Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = lifter bars

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4335 KB  
Article
DEM Study on the Impact of Liner Lifter Bars on SAG Mill Collision Energy
by Yong Wang, Qingfei Xiao, Saizhen Jin, Mengtao Wang, Ruitao Liu and Guobin Wang
Lubricants 2025, 13(8), 321; https://doi.org/10.3390/lubricants13080321 - 23 Jul 2025
Viewed by 799
Abstract
The semi-autogenous grinding (SAG) mill, renowned for its high efficiency, high production capacity, and low cost, is widely used for crushing and grinding equipment. However, the current understanding of the overall particle behavior influencing its efficiency remains relatively limited, particularly the impact of [...] Read more.
The semi-autogenous grinding (SAG) mill, renowned for its high efficiency, high production capacity, and low cost, is widely used for crushing and grinding equipment. However, the current understanding of the overall particle behavior influencing its efficiency remains relatively limited, particularly the impact of the shape of SAG mill liners on material behavior. This study employs discrete element method (DEM) simulation technology to investigate the effects of different liner structures on particle trajectories and collision energy, systematically investigating the impact of lifter bars angle, height, and the number of lifter bars on grinding efficiency. The results of single-factor simulations indicate that when the lifter bars height (230 mm) and the number of lifter bars (36) are fixed, the total collision energy dissipation between steel balls and ore, as well as among ore particles, reaches a maximum of 526,069.53 J when the lifter bars angle is 25°. When the lifter bar angle is fixed at 25° and the number of lifter bars is set to 36, the maximum collision energy dissipation of 627,606.06 J occurs at a lifter bars height of 210 mm. When the angle (25°) and height (210 mm) are fixed, the highest energy dissipation of 443,915.37 J is observed with 12 lifter bars. Results from the three-factor, three-level orthogonal experiment reveal that the number of lifter bars exerts the most significant influence on grinding efficiency, followed by the angle and height. The optimal combination is determined to be a 20° angle, 12 lifter bars, and a 210 mm height, resulting in the highest total collision energy dissipation of 700,334 J. This represents an increase of 379,466 J compared to the original SAG mill liner configuration (320,868 J). This research aims to accurately simulate the motion of discrete particles within the mill through DEM simulations, providing a basis for optimizing the operational parameters and structural design of SAG mills. Full article
(This article belongs to the Special Issue Tribology in Ball Milling: Theory and Applications)
Show Figures

Figure 1

17 pages, 3450 KB  
Article
Research on Optimization of Lifter of an SAG Mill Based on DEM Simulation and Orthogonal Tests and Applications
by Guobin Wang, Qingfei Xiao, Xiaojiang Wang, Yunxiao Li, Saizhen Jin, Mengtao Wang, Yunfeng Shao, Qian Zhang, Yingjie Pei and Ruitao Liu
Minerals 2025, 15(2), 193; https://doi.org/10.3390/min15020193 - 19 Feb 2025
Viewed by 901
Abstract
The unreasonable parameters of mill liner lifter bars will not only decrease the operating rate of the mill and increase electricity consumption but, also, seriously restrict the production capacity of the mill. Therefore, optimizing the parameters of liner lifter bars is helpful to [...] Read more.
The unreasonable parameters of mill liner lifter bars will not only decrease the operating rate of the mill and increase electricity consumption but, also, seriously restrict the production capacity of the mill. Therefore, optimizing the parameters of liner lifter bars is helpful to save energy, improve its production capacity, and increase benefits for enterprises. Given the unreasonable parameters of the lifter bars of the semi-autogenous grinding (SAG) mill in a beneficiation plant in Yunnan (China), the distinct element method (DEM) with orthogonal tests was used to conduct simulation, the simulation results demonstrating that the three parameters all had significant influence on the collision energy, with the order of group numbers > angles > heights by the analysis of range and variance, and the optimal parameters combination, with angles of 20°, groups of 12, and heights of 210 mm, was obtained. Then, the lifer bars optimized were applied in industrial tests to verify their effect, and the results illustrated that all of the service life of lifter bars, the operating rate, production capacity, and electricity consumption were significantly improved at 159 days, 92.32%, 54.37 t/h, and 21.45 kW·h/t, respectively. This paper proposes a reference for the similar design and optimization of lifter bars for the other beneficiation plants. Full article
(This article belongs to the Special Issue Recent Advances in Ore Comminution)
Show Figures

Figure 1

13 pages, 3899 KB  
Article
Applications of Operational Modal Analysis in Gearbox and Induction Motor, Based on Random Decrement Technique and Enhanced Ibrahim Time Method
by Gabriel Castro and Grover Zurita
Appl. Sci. 2022, 12(10), 5284; https://doi.org/10.3390/app12105284 - 23 May 2022
Cited by 6 | Viewed by 3146
Abstract
There have been steadily growing requirements from the academia and industry, demanding non-invasive methods and reliable measurement systems of research devoted to operational mode analysis (OMA). Due to the simplicity of performing only structures surface vibration measurements, OMA is frequently applied in machine [...] Read more.
There have been steadily growing requirements from the academia and industry, demanding non-invasive methods and reliable measurement systems of research devoted to operational mode analysis (OMA). Due to the simplicity of performing only structures surface vibration measurements, OMA is frequently applied in machine fault diagnosis (MFD) and structure health monitoring (SHM). OMA can handle big structures, such as bridges, buildings, machines, etc. However, there is still an open question: how to properly handle the harmonic effects of rotating components and the difficulty of closely estimating space modes are still a nightmare to deal with. Therefore, the main objective of this paper is to identify the structure of natural frequencies by the regeneration of frequency response functions (FRFs) for complex structures based on OMA. The novelty of our approach is to use the random decrement technique (RDT), correlation function estimation (CFE), and enhanced Ibrahim time method (EITM) to overcome OMA’s difficulties and limitations. To reduce further rotational harmonics effects, gear mesh and side band frequencies, digital signal processing techniques based on notching filters, and liftering analysis techniques were also used. All the experiments were performed at the laboratory test rig and conducted by using three accelerometers, one impedance hammer, one force sensor, and one data acquisition board. To reduce data’s variabilities, each test was measured three times for 5 min. The data sampling frequency for all the experiments was 25.6 kHz. To validate the proposed methodology, extensive OMA tests were performed for the generation of FRFs. The measured objects were a steel bar, induction motor, and gearbox. Five structural natural frequencies for the induction motor and eight structural natural frequencies for the gearbox were generated, respectively. Full article
(This article belongs to the Special Issue Machine Diagnostics and Vibration Analysis)
Show Figures

Figure 1

10 pages, 407 KB  
Article
The Effect of Set Up Position on EMG Amplitude, Lumbar Spine Kinetics, and Total Force Output During Maximal Isometric Conventional-Stance Deadlifts
by Corey Edington, Cassandra Greening, Nick Kmet, Nadia Philipenko, Lindsay Purves, Jared Stevens, Joel Lanovaz and Scotty Butcher
Sports 2018, 6(3), 90; https://doi.org/10.3390/sports6030090 - 31 Aug 2018
Cited by 10 | Viewed by 14887
Abstract
The purpose of this study was to examine the biomechanical differences between two set up variations during the isometric initiation of conventional barbell deadlifts (DL): Close-bar DL (CBDL), where the bar is positioned above the navicular, and far-bar DL (FBDL), where the bar [...] Read more.
The purpose of this study was to examine the biomechanical differences between two set up variations during the isometric initiation of conventional barbell deadlifts (DL): Close-bar DL (CBDL), where the bar is positioned above the navicular, and far-bar DL (FBDL), where the bar is placed above the 3rd metatarsophalangeal joint. A cross-sectional, randomized, within-participant pilot study was used. Experienced powerlifters and weightlifters (n = 10) performed three individual isometric pulls of the initiation of both conditions. The CBDL resulted in lower tibia and knee angles and greater pelvis and torso angles than the FBDL (p < 0.05), as well as greater electromyography (EMG) activity in the biceps femoris and upper lumbar erector spinae, but lower activity in the vastus lateralis, and a lower knee extensor moment (p < 0.05). There were no statistical differences for ground reaction force, joint reaction lumbar shear and compression forces between the two conditions. Despite the differences in pelvis and torso angles between lifting conditions, the internal joint net moment, internal shear forces, and internal compressive forces were not different between the two lifting styles. The CBDL set up also resulted in greater posterior chain (hamstrings and erector spine) EMG amplitude, whereas the FBDL set up resulted in more anterior chain (quadriceps) amplitude. Lifters and coaches may choose either deadlift style, according to preferences or training goals, without concern for differences in lumbar spinal loading. Full article
Show Figures

Figure 1

Back to TopTop