration zones in full scene of ASTER using SVM and Spectral Angle Mapper (SAM) methods. Several high potential zones were identified in the study area. Field surveys and laboratory analysis were used to validate the image processing results. This investigation demonstrates that the application of the SVM algorithm for mapping hydrothermal alteration zones associated with porphyry copper deposits is broadly applicable to ASTER data and can be used for prospectivity mapping in many metallogenic provinces around the world. Full article
Show Figures

Figure 1

23 pages, 9076 KiB  
Article
A Probability-Based Spectral Unmixing Analysis for Mapping Percentage Vegetation Cover of Arid and Semi-Arid Areas
by Yunlei Cui, Hua Sun, Guangxing Wang, Chengjie Li and Xiaoyu Xu
Remote Sens. 2019, 11(24), 3038; https://doi.org/10.3390/rs11243038 - 16 Dec 2019
Cited by 12 | Viewed by 4130
Abstract
China has been facing serious land degradation and desertification in its north and northwest arid and semi-arid areas. Monitoring the dynamics of percentage vegetation cover (PVC) using remote sensing imagery in these areas has become critical. However, because these areas are large, remote, [...] Read more.
China has been facing serious land degradation and desertification in its north and northwest arid and semi-arid areas. Monitoring the dynamics of percentage vegetation cover (PVC) using remote sensing imagery in these areas has become critical. However, because these areas are large, remote, and sparsely populated, and also because of the existence of mixed pixels, there have been no accurate and cost-effective methods available for this purpose. Spectral unmixing methods are a good alternative as they do not need field data and are low cost. However, traditional linear spectral unmixing (LSU) methods lack the ability to capture the characteristics of spectral reflectance and scattering from endmembers and their interactions within mixed pixels. Moreover, existing nonlinear spectral unmixing methods, such as random forest (RF) and radial basis function neural network (RBFNN), are often costly because they require field measurements of PVC from a large number of training samples. In this study, a cost-effective approach to mapping PVC in arid and semi-arid areas was proposed. A method for selection and purification of endmembers mainly based on Landsat imagery was first presented. A probability-based spectral unmixing analysis (PBSUA) and a probability-based optimized k nearest-neighbors (PBOkNN) approach were then developed to improve the mapping of PVC in Duolun County in Inner Mongolia, China, using Landsat 8 images and field data from 920 sample plots. The proposed PBSUA and PBOkNN methods were further validated in terms of accuracy and cost-effectiveness by comparison with two LSU methods, with and without purification of endmembers, and two nonlinear approaches, RF and RBFNN. The cost-effectiveness was defined as the reciprocal of cost timing relative root mean square error (RRMSE). The results showed that (1) Probability-based spectral unmixing analysis (PBSUA) was most cost-effective and increased the cost-effectiveness by 29.3% 29.3%, 33.5%, 50.8%, and 53.0% compared with two LSU methods, PBOkNN, RF, and RBFNN, respectively; (2) PBSUA, RF, and RBFNN gave RRMSE values of 22.9%, 21.8%, and 22.8%, respectively, which were not significantly different from each other at the significance level of 0.05. Compatibly, PBOkNN and LSU methods with and without purification of endmembers resulted in significantly greater RRMSE values of 27.5%, 32.4%, and 43.3%, respectively; (3) the average estimates of the sample plots and predicted maps from PBSUA, PBOkNN, RF, and RBFNN fell in the confidence interval of the test plot data, but those from two LSU methods did not, although the LSU with purification of endmembers improved the PVC estimation accuracy by 25.2% compared with the LSU without purification of endmembers. Thus, this study indicated that the proposed PBSUA had great potential for cost-effectively mapping PVC in arid and semi-arid areas. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Graphical abstract

39 pages, 22117 KiB  
Article
Landsat-8, Advanced Spaceborne Thermal Emission and Reflection Radiometer, and WorldView-3 Multispectral Satellite Imagery for Prospecting Copper-Gold Mineralization in the Northeastern Inglefield Mobile Belt (IMB), Northwest Greenland
by Amin Beiranvand Pour, Tae-Yoon S. Park, Yongcheol Park, Jong Kuk Hong, Aidy M Muslim, Andreas Läufer, Laura Crispini, Biswajeet Pradhan, Basem Zoheir, Omeid Rahmani, Mazlan Hashim and Mohammad Shawkat Hossain
Remote Sens. 2019, 11(20), 2430; https://doi.org/10.3390/rs11202430 - 19 Oct 2019
Cited by 92 | Viewed by 13591
Abstract
Several regions in the High Arctic still lingered poorly explored for a variety of mineralization types because of harsh climate environments and remoteness. Inglefield Land is an ice-free region in northwest Greenland that contains copper-gold mineralization associated with hydrothermal alteration mineral assemblages. In [...] Read more.
Several regions in the High Arctic still lingered poorly explored for a variety of mineralization types because of harsh climate environments and remoteness. Inglefield Land is an ice-free region in northwest Greenland that contains copper-gold mineralization associated with hydrothermal alteration mineral assemblages. In this study, Landsat-8, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and WorldView-3 multispectral remote sensing data were used for hydrothermal alteration mapping and mineral prospecting in the Inglefield Land at regional, local, and district scales. Directed principal components analysis (DPCA) technique was applied to map iron oxide/hydroxide, Al/Fe-OH, Mg-Fe-OH minerals, silicification (Si-OH), and SiO2 mineral groups using specialized band ratios of the multispectral datasets. For extracting reference spectra directly from the Landsat-8, ASTER, and WorldView-3 (WV-3) images to generate fraction images of end-member minerals, the automated spectral hourglass (ASH) approach was implemented. Linear spectral unmixing (LSU) algorithm was thereafter used to produce a mineral map of fractional images. Furthermore, adaptive coherence estimator (ACE) algorithm was applied to visible and near-infrared and shortwave infrared (VINR + SWIR) bands of ASTER using laboratory reflectance spectra extracted from the USGS spectral library for verifying the presence of mineral spectral signatures. Results indicate that the boundaries between the Franklinian sedimentary successions and the Etah metamorphic and meta-igneous complex, the orthogneiss in the northeastern part of the Cu-Au mineralization belt adjacent to Dallas Bugt, and the southern part of the Cu-Au mineralization belt nearby Marshall Bugt show high content of iron oxides/hydroxides and Si-OH/SiO2 mineral groups, which warrant high potential for Cu-Au prospecting. A high spatial distribution of hematite/jarosite, chalcedony/opal, and chlorite/epidote/biotite were identified with the documented Cu-Au occurrences in central and southwestern sectors of the Cu-Au mineralization belt. The calculation of confusion matrix and Kappa Coefficient proved appropriate overall accuracy and good rate of agreement for alteration mineral mapping. This investigation accomplished the application of multispectral/multi-sensor satellite imagery as a valuable and economical tool for reconnaissance stages of systematic mineral exploration projects in remote and inaccessible metallogenic provinces around the world, particularly in the High Arctic regions. Full article
Show Figures

Graphical abstract

22 pages, 7217 KiB  
Article
Partial Linear NMF-Based Unmixing Methods for Detection and Area Estimation of Photovoltaic Panels in Urban Hyperspectral Remote Sensing Data
by Moussa Sofiane Karoui, Fatima Zohra Benhalouche, Yannick Deville, Khelifa Djerriri, Xavier Briottet, Thomas Houet, Arnaud Le Bris and Christiane Weber
Remote Sens. 2019, 11(18), 2164; https://doi.org/10.3390/rs11182164 - 17 Sep 2019
Cited by 42 | Viewed by 4802
Abstract
High-spectral-resolution hyperspectral data are acquired by sensors that gather images from hundreds of narrow and contiguous bands of the electromagnetic spectrum. These data offer unique opportunities for characterization and precise land surface recognition in urban areas. So far, few studies have been conducted [...] Read more.
High-spectral-resolution hyperspectral data are acquired by sensors that gather images from hundreds of narrow and contiguous bands of the electromagnetic spectrum. These data offer unique opportunities for characterization and precise land surface recognition in urban areas. So far, few studies have been conducted with these data to automatically detect and estimate areas of photovoltaic panels, which currently constitute an important part of renewable energy systems in urban areas of developed countries. In this paper, two hyperspectral-unmixing-based methods are proposed to detect and to estimate surfaces of photovoltaic panels. These approaches, related to linear spectral unmixing (LSU) techniques, are based on new nonnegative matrix factorization (NMF) algorithms that exploit known panel spectra, which makes them partial NMF methods. The first approach, called Grd-Part-NMF, is a gradient-based method, whereas the second one, called Multi-Part-NMF, uses multiplicative update rules. To evaluate the performance of these approaches, experiments are conducted on realistic synthetic and real airborne hyperspectral data acquired over an urban region. For the synthetic data, obtained results show that the proposed methods yield much better overall performance than NMF-unmixing-based methods from the literature. For the real data, the obtained detection and area estimation results are first confirmed by using very high-spatial-resolution ortho-images of the same regions. These results are also compared with those obtained by standard NMF-unmixing-based methods and by a one-class-classification-based approach. This comparison shows that the proposed approaches are superior to those considered from the literature. Full article
(This article belongs to the Special Issue Hyperspectral Imagery for Urban Environment)
Show Figures

Graphical abstract

41 pages, 11096 KiB  
Article
Mapping Listvenite Occurrences in the Damage Zones of Northern Victoria Land, Antarctica Using ASTER Satellite Remote Sensing Data
by Amin Beiranvand Pour, Yongcheol Park, Laura Crispini, Andreas Läufer, Jong Kuk Hong, Tae-Yoon S. Park, Basem Zoheir, Biswajeet Pradhan, Aidy M. Muslim, Mohammad Shawkat Hossain and Omeid Rahmani
Remote Sens. 2019, 11(12), 1408; https://doi.org/10.3390/rs11121408 - 13 Jun 2019
Cited by 76 | Viewed by 8033
Abstract
Listvenites normally form during hydrothermal/metasomatic alteration of mafic and ultramafic rocks and represent a key indicator for the occurrence of ore mineralizations in orogenic systems. Hydrothermal/metasomatic alteration mineral assemblages are one of the significant indicators for ore mineralizations in the damage zones of [...] Read more.
Listvenites normally form during hydrothermal/metasomatic alteration of mafic and ultramafic rocks and represent a key indicator for the occurrence of ore mineralizations in orogenic systems. Hydrothermal/metasomatic alteration mineral assemblages are one of the significant indicators for ore mineralizations in the damage zones of major tectonic boundaries, which can be detected using multispectral satellite remote sensing data. In this research, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral remote sensing data were used to detect listvenite occurrences and alteration mineral assemblages in the poorly exposed damage zones of the boundaries between the Wilson, Bowers and Robertson Bay terranes in Northern Victoria Land (NVL), Antarctica. Spectral information for detecting alteration mineral assemblages and listvenites were extracted at pixel and sub-pixel levels using the Principal Component Analysis (PCA)/Independent Component Analysis (ICA) fusion technique, Linear Spectral Unmixing (LSU) and Constrained Energy Minimization (CEM) algorithms. Mineralogical assemblages containing Fe2+, Fe3+, Fe-OH, Al-OH, Mg-OH and CO3 spectral absorption features were detected in the damage zones of the study area by implementing PCA/ICA fusion to visible and near infrared (VNIR) and shortwave infrared (SWIR) bands of ASTER. Silicate lithological groups were mapped and discriminated using PCA/ICA fusion to thermal infrared (TIR) bands of ASTER. Fraction images of prospective alteration minerals, including goethite, hematite, jarosite, biotite, kaolinite, muscovite, antigorite, serpentine, talc, actinolite, chlorite, epidote, calcite, dolomite and siderite and possible zones encompassing listvenite occurrences were produced using LSU and CEM algorithms to ASTER VNIR+SWIR spectral bands. Several potential zones for listvenite occurrences were identified, typically in association with mafic metavolcanic rocks (Glasgow Volcanics) in the Bowers Mountains. Comparison of the remote sensing results with geological investigations in the study area demonstrate invaluable implications of the remote sensing approach for mapping poorly exposed lithological units, detecting possible zones of listvenite occurrences and discriminating subpixel abundance of alteration mineral assemblages in the damage zones of the Wilson-Bowers and Bowers-Robertson Bay terrane boundaries and in intra-Bowers and Wilson terranes fault zones with high fluid flow. The satellite remote sensing approach developed in this research is explicitly pertinent to detecting key alteration mineral indicators for prospecting hydrothermal/metasomatic ore minerals in remote and inaccessible zones situated in other orogenic systems around the world. Full article
Show Figures

Figure 1

22 pages, 7361 KiB  
Article
Subpixel Inundation Mapping Using Landsat-8 OLI and UAV Data for a Wetland Region on the Zoige Plateau, China
by Haoming Xia, Wei Zhao, Ainong Li, Jinhu Bian and Zhengjian Zhang
Remote Sens. 2017, 9(1), 31; https://doi.org/10.3390/rs9010031 - 2 Jan 2017
Cited by 39 | Viewed by 6736
Abstract
Wetland inundation is crucial to the survival and prosperity of fauna and flora communities in wetland ecosystems. Even small changes in surface inundation may result in a substantial impact on the wetland ecosystem characteristics and function. This study presented a novel method for [...] Read more.
Wetland inundation is crucial to the survival and prosperity of fauna and flora communities in wetland ecosystems. Even small changes in surface inundation may result in a substantial impact on the wetland ecosystem characteristics and function. This study presented a novel method for wetland inundation mapping at a subpixel scale in a typical wetland region on the Zoige Plateau, northeast Tibetan Plateau, China, by combining use of an unmanned aerial vehicle (UAV) and Landsat-8 Operational Land Imager (OLI) data. A reference subpixel inundation percentage (SIP) map at a Landsat-8 OLI 30 m pixel scale was first generated using high resolution UAV data (0.16 m). The reference SIP map and Landsat-8 OLI imagery were then used to develop SIP estimation models using three different retrieval methods (Linear spectral unmixing (LSU), Artificial neural networks (ANN), and Regression tree (RT)). Based on observations from 2014, the estimation results indicated that the estimation model developed with RT method could provide the best fitting results for the mapping wetland SIP (R2 = 0.933, RMSE = 8.73%) compared to the other two methods. The proposed model with RT method was validated with observations from 2013, and the estimated SIP was highly correlated with the reference SIP, with an R2 of 0.986 and an RMSE of 9.84%. This study highlighted the value of high resolution UAV data and globally and freely available Landsat data in combination with the developed approach for monitoring finely gradual inundation change patterns in wetland ecosystems. Full article
Show Figures

Figure 1

21 pages, 6474 KiB  
Article
Applying Spectral Unmixing to Determine Surface Water Parameters in a Mining Environment
by Veronika Kopačková and Lenka Hladíková
Remote Sens. 2014, 6(11), 11204-11224; https://doi.org/10.3390/rs61111204 - 13 Nov 2014
Cited by 10 | Viewed by 8532
Abstract
Compared to natural waters, mine waters represent an extreme water type that is frequently heavily polluted. Although they have been traditionally monitored by in situ measurements of point samples taken at regular intervals, the emergence of a new generation of multispectral and hyperspectral [...] Read more.
Compared to natural waters, mine waters represent an extreme water type that is frequently heavily polluted. Although they have been traditionally monitored by in situ measurements of point samples taken at regular intervals, the emergence of a new generation of multispectral and hyperspectral (HS) sensors means that image spectroscopy has the potential to become a modern method for monitoring polluted surface waters. This paper describes an approach employing linear Spectral Unmixing (LSU) for analysis of hyperspectral image data to map the relative abundances of mine water components (dissolved Fe—Fediss, dissolved organic carbon—DOC, undissolved particles). The ground truth data (8 monitored ponds) were used to validate the results of spectral mapping. The same approach applied to HS data was tested using the image data resampled to WorldView2 (WV2) spectral resolution. A key aspect of the image data processing was to define the proper pure image end members for the fundamental water types. The highest correlations detected between the studied water parameters and the fractional images using the HyMap and the resampled WV2 data, respectively, were: dissolved Fe (R2 = 0.74 and R2vw2 = 0.6), undissolved particles (R2 = 0.57 and R2vw2 = 0.49) and DOC (R2 = 0.42 and R2vw2 < 0.40). These fractional images were further classified to create semi-quantitative maps. In conclusion, the classification still benefited from the higher spectral resolution of the HyMap data; however the WV2 reflectance data can be suitable for mapping specific inherent optical properties (SIOPs), which significantly differ from one another from an optical point of view (e.g., mineral suspension, dissolved Fe and phytoplankton), but it seems difficult to differentiate among diverse suspension particles, especially when the waters have more complex properties (e.g., mineral particles, DOC together with tripton or other particles, etc.). Full article
Show Figures

Figure 1

24 pages, 4474 KiB  
Article
Determination of Carbonate Rock Chemistry Using Laboratory-Based Hyperspectral Imagery
by Nasrullah Zaini, Freek Van der Meer and Harald Van der Werff
Remote Sens. 2014, 6(5), 4149-4172; https://doi.org/10.3390/rs6054149 - 5 May 2014
Cited by 74 | Viewed by 10502
Abstract
The development of advanced laboratory-based imaging hyperspectral sensors, such as SisuCHEMA, has created an opportunity to extract compositional information of mineral mixtures from spectral images. Determining proportions of minerals on rock surfaces based on spectral signature is a challenging approach due to naturally-occurring [...] Read more.
The development of advanced laboratory-based imaging hyperspectral sensors, such as SisuCHEMA, has created an opportunity to extract compositional information of mineral mixtures from spectral images. Determining proportions of minerals on rock surfaces based on spectral signature is a challenging approach due to naturally-occurring minerals that exist in the form of intimate mixtures, and grain size variations. This study demonstrates the application of SisuCHEMA hyperspectral data to determine mineral components in hand specimens of carbonate rocks. Here, we applied wavelength position, spectral angle mapper (SAM) and linear spectral unmixing (LSU) approaches to estimate the chemical composition and the relative abundance of carbonate minerals on the rock surfaces. The accuracy of these classification methods and correlation between mineral chemistry and mineral spectral characteristics in determining mineral constituents of rocks are also analyzed. Results showed that chemical composition (Ca-Mg ratio) of carbonate minerals at a pixel (e.g., sub-grain) level can be extracted from the image pixel spectra using these spectral analysis methods. The results also indicated that the spatial distribution and the proportions of calcite-dolomite mixtures on the rock surfaces vary between the spectral methods. For the image shortwave infrared (SWIR) spectra, the wavelength position approach was found to be sensitive to all compositional variations of carbonate mineral mixtures when compared to the SAM and LSU approaches. The correlation between geochemical elements and spectroscopic parameters also revealed the presence of these carbonate mixtures with various chemical compositions in the rock samples. This study concludes that the wavelength position approach is a stable and reproducible technique for estimating carbonate mineral chemistry on the rock surfaces using laboratory-based hyperspectral data. Full article
Show Figures

21 pages, 1441 KiB  
Article
Hyperspectral Data for Mangrove Species Mapping: A Comparison of Pixel-Based and Object-Based Approach
by Muhammad Kamal and Stuart Phinn
Remote Sens. 2011, 3(10), 2222-2242; https://doi.org/10.3390/rs3102222 - 20 Oct 2011
Cited by 178 | Viewed by 17313
Abstract
Visual image interpretation and digital image classification have been used to map and monitor mangrove extent and composition for decades. The presence of a high-spatial resolution hyperspectral sensor can potentially improve our ability to differentiate mangrove species. However, little research has explored the [...] Read more.
Visual image interpretation and digital image classification have been used to map and monitor mangrove extent and composition for decades. The presence of a high-spatial resolution hyperspectral sensor can potentially improve our ability to differentiate mangrove species. However, little research has explored the use of pixel-based and object-based approaches on high-spatial hyperspectral datasets for this purpose. This study assessed the ability of CASI-2 data for mangrove species mapping using pixel-based and object-based approaches at the mouth of the Brisbane River area, southeast Queensland, Australia. Three mapping techniques used in this study: spectral angle mapper (SAM) and linear spectral unmixing (LSU) for the pixel-based approaches, and multi-scale segmentation for the object-based image analysis (OBIA). The endmembers for the pixel-based approach were collected based on existing vegetation community map. Nine targeted classes were mapped in the study area from each approach, including three mangrove species: Avicennia marina, Rhizophora stylosa, and Ceriops australis. The mapping results showed that SAM produced accurate class polygons with only few unclassified pixels (overall accuracy 69%, Kappa 0.57), the LSU resulted in a patchy polygon pattern with many unclassified pixels (overall accuracy 56%, Kappa 0.41), and the object-based mapping produced the most accurate results (overall accuracy 76%, Kappa 0.67). Our results demonstrated that the object-based approach, which combined a rule-based and nearest-neighbor classification method, was the best classifier to map mangrove species and its adjacent environments. Full article
(This article belongs to the Special Issue Hyperspectral Remote Sensing)
Show Figures

Figure 1

26 pages, 1350 KiB  
Article
Comparison Between Fractional Vegetation Cover Retrievals from Vegetation Indices and Spectral Mixture Analysis: Case Study of PROBA/CHRIS Data Over an Agricultural Area
by Juan C. Jiménez-Muñoz, José A. Sobrino, Antonio Plaza, Luis Guanter, José Moreno and Pablo Martinez
Sensors 2009, 9(2), 768-793; https://doi.org/10.3390/s90200768 - 2 Feb 2009
Cited by 167 | Viewed by 16856
Abstract
In this paper we compare two different methodologies for Fractional Vegetation Cover (FVC) retrieval from Compact High Resolution Imaging Spectrometer (CHRIS) data onboard the European Space Agency (ESA) Project for On-Board Autonomy (PROBA) platform. The first methodology is based on empirical approaches using [...] Read more.
In this paper we compare two different methodologies for Fractional Vegetation Cover (FVC) retrieval from Compact High Resolution Imaging Spectrometer (CHRIS) data onboard the European Space Agency (ESA) Project for On-Board Autonomy (PROBA) platform. The first methodology is based on empirical approaches using Vegetation Indices (VIs), in particular the Normalized Difference Vegetation Index (NDVI) and the Variable Atmospherically Resistant Index (VARI). The second methodology is based on the Spectral Mixture Analysis (SMA) technique, in which a Linear Spectral Unmixing model has been considered in order to retrieve the abundance of the different constituent materials within pixel elements, called Endmembers (EMs). These EMs were extracted from the image using three different methods: i) manual extraction using a land cover map, ii) Pixel Purity Index (PPI) and iii) Automated Morphological Endmember Extraction (AMEE). The different methodologies for FVC retrieval were applied to one PROBA/CHRIS image acquired over an agricultural area in Spain, and they were calibrated and tested against in situ measurements of FVC estimated with hemispherical photographs. The results obtained from VIs show that VARI correlates better with FVC than NDVI does, with standard errors of estimation of less than 8% in the case of VARI and less than 13% in the case of NDVI when calibrated using the in situ measurements. The results obtained from the SMA-LSU technique show Root Mean Square Errors (RMSE) below 12% when EMs are extracted from the AMEE method and around 9% when extracted from the PPI method. A RMSE value below 9% was obtained for manual extraction of EMs using a land cover use map. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Back to TopTop