Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (69)

Search Parameters:
Keywords = lightweight cellular materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5287 KiB  
Article
Heuristic Optimization Rules Applied for the Sustainable Design of Lightweight Engineering Structures Under Loads Subject to Random Changes
by Katarzyna Tajs-Zielińska and Bogdan Bochenek
Sustainability 2025, 17(15), 7011; https://doi.org/10.3390/su17157011 - 1 Aug 2025
Viewed by 215
Abstract
In engineering design, optimization is crucial for achieving sustainable goals. This involves creating environmentally responsible structures. Optimizing the design is the first step in reducing the environmental impact of construction. Topology optimization (TO) is one way to do this. TO is the process [...] Read more.
In engineering design, optimization is crucial for achieving sustainable goals. This involves creating environmentally responsible structures. Optimizing the design is the first step in reducing the environmental impact of construction. Topology optimization (TO) is one way to do this. TO is the process of designing the material layout in the design domain according to selected criteria. The criteria can be explicitly defined to promote sustainability. As a result, a new structure topology is proposed to make the structure both lightweight and durable, with the aim of improving its functionality and reducing its environmental impact. In optimal engineering design, it is particularly important to take into account the structure’s special operating conditions, e.g., loads subject to random changes. Predicting topologies under such conditions is important since random load changes can significantly affect the resulting topologies. In this paper, an easy to implement numerical method for this kind of problem is proposed. The basic idea is to transform a random loads case into the deterministic problem of multiple loads. A heuristic method of Cellular Automata is proposed as a numerical optimization tool. The examples of topology optimization have been performed to illustrate the concept, confirming the efficiency, versatility, and ease of its implementation. Full article
Show Figures

Figure 1

15 pages, 4749 KiB  
Article
Selective Laser Melting of a Ti-6Al-4V Lattice-Structure Gear: Design, Topology Optimization, and Experimental Validation
by Riad Ramadani, Snehashis Pal, Aleš Belšak and Jožef Predan
Appl. Sci. 2025, 15(14), 7949; https://doi.org/10.3390/app15147949 - 17 Jul 2025
Viewed by 341
Abstract
The manufacture of lightweight components is one of the most important requirements in the automotive and aerospace industries. Gears, on the other hand, are among the heaviest parts in terms of their total weight. Accordingly, a spur gear was considered, the body of [...] Read more.
The manufacture of lightweight components is one of the most important requirements in the automotive and aerospace industries. Gears, on the other hand, are among the heaviest parts in terms of their total weight. Accordingly, a spur gear was considered, the body of which was configured as a lattice structure to make it lightweight. In addition, the structure was optimized by topology optimization using ProTOP software. Subsequently, the gear was manufactured by a selective laser melting process by using a strong and lightweight material, namely Ti-6Al-4V. This study defeated the problems of manufacturing orientation, surface roughness, support structure, and bending due to the high thermal gradient in the selective laser melting process. To experimentally investigate the benefits of such a lightweight gear body structure, a new test rig with a closed loop was developed. This rig enabled measurements of strains in the gear ring, hub, and tooth root. The experimental results confirmed that a specifically designed and selectively laser-melted, lightweight cellular lattice structure in the gear body can significantly influence strain. This is especially significant with respect to strain levels and their time-dependent variations in the hub section of the gear body. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
Show Figures

Figure 1

18 pages, 12373 KiB  
Article
Physical Properties of Foamed Concrete Based on Plaster Mortar with Polystyrene Granulate and Synthetic Foaming Agent
by Monika Gwóźdź-Lasoń, Wacław Brachaczek, Marta Kadela and Alfred Kukiełka
Materials 2025, 18(9), 2115; https://doi.org/10.3390/ma18092115 - 5 May 2025
Cited by 1 | Viewed by 630
Abstract
According to EU directives, it is necessary to improve the energy consumption of buildings. Therefore, the aim of this study was to improve the physical properties of foamed concrete produced using plaster mortar. For this purpose, polystyrene granulate with a bulk density of [...] Read more.
According to EU directives, it is necessary to improve the energy consumption of buildings. Therefore, the aim of this study was to improve the physical properties of foamed concrete produced using plaster mortar. For this purpose, polystyrene granulate with a bulk density of 13 kg/m3 in amounts of 4, 7, and 10 g per 1 kg of plaster mortar and a foaming agent in amounts of 2, 4, and 6% of the cement mass were used. The density, thermal conductivity coefficient, compressive and flexural strengths, and water absorption coefficient due to capillary action were determined. Based on the obtained results, it can be concluded that the density, thermal conductivity coefficient, and water absorption coefficient due to capillary action decreased with an increase in the content of polystyrene granulate addition, which is a beneficial outcome. However, at the same time, a reduction in mechanical properties was demonstrated. With an increase in the content of the foaming agent, the density and thermal and mechanical properties decreased. The water absorption coefficient due to capillary action increased with the foaming agent content for samples with the addition of polystyrene granulate. However, the coefficient for all the tested samples was lower than that for the base sample. Full article
Show Figures

Figure 1

21 pages, 10078 KiB  
Article
Investigating the Flexural Properties of 3D-Printed Nylon CF12 with Respect to the Correlation Between Loading and Layering Directions
by Katarina Monkova, Peter Pavol Monka, Jana Burgerova and Gyula Szabo
Polymers 2025, 17(6), 788; https://doi.org/10.3390/polym17060788 - 16 Mar 2025
Viewed by 788
Abstract
The article deals with the investigation of the flexural properties of 3D-printed Nylon CF12 with regard to the correlation between the loading and layering directions. It also discusses the prospective consideration of a suitable combination of lightweight material, 3D-printing, and cellular structures for [...] Read more.
The article deals with the investigation of the flexural properties of 3D-printed Nylon CF12 with regard to the correlation between the loading and layering directions. It also discusses the prospective consideration of a suitable combination of lightweight material, 3D-printing, and cellular structures for application in sports, such as the production of poles for pole vaulting. Full-volume samples (with and without orbital shell) and porous (Diamond, Primitive, and Gyroid) samples sizes of 20 × 20 × 250 mm were fabricated and subjected to experimental three-point bending tests. The force–displacement dependencies were plotted, and the data were further evaluated. The results showed that the flexural properties of 3D-printed full-volume beams are significantly influenced by the direction of loading relative to the layering, while for porous beams with cellular structures, the differences in properties are very small. Also, the mismatches between the material properties listed in the datasheets and achieved within the research were identified and indicate the necessity to verify mechanical properties of newly developed products experimentally. Full article
(This article belongs to the Special Issue Polymers Additive Manufacturing in Sports and Protective Equipment)
Show Figures

Figure 1

29 pages, 6975 KiB  
Article
Thermo-Mechanical Performance of Sustainable Lightweight Sandwich Panels Utilizing Ultra-High-Performance Fiber-Reinforced Concrete
by Mariam Farouk Ghazy, Metwally abd allah Abd Elaty, Mohamed Abd Elkhalek Sakr and Eslam Mohamed Arafa
Buildings 2025, 15(4), 593; https://doi.org/10.3390/buildings15040593 - 14 Feb 2025
Cited by 4 | Viewed by 1327
Abstract
Sandwich panels, consisting of two concrete wythes that encase an insulating core, are designed to improve energy efficiency and reduce the weight of construction applications. This research examines the thermal and flexural properties of a novel sandwich panel that incorporates ultra-high-performance fiber-reinforced concrete [...] Read more.
Sandwich panels, consisting of two concrete wythes that encase an insulating core, are designed to improve energy efficiency and reduce the weight of construction applications. This research examines the thermal and flexural properties of a novel sandwich panel that incorporates ultra-high-performance fiber-reinforced concrete (UHPFRC) and cellular lightweight concrete (CLC) as its core material. Seven sandwich panel specimens were tested for their thermo-flexural performance using four-point bending tests. The experimental parameters included variations in UHPFRC thickness (20 mm and 30 mm) and different shear connector types (shear keys, steel bars, and post-tension steel bars). The study also assessed the effects of adding steel mesh reinforcement to the UHPFRC layer and evaluated the performance of UHPFRC box sections without a CLC core. The analysis concentrated on several critical factors, such as initial, ultimate, and serviceability loads, load–deflection relationships, load–end slip, load–strain relationships, composite action ratios, crack patterns, and failure modes. The thermal properties of the UHPFRC and CLC were evaluated using a transient plane source technique. The results demonstrated that panels using post-tension steel bars as shear connectors achieved flexural performance, and the most favorable composite action ratios reached 68.8%. Conversely, the box section exhibited a brittle failure mode when compared to the other sandwich panels tested. To effectively evaluate mechanical and thermal properties, it is important to design panels that have adequate load-bearing capacity while maintaining low thermal conductivity. This study introduced a thermo-mechanical performance coefficient to evaluate both the thermal and mechanical performance of the panels. The findings indicated that sandwich panels with post-tension steel bars achieved the highest thermo-mechanical performance, while those with steel connectors had the lowest performance. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

15 pages, 4672 KiB  
Article
Impact of Cell Design Parameters on Mechanical Properties of 3D-Printed Cores for Carbon Epoxy Sandwich Composites
by Mustafa Aslan, Kutay Çava, Altuğ Uşun and Onur Güler
Polymers 2025, 17(1), 2; https://doi.org/10.3390/polym17010002 - 24 Dec 2024
Viewed by 923
Abstract
The introduction of 3D printing technology has broadened manufacturing possibilities, allowing the production of complex cellular geometries, including auxetic and curved plane structures, beyond the standard honeycomb patterns in sandwich composite materials. In this study, the effects of cell design parameters, such as [...] Read more.
The introduction of 3D printing technology has broadened manufacturing possibilities, allowing the production of complex cellular geometries, including auxetic and curved plane structures, beyond the standard honeycomb patterns in sandwich composite materials. In this study, the effects of cell design parameters, such as cell geometry (honeycomb and auxetic) and cell size (cell thickness and width), are examined on acrylonitrile butadiene styrene (ABS) core materials produced using fusion deposition modeling (FDM). They are produced as a result of the epoxy bonding of carbon epoxy prepreg composite materials to the surfaces of core materials. Increasing the wall thickness from 0.6 mm to 1 mm doubled the elastic modulus of the re-entrant structures (5 GPa to 10 GPa) and improved compressive strength by 50–60% for both geometries. In contrast, increasing cell size from 6 mm to 10 mm significantly reduced compressive strength by 80% (from 2.5–2.8 MPa to 0.5–0.6 MPa) and elastic modulus by 70–78% (from 9–10 GPa to 2–3 GPa). Flexural testing showed that the re-entrant cores, with a maximum load capacity of 148 N, exhibited more uniform deformation, while the honeycomb cores achieved a higher load capacity of 273 N but were prone to localized failures. These findings emphasize the directional anisotropy and specific advantages of auxetic and honeycomb designs, offering valuable insights for lightweight, high-strength structural applications. Full article
(This article belongs to the Special Issue Research on Additive Manufacturing of Polymer Composites)
Show Figures

Figure 1

22 pages, 7559 KiB  
Article
Elucidating Collapse-Resistant Mechanisms of Pore Geometries in Fire Ant Nest Cavities
by Tyler Felgenhauer, Satchi Venkataraman and Ethan Mullen
Biomimetics 2024, 9(12), 735; https://doi.org/10.3390/biomimetics9120735 - 3 Dec 2024
Cited by 1 | Viewed by 3402
Abstract
Porous materials and structures, such as subterranean fire ant nests, are abundant in nature. It is hypothesized that these structures likely have evolved biological adaptations that enhance their collapse resistance. This research aims to elucidate the collapse-resistant mechanisms of pore geometries in fire [...] Read more.
Porous materials and structures, such as subterranean fire ant nests, are abundant in nature. It is hypothesized that these structures likely have evolved biological adaptations that enhance their collapse resistance. This research aims to elucidate the collapse-resistant mechanisms of pore geometries in fire ant nests. Finite Element Models of ant nests in soil were generated using X-ray CT imaging of aluminum castings of ant nests. Representative volume elements of the ant nests, representing porous structures at various depths, were analyzed under confined compression. This work on investigating fire ant (sp. Solenopsis Invicta) nests found them to be hierarchical and graded at various depths that affect how they resist loads and collapse. The top portion acts as a protective shield by distributing damage and absorbing energy. In contrast, the lower chambers localize stress, contributing to damage tolerance. This research provides evidence to suggest that ant nests have developed properties that allow them to resist collapse. These findings could inform the design of lightweight and durable cellular structures in various engineering fields. Full article
Show Figures

Graphical abstract

24 pages, 9759 KiB  
Article
Experimental and Numerical Evaluation of Calcium-Silicate-Based Mineral Foam for Blast Mitigation
by Aldjabar Aminou, Mohamed Ben Rhouma, Bachir Belkassem, Hamza Ousji, Lincy Pyl and David Lecompte
Appl. Sci. 2024, 14(21), 9656; https://doi.org/10.3390/app14219656 - 22 Oct 2024
Cited by 2 | Viewed by 1104
Abstract
Cellular materials such as aluminum and polyurethane foams are recognized for their effectiveness in energy absorption. They commonly serve as crushable cores in sacrificial cladding for blast mitigation purposes. This study delves into the effectiveness of autoclaved aerated concrete (AAC), a lightweight, porous [...] Read more.
Cellular materials such as aluminum and polyurethane foams are recognized for their effectiveness in energy absorption. They commonly serve as crushable cores in sacrificial cladding for blast mitigation purposes. This study delves into the effectiveness of autoclaved aerated concrete (AAC), a lightweight, porous material known for its energy-absorbing properties as a crushable core in sacrificial cladding. The experimental set-up features a rigid frame made of steel measuring 1000 × 1000 × 15 mm3 with a central square opening (300 × 300 mm2) holding a 2 mm thick aluminum plate representing the structure. The dynamic response of the aluminum plate is captured using two high-speed cameras arranged in a stereoscopic configuration. Three-dimensional digital image correlation is used to compute the transient deformation fields. Blast loading is achieved by detonating 20 g of C4 explosive set at 250 mm from the plate’s center. The study assesses the mineral foam’s absorption capacity by comparing out-of-plane displacement and mean permanent deformation of the aluminum plate with and without the protective solution. Six foam configurations (A to F) are tested experimentally and numerically, varying in the foam’s free space for expansion relative to its total volume. Results show positive protective effects, with configuration F reducing maximum deflection by at least 30% and configuration C by up to 70%. Foam configuration influences energy dissipation, with an optimal lateral surface-to-volume ratio (ζ) enhancing protective effects, although excessive ζ leads to non-uniform foam crushing. To address the influence of front skin deformability, a non-deformable front skin has been adopted. The latter demonstrates an increased effectiveness of the sacrificial cladding, particularly for ζ values above the optimal value obtained when using a deformable front skin. Notably, using a non-deformable front skin increases maximum deflection reduction and foam energy absorption by up to approximately 30%. Full article
Show Figures

Figure 1

17 pages, 3414 KiB  
Article
Impact of PEG400–Zeolite Performance as a Material for Enhancing Strength of the Mechanical Properties of LECA/Foamed Lightweight Concrete
by Hebah Mohammad Al-Jabali, Walid Fouad Edris, Shady Khairy, Ghada N. Mohamed, Hebatallah A. Elsayed and Ahmed A. El-Latief
Infrastructures 2024, 9(9), 149; https://doi.org/10.3390/infrastructures9090149 - 2 Sep 2024
Cited by 2 | Viewed by 1918
Abstract
A versatile building material, foamed concrete is made of cement, fine aggregate, and foam combined with coarse aggregate. This study provides a description of how constant coarse aggregate replacement (50%) of LECA and foamed concrete, which are lightweight concrete types, by zeolite as [...] Read more.
A versatile building material, foamed concrete is made of cement, fine aggregate, and foam combined with coarse aggregate. This study provides a description of how constant coarse aggregate replacement (50%) of LECA and foamed concrete, which are lightweight concrete types, by zeolite as a filler and PEG-400 as a plasticizer, water retention agent, and strength enhancer affect the mechanical properties of the cement. A study that examined the characteristics of cellular lightweight concrete in both its fresh and hardened forms was carried out for both foamed concrete and LECA concrete. In order to do this, a composite of zeolite and polyethylene glycol 400 was made using the direct absorption method, and no leakage was seen. Zeolite was loaded to a level of 10% and 20% of the total weight in cement, while 400 g/mol PEG was used at levels of 1%, 1.5%, and 2% of the cement’s weight. Various mixtures having a dry density of 1250 kg/m3 were produced. Properties like dry density, splitting tensile strength, and compressive strength were measured. An increase in the amount of PEG400–zeolite was seen to lower the workability, or slump, of both foamed and LECA concrete, while the replacement of aggregate by zeolite resulted in an exponential drop in both compressive and flexural strengths. Full article
Show Figures

Figure 1

15 pages, 6012 KiB  
Article
Numerical and Experimental Modal Analysis of a Gyroid Inconel 718 Structure for Stiffness Specification in the Design of Load-Bearing Components
by Katarina Monkova, Sanjin Braut, Peter Pavol Monka, Ante Skoblar and Martin Pollák
Materials 2024, 17(14), 3595; https://doi.org/10.3390/ma17143595 - 21 Jul 2024
Viewed by 1296
Abstract
The study aims to investigate the modal properties of a 60 × 70 × 80 mm gyroid structure made of Inconel 718 with 67.5% porosity. The geometry model for sample production was created using the software PTC Creo, whereas the geometry model for [...] Read more.
The study aims to investigate the modal properties of a 60 × 70 × 80 mm gyroid structure made of Inconel 718 with 67.5% porosity. The geometry model for sample production was created using the software PTC Creo, whereas the geometry model for numerical analysis was created using the Python application ScaffoldStructures. FE analysis was performed using ANSYS 2024 R1 software. Free boundary conditions were used in experimental modal analysis to ensure feasibility. The analysis identified the first four natural frequencies ranging from 10 to 16 kHz. The results revealed that the first natural frequency corresponds to the first torsional frequency about the Z axis, the second to the first flexural mode in the XZ plane, the third to the first bending mode in the YZ plane, and the fourth to the first torsional mode about the X axis. Small differences between the results of numerical and experimental modal analysis can be attributed to geometric errors in the manufactured sample, careless removal from the platform, and due to reduction in the complexity of the numerical FE model. Employing modal analysis of a component, the stiffness of a lightweight component can be revealed. In the case of the sample with the cellular structure of gyroid type, relatively high stiffness regarding the material savings was identified, which can be advantageously used in many applications. Full article
(This article belongs to the Special Issue Preparation and Application of Regularly Structured Porous Materials)
Show Figures

Figure 1

42 pages, 30451 KiB  
Review
Review Study on Mechanical Properties of Cellular Materials
by Safdar Iqbal and Marcin Kamiński
Materials 2024, 17(11), 2682; https://doi.org/10.3390/ma17112682 - 2 Jun 2024
Cited by 7 | Viewed by 2939
Abstract
Cellular materials are fundamental elements in civil engineering, known for their porous nature and lightweight composition. However, the complexity of its microstructure and the mechanisms that control its behavior presents ongoing challenges. This comprehensive review aims to confront these uncertainties head-on, delving into [...] Read more.
Cellular materials are fundamental elements in civil engineering, known for their porous nature and lightweight composition. However, the complexity of its microstructure and the mechanisms that control its behavior presents ongoing challenges. This comprehensive review aims to confront these uncertainties head-on, delving into the multifaceted field of cellular materials. It highlights the key role played by numerical and mathematical analysis in revealing the mysterious elasticity of these structures. Furthermore, the review covers a range of topics, from the simulation of manufacturing processes to the complex relationships between microstructure and mechanical properties. This review provides a panoramic view of the field by traversing various numerical and mathematical analysis methods. Furthermore, it reveals cutting-edge theoretical frameworks that promise to redefine our understanding of cellular solids. By providing these contemporary insights, this study not only points the way for future research but also illuminates pathways to practical applications in civil and materials engineering. Full article
Show Figures

Figure 1

13 pages, 9984 KiB  
Article
A Novel Method for Preparing Lightweight and High-Strength Ceramisite Coarse Aggregates from Solid Waste Materials
by Xin Xiong, Zhi Wu, Pengcheng Jiang, Min Lai and Guanghai Cheng
Materials 2024, 17(11), 2613; https://doi.org/10.3390/ma17112613 - 29 May 2024
Cited by 2 | Viewed by 1293
Abstract
A novel method is introduced in this study for producing ceramisite coarse aggregates that are both lightweight and possess high strength. The process involves utilizing fly ash as the primary material, along with coal ash floating beads (CAFBs) that have high softening temperature [...] Read more.
A novel method is introduced in this study for producing ceramisite coarse aggregates that are both lightweight and possess high strength. The process involves utilizing fly ash as the primary material, along with coal ash floating beads (CAFBs) that have high softening temperature and a spherical hollow structure serving as the template for forming pores. This study examined the impact of varying particle size and quantity of floating beads on the composition and characteristics of ceramisite aggregates. Results showed that the high softening temperature of floating beads provided stability to the spherical cavity structure throughout the sintering process. Furthermore, the pore structure could be effectively tailored by manipulating the size and quantity of the floating beads in the manufacturing procedure. The obtained ceramisite aggregates feature a compact outer shell and a cellular inner core with uniformly distributed pores that are isolated from each other and mostly spherical in form. They achieve a low density ranging from 723 to 855 kg/m3, a high cylinder compressive strength between 8.7 and 13.5 MPa, and minimal water absorption rates of 3.00 to 4.09%. The performance metrics of these coarse aggregates significantly exceeded the parameters specified in GB/T 17431.1-2010 standards. Full article
(This article belongs to the Special Issue Properties and Applications of Cement and Concrete Composites)
Show Figures

Figure 1

28 pages, 10841 KiB  
Article
Lightweight Potential of Anisotropic Plate Lattice Metamaterials
by Martin Maier, Christoph Stangl, Holger Saage and Otto Huber
Materials 2024, 17(10), 2354; https://doi.org/10.3390/ma17102354 - 15 May 2024
Cited by 2 | Viewed by 1712
Abstract
Additive manufacturing enables the production of lattice structures, which have been proven to be a superior class of lightweight mechanical metamaterials whose specific stiffness can reach the theoretical limit of the upper Hashin–Shtrikman bound for isotropic cellular materials. To achieve isotropy, complex structures [...] Read more.
Additive manufacturing enables the production of lattice structures, which have been proven to be a superior class of lightweight mechanical metamaterials whose specific stiffness can reach the theoretical limit of the upper Hashin–Shtrikman bound for isotropic cellular materials. To achieve isotropy, complex structures are required, which can be challenging in powder bed additive manufacturing, especially with regard to subsequent powder removal. The present study focuses on the Finite Element Method simulation of 2.5D anisotropic plate lattice metamaterials and the investigation of their lightweight potential. The intentional use of anisotropic structures allows the production of a cell architecture that is easily manufacturable via Laser Powder Bed Fusion (LPBF) while also enabling straightforward optimization for specific load cases. The work demonstrates that the considered anisotropic plate lattices exhibit high weight-specific stiffnesses, superior to those of honeycomb structures, and, simultaneously, a good de-powdering capability. A significant increase in stiffness and the associated surpassing of the upper Hashin–Shtrikman bound due to anisotropy is achievable by optimizing wall thicknesses depending on specific load cases. A stability analysis reveals that, in all lattice structures, plastic deformation is initiated before linear buckling occurs. An analysis of stress concentrations indicates that the introduction of radii at the plate intersections reduces stress peaks and simultaneously increases the weight-specific stiffnesses and thus the lightweight potential. Exemplary samples illustrate the feasibility of manufacturing the analyzed metamaterials within the LPBF process. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Graphical abstract

24 pages, 16462 KiB  
Article
Improved Mechanical Performance in FDM Cellular Frame Structures through Partial Incorporation of Faces
by Mahan Ghosh and Nandika Anne D’Souza
Polymers 2024, 16(10), 1340; https://doi.org/10.3390/polym16101340 - 9 May 2024
Cited by 5 | Viewed by 1521
Abstract
The utilization of lattice-type cellular architectures has seen a significant increase, owing to their predictable shape and the ability to fabricate templated porous materials through low-cost 3D-printing methods. Frames based on atomic lattice structures such as face-centered cubic (FCC), body-centered cubic (BCC), or [...] Read more.
The utilization of lattice-type cellular architectures has seen a significant increase, owing to their predictable shape and the ability to fabricate templated porous materials through low-cost 3D-printing methods. Frames based on atomic lattice structures such as face-centered cubic (FCC), body-centered cubic (BCC), or simple cubic (SC) have been utilized. In FDM, the mechanical performance has been impeded by stress concentration at the nodes and melt-solidification interfaces arising from layer-by-layer deposition. Adding plates to the frames has resulted in improvements with a concurrent increase in weight and hot-pocket-induced dimensional impact in the closed cells formed. In this paper, we explore compressive performance from the partial addition of plates to the frames of a SC-BCC lattice. Compression testing of both single unit cells and 4 × 4 × 4 lattices in all three axial directions is conducted to examine stress transfer to the nearest neighbor and assess scale-up stress transfer. Our findings reveal that hybrid lattice structure unit cells exhibit significantly improved modulus in the range of 125% to 393%, specific modulus in the range of 13% to 120%, and energy absorption in the range of 17% to 395% over the open lattice. The scaled-up lattice modulus increased by 8% to 400%, specific modulus by 2% to 107%, and energy absorption by 37% to 553% over the lattice frame. Parameters that emerged as key to improved lightweighting. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

25 pages, 8767 KiB  
Article
Dynamic Response Study of Space Large-Span Structure under Stochastic Crowd-Loading Excitation
by Shuwang Yang, Gang Wang, Qiang Xu, Junfu He, Minghao Yang and Chenhao Su
Buildings 2024, 14(5), 1203; https://doi.org/10.3390/buildings14051203 - 24 Apr 2024
Cited by 2 | Viewed by 1148
Abstract
With the development of civil engineering, lightweight and high-strength materials, as well as large-span, low-frequency structural systems, are increasingly used. However, its self-oscillation frequency is often close to the stride frequency of pedestrians, which is easily affected by human activities. To study the [...] Read more.
With the development of civil engineering, lightweight and high-strength materials, as well as large-span, low-frequency structural systems, are increasingly used. However, its self-oscillation frequency is often close to the stride frequency of pedestrians, which is easily affected by human activities. To study the effect of human activities on the dynamic response of structures, it is crucial to choose an appropriate anthropogenic load model. Considering the inter-subject and intra-subject variability of pedestrian walking parameters and induced forces in a crowd, we introduce the interaction rules between pedestrians based on the floor field cellular automata (FFCA). A stochastic crowd-loading model coupling walking parameters, induced forces between pedestrians, and induced forces between pedestrians and structures is proposed for simulating crowd-walking loads. The feasibility of the model is verified by comparing the measured response of a space large-span structure with the predicted response of the proposed stochastic crowd-loading model. The comfort level of the structure under different crowd densities was also evaluated based on the model. It was found that both random combinations of walking parameters and dynamic behaviors of pedestrians can cause significant differences in the structural response. Therefore, the crowd-loading model should consider the influence of pedestrian behavioral factors on the structural response. Full article
(This article belongs to the Special Issue Structural Vibration Serviceability and Human Comfort II)
Show Figures

Figure 1

Back to TopTop